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Abstract

The minimal model of the “relative nonlinearity” type fluctuation-maintained
coexistence is investigated. The competing populations are affected by an en-
vironmental white noise. With quadratic density dependence, the long-term
growth rates of the populations are determined by the average and the variance
of the (fluctuating) total density. At most two species can coexist on these
two “regulating” variables; competitive exclusion would ensue in a constant
environment. A numerical study of the expected time until extinction of any
of the two species reveals that the criterion of mutual invasibility predicts the
parameter-range of long-term coexistence correctly in the limit of zero extinction
threshold. However, any extinction threshold consistent with a realistic popu-
lation size will allow only short-term coexistence. Therefore, our simulations
question the biological relevance of mutual invasibility, as a sufficient condition
of coexistence, for large density fluctuations. We calculate the average and the
variance of the fluctuating density of the coexisting populations analytically via
the moment-closure approximation; the results are reasonably close to the sim-
ulated behavior. Based on this treatment, robustness of coexistence is studied
in the limit of infinite population size. We interpret the results of this analysis
in the context of necessity of niche segregation with respect to the regulating
variables using a framework theory published earlier.
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1. Introduction

The role of environmental fluctuations in maintenance of species diversity is
one of the most frequently investigated topics in theoretical ecology.

The classical reference point is equilibrium coexistence theory. The principle
of competitive exclusion (Gause 1934, Hardin 1960) states that only the most
successful species can survive in a given niche. That is, coexistence requires
ecological (niche) segregation; limiting similarity of the coexisting species is ex-
pected. The principle is often stated in a narrower form: the number of popula-
tions coexisting at a fixed point attractor cannot exceed the number of resources
(Armstrong 1976). More generally, instead of the resources, one should count
all of the environmental variables involved in the feedback loop of population
regulation (Levin 1970). In line with e.g. Krebs (2001), p. 288 and Meszéna
et al. (2006), we will refer to these variables as regulating factors/variables. Fol-
lowing the lead of May (1973), Vandermeer (1975) and Abrams (1983), Meszéna
et al. (2006) proved in a model-independent way that increasing similarity be-
tween the populations makes their coexistence less likely, i.e. more sensitive to
the perturbation of external parameters. For robust coexistence, the popula-
tions should differ in their relationship to the regulating variables – i.e. in their
impact on, and sensitivity towards, these variables. Therefore, a population’s
(differential) impacts and sensitivities constitute the proper model-independent
generalization of the resource utilization function as a descriptor of the popu-
lation’s niche (Meszéna et al. 2006). Szabó and Meszéna (2006), Barabás and
Meszéna (2009) studied the loss of robustness with disappearing niche segrega-
tion in the Lotka-Volterra model. Szilágyi and Meszéna (2009a,b) applied the
theory to spatial niche segregation in a heterogeneous environment. Here we
investigate usefulness of this approach in fluctuating environment.

Hutchinson (1961) had already questioned the universal validity of the equi-
librium coexistence theory and raised the question whether the high diversity of
plankton communities could be explained by either the fluctuating nature of the
environment or the internal dynamics of the system. Indeed, Armstrong (1976)
demonstrated that the number of coexisting species can exceed the number of
resources even in a constant environment if the population dynamical attrac-
tor is not a fixed point. During the ’80s it has become a widely held opinion
that the Hutchinson–MacArthur-era overestimated the relevance of competitive
exclusion compared with nonequilibrium processes (Huston 1979, 1994, Begon
et al. 1996). On the other hand, Abrams (1983), Chesson (1991), Chesson and
Huntly (1997), Chesson et al. (2004) stressed that fluctuations do not allevi-
ate the need for ecological segregation. Even in a fluctuating environment the
species having the largest long-term rate of increase (calculated via proper av-
eraging) will outcompete the others. Therefore, competitive exclusion remains
the default behavior.

According to Chesson (2000b), coexistence must be stabilized by a negative
feedback that gives a boost to any of the populations that become rare. In
a constant environment, niche segregation of the classical kind provides this
feedback: the rare species will have an abundant supply of resources. For fluc-
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tuating environments Chesson (1994) enlists two additional mechanisms that
are specifically related to fluctuations: the “storage effect” and the “effect of
relative nonlinearity”. The first one is essentially a temporal niche-segregation,
made possible by the fluctuations (Christiansen and Fenchel 1977, p. 69, Ama-
rasekare 2003), while the second one means that the statistical moments of the
fluctuating regulating variables emerge as additional regulating variables via av-
eraging of non-linear dependencies (cf. Levins 1979, Kisdi and Meszéna 1993).
Chesson (2003) provided estimations for the strength of the two mechanisms,
allowing to asses their relative importance. The spatiality-related coexistence
mechanisms, described in Chesson (2000a), Amarasekare (2003), Amarasekare
et al. (2004), Szilágyi and Meszéna (2009a,b), are outside of our interest here.

Turelli (1978) formulated the necessity of a stabilizing feedback as a sufficient
condition for coexistence: if either of the two populations is able to grow when
rare enough, then they are able to coexist. This criterion of mutual invasibility
is widely used to simplify theoretical investigations of coexistence.

The principal goal of the present paper is to study the relation between the
theory of fluctuation-mediated coexistence and the classical notion of niche, as
formulated by Meszéna et al. (2006). While we aim for the general picture, here
we use the simplest model that we could conceive to demonstrate the principal
connection between equilibrium and nonequilibrium ecology (see Parvinen and
Meszéna 2009 for a more realistic model of disturbance-generated coexistence
in the same vein). For this purpose we use a slightly generalized version of
the relative nonlinearity-type coexistence model by Kisdi and Meszéna (1993).
There are only two regulating variables in this model, the long-term average
and the variance of the total density. Therefore, it is ensured that at most two
species can coexist.

Because of the simplicity of the model, an approximate analytical treatment
is possible via the method of moment closure. We will compare these approx-
imate results with numerical simulations. The analytic solution allows us to
calculate the populations’ impact and sensitivity vectors, which are the descrip-
tors of the population’s niche in the framework theory. This way we will be in
the position to consider the robustness of coexistence in terms of segregation
of the niches. After introducing our model in Section 2, we describe the basic
analytic and numerical results on coexistence in Sections 3 and 4. Section 5
discusses the moment closure approximation. Finally, Section 6 provides the
niche-theoretical analysis.

2. Building the model

Since we wish to study principal issues, we look for a model of fluctuation-
mediated coexistence as close to analytical tractability as possible. Continu-
ous time is preferred, as discrete-time population dynamics tends to exhibit
more complicated behavior. The simplest source of fluctuations is the uncorre-
lated external noise. We expect competitive exclusion to operate in the absence
of fluctuations. This is ensured if the dependence on the total density is the
only regulating feedback in the model (density-dependent selection, MacArthur
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1962). If density-dependence were linear, fluctuations would not affect the be-
havior (Chesson and Huntly 1997). Quadratic dependence is the minimalist
route to the effect of relative nonlinearity.

Therefore, the fluctuations will be driven by a Gaussian uncorrelated (white)
noise ξ(t) with zero mean (ξ = 0, the overline denotes time averaging). Its
autocorrelation function can be written as

ξ(t1)ξ(t2) = δ(t1 − t2), (1)

where δ(t1 − t2) is the “Dirac-delta function”, that is zero for t1 �= t2, but has
an integral of 1, specifying the normalization.

Then, our model is defined by the stochastic differential equation (SDE)

d
dt

ni(t) =

ri(t)︷ ︸︸ ︷[
σiξ(t)− ai(n(t)−Ki)− bi(n(t)−Ki)2

]
ni(t), (2)

where ni(t) is the density of Species i at time t, n(t) =
∑

i ni(t) is the total
density. The expression in the square bracket, denoted by ri(t), is the instanta-
neous growth rate of Species i. Ki is the carrying capacity of the ith Species,
i.e. the equilibrium density without noise; ai, bi and σi are positive constants.
The ratio bi/ai characterizes the nonlinearity of population regulation, while
the noise-intensity coefficient σi specifies the dependence of the population on
the external fluctuations. To avoid complications arising from an Allee-effect,
we want the deterministic part of the growth rate to decrease monotonously
with increasing density. To this end, the parameter values are chosen to satisfy
the inequality

ai

2bi
> Ki. (3)

We use the Stratonovich interpretation of the SDE (see e.g. May 1973, p.
204; Braumann 1999, 2007 and Appendix for the different interpretations of
SDEs). The intuitive advantage of this choice is that the time-average of the
instantaneous growth rate should be zero for any species that survives for a long
period of time, if time averaging (denoted by overline) is defined via Stratonovich
integration (Braumann 2007). In our model this time-average reads as

ri = −ai(n−Ki)− bi(n−Ki)2 + σiξ = −ai(n−Ki)− bi(n−Ki)2 − biV, (4)

where we denote the variance of the total density n by V = n2 − n2. Observe
the detrimental effect of the fluctuations on the long-term growth rate through
the quadratic term. The “equilibrium” condition is ri = 0.

Without fluctuations, V = 0. Then ri becomes zero when the time-averaged
total density n reaches the carrying capacity Ki. By the well-known argument of
MacArthur (1962), competition is won by the species with the highest carrying
capacity in this case.

In the presence of external fluctuations the densities will also fluctuate, im-
plying V > 0. The average growth rates are receiving feedback through two
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“regulating” variables: n and V . Each surviving population provides one equi-
librium equation (ri = 0 for Species i) for these variables. The generic solution
exists only if the number of equations does not exceed the number of unknowns.
That is, coexistence of two, but not more, species is allowed in this model.

Since this bound on diversity is clear from the onset of our investigations, it
is instructive to write down the dynamics (2) again just for two species:

d
dt

n1(t) =
[
σ1ξ(t) − a1(n(t)−K1)− b1(n(t)−K1)2

]
n1(t), (5)

d
dt

n2(t) =
[
σ2ξ(t) − a2(n(t)−K2)− b2(n(t)−K2)2

]
n2(t). (6)

The special case b2 = σ2 = 0, i.e. when the underlined terms are deleted, will be
referred to as the simplified model, first published by Kisdi and Meszéna (1993).
Since we are interested in limiting similarity here, we need the full model that
will allow the two species to become equivalent when their parameters are equal.
However, as the simplified model has a fewer number of parameters, it is more
convenient for the study of the coexistence of two species that are distinct.

3. Elementary analytic results

In this Section we summarize the analytical results that do not rely on
the moment closure approximation; the latter will be considered in Section
5. The calculations presented here are direct consequences of the equilibrium
conditions. While they are valid for arbitrarily large fluctuations, we will often
use the approximation of small fluctuations to keep the formulae transparent.

3.1. Single species
First we consider the long-term equilibrium of a single species. The equilib-

rium condition can be written as

r = −a(n̂−K)− b(n̂−K)2 − bV̂ = 0 (7)

(cf. Eq. (4)), where n̂ and V̂ denote the average and the variance of the
population density, respectively, for the case of a lone population. In a constant
environment V̂ = 0, implying n̂ = K. As density variance has a negative effect
on the growth rate and there is no Allee effect (monotonicity condition (3)), the
average density must decrease with increasing density fluctuation.

For small fluctuations we expect a small V̂ implies a small value of n̂−K char-
acterizing the departure of the average density from the constant-environment
value. In this limit we can neglect the second order small term in Eq. (7) leads
to the relation

n̂−K = − b

a
V̂ . (8)

That is, the difference n̂−K is proportional to V̂ . In the small fluctuation ap-
proximation we will neglect the terms beyond the linear order in either quantity.
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Note that the terms, like the second one in Eq. (7), will always be negligi-
ble for small fluctuations. Therefore, the essential role of the nonlinear terms
−bi(ni − Ki)2 in dynamics (7) is to implement a sensitivity towards the fluc-
tuations on the density. The ratio b/a that measures the nonlinearity of the
density dependence also characterizes the sensitivity of the average density to-
wards density fluctuations. In the case of linear density dependence (b = 0),
fluctuations of the density average out; the average density will not be affected
by the fluctuations.

3.2. Mutual invasion
The condition of mutual invasibility of two species reads

�1 = −a1(n̂2 −K1)− b1(n̂2 −K1)2 − b1V̂2 > 0,

�2 = −a2(n̂1 −K2)− b2(n̂1 −K2)2 − b2V̂1 > 0.
(9)

Here �i denotes the “boundary” growth rate of Species i, i.e. its growth rate,
when it is rare and the other species fluctuates in a stationary manner. While
these conditions are exact, the quantities n̂i and V̂i cannot be calculated ana-
lytically without the moment closure approximation of Section 5.

A more concise condition can be derived for the simplified model with b2 =
σ2 = 0. In this case Species 2 is affected by the fluctuations only through
its interaction with Species 1. When alone, Species 2 assumes an equilibrium
density determined by the condition r2 = −a2(n̂2−K2) = 0, implying n̂2 = K2.
Then the boundary growth rate of Species 1 is

�1 = −a1(K2 −K1)− b1(K2 −K1)2. (10)

It is positive iff
K2 < K1, (11)

where inequality (3) was used. On the other hand, Species 2 has a positive
boundary growth rate against the established population of Species 1 iff

�2 = −a2(n̂1 −K2) > 0. (12)

The combination of Eqs. (10) and (12) provides the necessary and sufficient
condition for mutually invasibility as

n̂1 < K2 < K1 (13)

(cf. Kisdi and Meszéna 1993). There is no exact analytic way to determine n̂1;
it has to come either from simulations or from moment closure approximation
applied to a single species.
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3.3. Advantage of rarity
Advantage of rarity (negative frequency dependence in the terminology of

population genetics) is an essential component of coexistence. Following Ches-
son (2003), we measure it by the quantity

� =
�1

a1
+

�2

a2
. (14)

Mutual invasibility implies � > 0, but not vice versa. Obviously, this would be
true for any linear combination of �1 and �2 with positive coefficients. We justify
the normalization by the ais via an argument modified from Chesson (2009).
In case of linear density dependence �1/a1 = K2 − K1 and �2/a2 = K1 −K2.
Therefore, the chosen normalization arranges that � = 0 for the reference case of
linearity, when relative nonlinearity cannot operate. The essential issue behind
this normalization is that the quantity r1/a1− r2/a2 is independent of the total
density n in the linear case.

We will use the approximation of small fluctuations. Straightforward calcu-
lation leads to

� =
[

b1

a1
− b2

a2
+ 2

b1b2

a1a2
ΔK

]
(V̂1 − V̂2)−

[
b1

a1
+

b2

a2

]
(ΔK)2 > 0, (15)

where the notation
ΔK = K1 −K2 (16)

was introduced. For ΔK = 0 it simplifies to the following transparent formula(
b1

a1
− b2

a2

) (
V̂1 − V̂2

)
> 0. (17)

Condition (17) represents the coexistence-stabilizing mechanism and corre-
sponds to the last term of Eq. (7) in Chesson (2000b), see also Eq. (68) in Ches-
son (1994) and the explanation thereafter. It has an intuitive meaning pointing
to a close analogy between fluctuation-dependent and fluctuation-independent
mechanisms to maintain coexistence. As mentioned above, the ratio bi/ai mea-
sures the nonlinearity of density-dependence of Species i; their difference in the
first factor is the “relative” nonlinearity (Chesson 1994, 2000b). Phrasing it
differently, the first factor represents the difference between the species in their
dependence on the two regulating variables, the average n and the variance V
of the total density (cf. Section 6). On the other hand, the second term is the
difference between the species in their strength of making the total population
size fluctuates. For coexistence, the species must differ in both respects. More-
over, they must differ in these aspects in the same way. The species that makes
n more fluctuating must be the one that is more sensitive to the fluctuations
of n. The species that affects the regulating variable V must be the one that
is also more sensitive toward V . Like in constant-environment resource parti-
tioning, this arrangement ensures rare advantage and stabilizes coexistence. We
will revisit this expectation in Section 6.2 in a different way.

7



Obviously, conditions (15-17) provide only the necessary, and not the suffi-
cient conditions for mutual invasibility. They represent the conditions for having
a tendency for rare advantage. If the parameter choices (esp. of ΔK) are such
that one species has a large advantage, then it is possible that the inferior species
will be unable to invade despite its advantage gained from rarity.

3.4. Coexistence
Assume now that the two species coexist. Then their long-term growth rates

satisfy the equilibrium equations

r1 = −a1(n−K1)− b1(n−K1)2 − b1V = 0,

r2 = −a2(n−K2)− b2(n−K2)2 − b2V = 0.
(18)

These (quadratic) conditions determine the equilibrium values of the regulating
variables n and V via a 4th order algebraic equation. We write down the solution
for small fluctuations, i.e. in linear order in V . For V = 0 coexistence is possible
only if K1 = K2; the solution is characterized by n = K1 = K2. Therefore, we
expect that small V implies K1 ≈ K2 and then n ≈ K1 ≈ K2. Therefore in the
small fluctuation limit – as in Eq. (8) – the second terms in both equations are
of second order small; neglecting them leads to

n =
a1b2K1 − a2b1K2

a1b2 − a2b1
(19)

and
V =

K1 −K2

b1
a1
− b2

a2

. (20)

Note the consistence of these formulae with the assumptions we made: smallness
of V implies smallness of K1−K2 as a condition for coexistence. The analogue
of Eq. (8),

n−Ki = − bi

ai
V (21)

remains valid for the two-species case by the same argument from which it was
derived in Section 3.1.

For the simplified model,
n = K2 (22)

and
V =

a1

b1
ΔK (23)

applies.
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4. Coexistence: simulation results

For simulation purposes, the continuous dynamics (2) is discretized as

ni,t+Δt − ni,t =
[
−ai(nt −Ki)− bi(nt −Ki)2 +

1
2
σ2

i

]
ni,tΔt + σini,t

√
Δtξt,

(24)
where ni,t and nt denote the density of Species i and the total density, respec-
tively, at time t. The noise ξt is an i.i.d. process of variance 1 for time steps of
length Δt. The scaling factor

√
Δt in the random term ensures that the normal-

ization (1) is obeyed in the Δt → 0 limit. The last term in the square bracket
is the correction characteristic of Stratonovich integration (see Appendix; Sethi
and Lehoczky 1981, Stratonovich 1989, Braumann 2007).

A simulated time series of two coexisting species is plotted in Fig. 1 for
a set of parameters satisfying the mutual invasibility condition. In line with
the invasibility prediction, they coexist for an arbitrary long period of time.
Nevertheless, one should note that the densities fluctuate by many orders of
magnitude. The populations experience extremely low densities.

Excursions to low densities warrants introduction of an extinction threshold.
This way extinction of one of the species becomes a probability 1 event; the
possibility of coexistence for infinite time is lost. Then the appropriate question
is the expected length of coexistence.

Fig. 2 presents the average time until one of the densities goes below the
threshold as a function of K2 for different threshold values. Since the simplified
model is used, condition (13) provides the parameter range for mutual invasi-
bility, depicted by vertical dashed lines. Note that the plateau on the top of the
curves is an artifact of terminating the simulations at Tmax = 107 time steps.
Fig. 3 shows the average length of coexistence as a function of the extinction
threshold. The two curves represent two parameter sets that do and do not
allow for mutual invasibility. In the first case the length of coexistence – after a
transient period – increases linearly as a function of the inverse of the extinction
threshold. In contrast, the expected time until extinction increases very slowly
and remains essentially bounded when the condition of mutual invasibility is
not met.

The presented results confirm the prediction of the mutual invasibility cri-
terion unequivocally for sufficiently low extinction thresholds. The expected
length of coexistence is bounded only by the simulation time Tmax where the
condition is met, but falls off by orders of magnitude outside the range of mu-
tual invasibility. On the other hand, one should note that the “sufficiently low”
extinction threshold is unrealistically low from biological point of view. The
extinction threshold 10−20, i.e. population size 1020 is required for coexistence
length 106 even in case of mutual invasibility. For realistic population sizes the
period of coexistence is very short.

The extreme level of density fluctuations are presumably related to the low-
frequency components of the white noise. Therefore, introduction of a low-
frequency cutoff of the power spectrum would make our model a good candidate
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for describing real species coexistence. Note that bounded periodic drive would
result in bounded oscillation of the densities; therefore they would never become
exponentially small.

However, for the rest of the current model, we remain interested in the
analytic study of the white-noise model in the hope for insights that remain
valid for more parameter-rich models.

5. Moment closure approximation

The equilibrium equations (18) are insufficient to fully determine the statis-
tics of the population fluctuations. When a population is considered alone
(Section 3.1), this condition establishes a relation between the average and the
variance of the density, but does not allow us to calculate these quantities sepa-
rately. For two populations, the average and variance of the sum of the densities
are obtainable (Section 3.4), but not the statistics of the two populations sep-
arately. For more detailed analytic results the moment closure approximation
will be used: we assume small fluctuations and neglect the third and higher
statistical moments of the fluctuating variables.

The long-term average of the time-derivative of any quantity, which remains
bounded, should be zero. Applying this principle to the logarithmic density
lnni (time derivative of which is the growth rate ri) leads to the equilibrium
condition ri = 0. We have exploited this condition already in Section 3.1. We
need an additional relation to proceed further. For this purpose here we consider
the average of the time derivative of ni, instead of lnni:

d
dt

ni(t) = rini =
[
σiξ(t)− ai (n(t)−Ki)− bi (n(t)−Ki)

2
]
ni = 0. (25)

We introduce the deviation mi = ni − n and use the notation m = m1 + m2 =
n− n. Note that

m(t) = mi(t) = 0 (26)

and
m2 = m1m + m1m = V. (27)

Moreover, we will use the relation

miξ =
σi

2
ni, (28)

which is proven in the Appendix.
We define the moment closure approximation by neglecting the moments

of m beyond m2. It is consistent with the small fluctuation approximation
according to the relation (27). When the relationships (26-28) are taken into
account, the moment closure version of condition (25) reads as

σ2
i

2
ni−aini(n−Ki)−aimim−bini(n−Ki)2−biniV −2bimim(n−Ki) = 0. (29)
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Now we substitute Eq. (21) into the expressions (n−Ki) and according to
the small fluctuation limit after neglecting all second order terms in V we arrive
at the equality

σ2
i

2
ni = ai

(
1− 2bi

ai
V

)
mim. (30)

Neglecting the term V mim, which is of order m4, leads to

σ2
i

2ai
ni = mim. (31)

With summation of this formula for i = 1, 2 one arrives to

V =
σ2

1

2a1
n1 +

σ2
2

2a2
n2 = v1n1 + v2n2, (32)

where the notation

vi =
σ2

i

2ai
(33)

was introduced. Note the intuitive meaning of vi: it is the per capita contri-
bution of Species i to the variance of the total population size. Equation (32),
together with the trivial relation

n = n1 + n2 (34)

establish the connection between the average densities of the two species and
the two regulating variables. One can solve the system of equations (32,34) for
the average densities:

n1 =
V − v2n

v1 − v2
,

n2 =
−V + v1n

v1 − v2
.

(35)

These results, together with equations (19-20), provide all the interesting quan-
tities as a function of the model parameters.

For the simplified model, substitution of b2 = σ2 = 0 and Eqs. (22-23)
results in

n1 =
2a2

1

b1σ2
1

ΔK =
n̂1

K1 − n̂1
ΔK,

n2 = K2 − 2a2
1

b1σ2
1

ΔK = K2 − n̂1

K1 − n̂1
ΔK.

(36)

For one species a similar moment closure calculation leads to the relations

n̂ =
(

1− σ2b

2a2 + σ2b

)
K =

2a2K

2a2 + σ2b
, (37)

and

V̂ =
σ2aK

2a2 + σ2b
. (38)
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Fig. 4 presents the comparison of this one-species result with numerical
simulations. The coincidence of the predicted and simulated average densities
is remarkable; the fluctuations need not to be extremely small for this. The
moment closure method turns out to be reliable as long as the noise intensity
parameter σ is not larger than the parameters a and b in the regulation terms.
Observe that the equilibrium density is a monotonically decreasing function of
the strength of the external fluctuations. With very high fluctuations the aver-
age density can be made arbitrary small, provided that the extinction threshold
is small enough.

The analogous comparison between moment closure (Eq. (36)) and simula-
tion is presented for two species in Fig. 5. The departure of the moment closure
prediction from the simulated values is larger than in case of a single species.
Still, the agreement is reasonable. The moment closure approximation seems to
capture the essential behavior of the system. Observe that the deviation is the
same in magnitude, but opposite in direction, for the two species. That is, the
total density is still provided accurately; the moment closure method is less pre-
cise in predicting the ratio of the two densities. This situation is understandable
in the light of high sensitivity of the relative densities for the fluctuations.

6. Niche segregation and robustness of coexistence

Based on the analytic results above, in this section we reinvestigate the model
in the context of the theory of limiting similarity by Meszéna et al. (2006). First
we briefly reiterate how it works in a constant environment; then we consider
the current model.

6.1. Reference theory: constant environment
Here we summarize the theory of limiting similarity by Meszéna et al. (2006).

It is a model-independent implementation of the proposal by Abrams (1983)
that limits to similarity must be considered in conjunction with the relative
competitiveness of the coexisting species; see also Chesson (2000b) in the same
vein. The key statement of Meszéna et al. is that species should differ in their
way of regulation for robust coexistence; the more similar they are, the more
narrow is the range of competitive parameters allowing for their coexistence.
More specifically, one should consider the species’ impact on, and sensitivity
towards the regulating factors. Strength of competition between the populations
is reduced and their coexistence is robust if they differ in both respects.

Write the dependence of the growth rate of the ith species (i = 1, 2, . . . , L)
on the densities n1, . . . , nL, as

ri = ri (I(n1, n2, . . . , nL), E) (i = 1, 2, . . . , L), (39)

where the vector I = (I1, I2, . . . , ID) collects the D number of regulating vari-
ables; E denotes the vector of “external” variables that affect the population
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growth rates but are not affected by the population densities. Then, the ele-
ments of the competition matrix are

αij = − ∂ri

∂nj
=

D∑
k=1

SikCjk = Si ·Cj , (40)

where the partials

Cik =
∂Ik

∂ni
, Sik = − ∂ri

∂Ik
(41)

measure the ith species’ impact on, and sensitivity towards, the kth regu-
lating factor, respectively. The vectors Ci = {Ci1, Ci2, . . . , CiD} and Si =
{Si1, Si2, . . . , SiD} will be referred to as the impact and sensitivity niches of
the ith species. The sensitivity of the equilibrium population sizes towards
the additional mortalities can be determined by implicit differentiation of the
equilibrium equation ri = 0:

∂ne
i

∂E
= −

L∑
j=1

(α−1)ij
∂rj

∂E
= − 1

J

L∑
j=1

adj(α)ij
∂rj

∂E
, (42)

where adj(α) denotes the adjunct of the community matrix. The determinant
J = det(αij) measures the strength of regulation at the community level. As it
appears in the denominator, a weakly regulated community is sensitive towards
the extra mortalities. Therefore a small |J | implies that only a small range of the
external parameters can be tolerated without extinction of one of the species.
Robust coexistence requires large |J |. Note that if the sensitivity niches of two
different species coincide, the corresponding two rows of matrix α are the same
and J = 0. A similar argument holds for the impact vectors and the columns of
the matrix. Therefore, the requirement of large |J | translates to the requirement
of sufficiently different niche vectors.

6.2. Impact and sensitivity niches in our system
The sensitivity analysis in Section 6.1 is based on the assumption of equilib-

rium in an essential way. Its applicability for our model is not trivial.
A part of the framework is easy to translate. The growth rate ri of the

constant environment model should be replaced by the averaged growth rate ri

because the “equilibrium” equation ri = 0 holds even in our variable environ-
ment. As we discussed already, the averaged total density n and the variance
of the total density V play the role of regulating variables: these quantities
determine the ris unequivocally. Therefore, the vector of regulating factors can
be written as

I =
(

n
V

)
, (43)

while the sensitivity vectors are

Si = −
(

∂ri

∂n
∂ri

∂V

)
=

(
ai + 2bi(n−Ki)

bi

)
. (44)
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Omitting n−Ki ∼ V the formula simplifies to

Si ≈
(

ai

bi

)
.

In this sense one can say that the coefficients of the linear and the quadratic
density dependence measure the sensitivity towards the average and the variance
of the total population size, respectively. Note however, that here we neglect a
term which is linear in V , because the leading term is independent of V .

The nontrivial part is the interpretation of the equilibrium density ne
i . The

average density ni is the obvious candidate. However, the average density of the
species alone does not determine the regulating vectors. Therefore, the impact
vectors cannot be defined, and the formalism cannot be applied without further
considerations.

To apply the framework we have to restrict the possibilities of the stochastic
dynamics to a two-parameter sub-family that can be parameterized by n1 and
n2. We do this by picking up the carrying capacities K1 and K2 as competitive
parameters (Abrams 1983), playing the role of the vector E above. All other
model parameters are regarded as fixed; robustness of coexistence is considered
with respect to changes of the carrying capacities. This way both the average
densities n1, n2 and the regulating variables n, V become functions of the carry-
ing capacities K1, K2. Inversion of these relationships leads to an unequivocal
definition of the dependence of the regulating variables on the average densities.
Note that a similar reduction of dimensionality was applied when population
structure caused an analogous problem (Szilágyi and Meszéna 2009a,b).

Then the impact niche vector of Species i is calculable from the relations
(32) and (34) as

Ci =
( ∂n

∂ni
∂V
∂ni

)
=

(
1
vi

)
. (45)

From the vectors Si and Cj we can obtain the competiton matrix:

αij = − ∂ri

∂nj
= Si ·Cj . (46)

As explained in Section 6.1, the determinant of this matrix is the measure of
the robustness we are looking for:

det(α)
a1a2

=
(

b1

a1
− b2

a2
+ 2

b1b2

a1a2
ΔK

)
(v1 − v2), (47)

where Eqs. (44) and (45) were used.
Observe resemblance of this measure of regulatedness to the quantity � in

the l.h.s. of the necessary condition (15) in Section 3.3 for coexistence. While
invasion from rarity was considered in Section 3.3, here we studied the effect of a
small perturbation. This difference in the approaches explains the discrepancies
between the results. First, while the per capita fluctuation-producing effect
of the species (v1 and v2) appears here, the analogous quantities for the whole
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populations (V̂1 and V̂2) were used in Section 3.3. Second, as here we considered
robustness with respect to ΔK, the dependence on ΔK is different from the one
in Section 3.3.

These differences notwithstanding, the intuitive meaning of the robustness
measure (47) is the same as of � in Section 3.3: the species must differ both in
their fluctuation-maintaining effect and their sensitivities towards fluctuations.
The differential approach here has the advantage of implementing the model-
independent connection between robustness and niche segregation (Meszéna
et al. 2006). This formalism makes the analogy between fluctuation-related
and fluctuation-unrelated coexistence, which we explained after Eq. (17), quan-
titative.

6.3. Robustness of coexistence
Here we demonstrate the loss of robustness of coexistence when the two

species becomes similar. For this purpose the simplified model is rewritten as

d
dt

n1(t) =
[
μσξ(t) − a(n(t)−K1)− μb(n(t)−K1)2

]
n1(t), (48)

d
dt

n2(t) = −a(n(t)−K2)n2(t), (49)

where μ is the parameter measuring dissimilarity. The two species are identical
for μ = 0 and become dissimilar with increasing μ. The robustness of coexistence
is determined by varying the carrying capacities.

Fig. 6 plots the ratio of the parameter region (K1, K2) ∈ [0, 0.3] × [0, 0.3],
which allows coexistence, as a function of μ. Observe that robustness is lost
gradually when the species become more and more similar. Coexistence be-
comes structurally unstable for μ = 0, when only the case K1 = K2 supports
coexistence.

This result, which is in line with theoretical expectations, is comparable with
Fig. 6.4-6.6 of May (1973), or with Figs. 4-5 of Szilágyi and Meszéna (2009b).

7. Discussion

We aimed at studying the simplest possible model of fluctuation-mediated
coexistence as deeply as possible in the context of a mathematical niche theory
published earlier (Meszéna et al. 2006, Szilágyi and Meszéna 2009a,b, Parvi-
nen and Meszéna 2009). In line with this approach, simplicity is measured
by the number of regulating variables. As a single regulating factor cannot
support coexistence, we constructed a model with two of them (see Kisdi and
Meszéna 1993 for the original version). While all “strategic” (Czárán 1998, p.
xii) model studies pay a price in terms of realism, our sacrifice turned out to
be higher than usual. The coexistence, which is maintained in our model in the
infinite population size limit, requires astonishingly large population sizes. Its
practical irrelevance notwithstanding, our model provided a test-bed for devel-
oping moment-closure treatment of problems and developing niche analyses in
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line with our theoretical context. The model supported the idea that sufficient
niche differentiation with respect to the way populations are regulated is the
requirement for robust coexistence in an environment that displays stationary
fluctuations — just like in a constant one.

Our wider context is classical coexistence theory. It was conceived in the
framework of the Lotka-Volterra model and disregarded stochasticity. The re-
sulting picture was simple and intuitive: coexistence was based on ecological
niche differentiation leading to reduced interspecific competition and rare ad-
vantage (Case 2000, p. 368). However, as no clear lower bound of similarity was
found (Abrams 1983), further model studies blurred this simplicity. Strength
of competition and niche have become terms of unclear meaning, terms to be
defined separately in every specific situation. The goal of Meszéna et al. (2006)
was to reestablish the intuitive as well as the mathematical clarity of coex-
istence theory in a general, model-independent way. Competition coefficients
were defined differentially; therefore they became independent of the assump-
tion of linearity in the Lotka-Volterra model. Niche was defined as the species’
differential impact on, and differential sensitivity towards the regulating vari-
ables, a generalization of the concept of the resource utilization function. Clear
general connection between niche segregation and robustness of coexistence was
established. It was asserted that complications like population structure and en-
vironmental fluctuations can be tackled within this framework via time-scaling
arguments (Meszéna et al. 2006). The theory was extended by Szilágyi and
Meszéna (2009a,b) for structured populations in a constant environment. The
goal of the current paper was to apply the same framework for the minimal
model of fluctuation-maintained coexistence.

There are two distinct sources of stochasticity in population dynamics: en-
vironmental noise and demographic stochasticity (Case 2000, p. 30). While
both of them are present in almost any real ecological situation, it is mean-
ingful to consider the approximations under which either or both of them are
negligible. Demographic stochasticity is the more difficult problem. Neglecting
it is equivalent to assuming infinite population size, i.e. describing population
dynamics in terms of continuous density variables. In this case, even if environ-
mental noise is present, the dynamics is deterministic at least in the conditional
sense, i.e. for a given realization of the environmental process. In contrast, fi-
nite population size leads to demographic stochasticity unavoidably. (Even local
finiteness of a spatially extended infinite population results in local demographic
stochasticity, see Oborny et al. 2005, 2007.) Analytic treatment of the stochas-
tic dynamics of finite populations is mainly restricted to density-independent
growth (cf. branching process theory, Haccou et al. 2005); but see Klebaner
(2005), p. 366; Jagers (2010), Klebaner et al. (in press) for intriguing progress
beyond this limitation.

In many situations environmental stochasticity maintains coexistence that
would not be otherwise possible. In contrast, demographic stochasticity is in-
variably detrimental for coexistence, because it causes rare disadvantage and
extinction. While analytic studies of fluctuation-maintained coexistence often
assume infinite population size, numerical investigations can never completely
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disregard the consequences of finiteness. Accordingly, we discuss fluctuation-
related coexistence first for infinite populations then with considering finiteness.

In the limit of infinite population size it is self-evident that mutual invasion
implies long-term coexistence; numerical experimentation with our model sup-
ported this principle unequivocally. It is the basis of the comprehensive theory
of fluctuation-mediated coexistence by Chesson (1994) (see also Chesson 2009
for a very readable summary). Chesson’s formalism and Meszéna et al. (2006)
share the feature of being framework theories: both of them represent a common
mathematical structure behind a class of models.

Chesson (1994) stresses the distinction between fluctuation-independent and
fluctuation-dependent mechanisms for coexistence and concentrates on the lat-
ter. In particular, he studies emergence of coexistence-maintaining effects from
the process of time averaging. Averaging implement a “scale transition” (Ches-
son 2009) between the original time scale and the long time scale of stationarity.
His basic conclusion is that coexisting species should average the environmental
process differently – otherwise the species with the highest average growth rate
would win.

In contrast, the complementary approach by Meszéna et al. (2006) concen-
trates on the commonality of all kinds of coexistence-maintaining mechanisms
(fluctuating, or not) on the time scale of stationarity. At this level the com-
mon cause for coexistence is segregation with respect to the “regulating” vari-
ables. Any fluctuation-dependent maintenance mechanism must be represented
by proper regulating variables at the long time scale. On one hand, our model
is consistent with Chesson’s framework. Our formulas often directly correspond
to his one. On the other hand, the current work is an initial exercise to apply
the theory by Meszéna et al. (2006) for fluctuation-mediated coexistence.

The central issue of commonality of coexistence-maintaining mechanisms is
loss of robustness of coexistence with increasing similarity of the species. In equi-
librium resource competition the species, which depletes a specific resource more
than its competitor, must depend on that specific resource more strongly to es-
tablish a coexistence-stabilizing rare advantage. Weak differentiation results in
weak robustness against environmentally induced relative advantage/disadvan-
tage between the species – a well known, but rarely stressed, phenomenon on
the Lotka-Volterra model (Vandermeer 1975; May 1973, Fig. 6.4 on p. 158).
In clear analogy, the relative nonlinearity mechanism for coexistence requires
the species that causes the larger fluctuations of the total density to be more
sensitive towards the fluctuations as well. If the populations become similar in
either respect, then the populations must be fine tuned for coexistence. This
is expressed by Eq. (68) in Chesson (1994) or Eq. (2) in Chesson (2009); the
same issue is encountered in our Eqs. (17) and (47).

In this paper we turned the analogy between fluctuation-independent and
-dependent mechanisms into an essential mathematical connection. We were
able to determine the impact/sensitivity niche vectors for our model and demon-
strate their expected connection to robustness of coexistence. For the analytic
results we relied on the moment closure approximation, i.e. we assumed small
fluctuations. However, the basic definitions, as well as of the underlying theory,
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are independent of these approximations; therefore, the principal connection
we advocate is also exact. Note the similar conclusions in other models of
fluctuation-mediated coexistence. Parvinen and Meszéna (2009) studied the
case of repeated local catastrophes, while Barabás et al. (in prep.) investigated
periodic environments.

Now we turn our attention to the unavoidable consequences of demographic
stochasticity. Any population with bounded population size is destined to ex-
tinction with probability 1. Mutual invasibility has the tendency to increase
the time-span of coexistence, but it cannot prevent eventual extinction. When
demographic stochasticity is relatively small, it remains true that mutual inva-
sibility (and the niche-segregation behind it) can maintain coexistence on the
biologically relevant time-scale. However, as our example shows, the interac-
tion between environmental and demographic stochasticity may lead to large
density fluctuations that makes the diversity-stabilizing effect of mutual inva-
sibility irrelevant. Therefore, we should caution against the uncritical use of
mutual invasibility as a sufficient condition for coexistence, a point that was al-
ready made by Proulx and Day (2001). Johansson and Ripa (2006), Johansson
et al. (2010) studied evolutionary consequences of finiteness, while Mágori et al.
(2005), Habets et al. (2007) dealt with the coexistence-restricting effect of local
demographic stochasticity.

The observed unreliability of mutual invasibility, as a predictor of coexis-
tence, does not imply uselessness of the principle. As it is exact in the limit of
infinite population size, it remains the correct tool to study whether environ-
mental stochasticity has a coexistence-maintaining effect in a given ecological
situation. However, one has to be aware that demographic stochasticity always
has an opposite effect. This opposite effect can be negligible in some cases,
can completely eliminate coexistence in others, or it may have an intermediate
importance. It is entirely possible that our model will turn out to be extremely
unfortunate in this respect. As the effect of relative nonlinearity is a weak
force for coexistence, it requires large environmental fluctuations for robust co-
existence, causing large density fluctuations. On the other hand, storage effect
can be less vulnerable to demographic stochasticity: “storage” actually means
buffering at rarity. The bottom line is that studies of mutual invasibility are
useful to be complemented by investigating time-to-extinction with extinction
threshold.

Within the confines of the current model, the extremely large density-fluc-
tuations are presumably related to the low-frequency end of the white-noise
spectrum of the environmental fluctuation: extremely low densities are conse-
quences of unfavorable environmental conditions experienced for an extended
period of time. Therefore we conjecture that the same model with a different
noise spectrum, while complicates the analytic treatment and increases the num-
ber of parameters, will turn out to be a biologically more relevant description
of fluctuation-mediated coexistence.

18



Acknowledgements

We thank György Barabás, Carlos Braumann, Géza Györgyi, Éva Kisdi,
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Oborny, B., Meszéna, G., Szabó, G., 2005. Dynamics of populations on the verge
of extinction. Oikos 109, 291–296.
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Figure 1: Time course of the densities of the two coexisting species. The left pane with
logarithmic vertical scale demonstrates the regular occurrence of extremely low densities, in-
compatible with realistic population sizes. A part of the same curve is presented with linear
scale on the right pane. Parameters: a1 = a2 = b1 = 0.1; b2 = 0.02; σ1 = 0.1; σ2 = 0.05;
K1 = 0.3; K2 = 0.298. The same parameters are used for the rest of the Figures unless
indicated otherwise.
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Figure 2: Expected time until extinction of one of the co-occurring species in the presence
of an extinction threshold (LIM) as a function of the carrying capacity K2 (simplified model,
average of 50 runs). Vertical (time) scale is linear on the left plot and logarithmic on the
right one. The simulations were terminated at time T = 107 if no extinction occurred. The
region of mutual invasibility (n̂1, K1) is shown by the vertical dashed lines. For extremely low
extinction thresholds the parameter region of long-term coexistence coincides with that range.
For more realistic thresholds, the possibility for coexistence is more restricted. Parameters
are the same as in Fig. 1 except that now b2 = σ2 = 0. This parameter choice is maintained
in later figures of the simplified model when not indicated otherwise. The equilibrium density
of Species 1, when alone, is measured to be n̂1 = 0.286.
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Figure 3: Expected time until extinction as a function of the extinction threshold (simplified
model, average of 500 runs). Continuous line: K2 = 0.29 satisfying the condition for mutual
invasibility. The coexistence time diverges for low thresholds and becomes inversely propor-
tional to the threshold. Dotted line: K2 = 0.19, no mutual invasibility. Coexistence time
remains essentially bounded.
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Figure 4: Average density (n̂) and variance (V̂ ) of a single population as a function of the
fluctuation strength σ. The moment closure method (dashed line) approximates the simulation
results (solid line) very well for σ < 0.1 and reasonably well for 0.1 < σ < 0.2. Parameters:
a = 0.1, b = 0.1, K = 0.3.
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Figure 5: Average densities of two coexisting species as a function of a1 in the simplified
model. The difference between the moment closure (dashed lines) and the simulated (solid
lines) densities are significantly larger than in the single species case of Fig. 4. Still, mo-
ment closure remains a reasonable approximation. K2 = 0.295, within the range of mutual
invasion.
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Figure 6: Robustness of coexistence as a function of similarity. The vertical axis is the ratio
of the parameter region (K1, K2) ∈ [0, 0.3] × [0, 0.3] allowing coexistence in arbitrary units.
Parameters: a = 0.1; b = 0.1; σ = 0.1, the extinction limit LIM = 10−40.
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Appendix A. Stratonovich and Itô interpretation of stochastic dy-
namics

Caution is needed in defining a “stochastic” integral, like∫
g(t)ξ(t)dt =

∫
g(t)dW (t), (A.1)

where ξ(t) is the white noise. Here W (t) denotes the Wiener process, the deriva-
tive of which is the white noise:

dW = ξdt. (A.2)

Note that
(dW )2 = dt, (A.3)

a quite nontrivial feature of the white noise.
The integral (A.1) can be approximated by two different sums, referred to

as “Stratonovich” and “Itô” types:

(S)
∑

l

g(tl+1) + g(tl)
2

ΔW (tl) (A.4)

(I)
∑

l

g(tl)ΔW (tl). (A.5)

(Here we use function notation instead of indices to denote time dependence;
Δ means difference between values at tl+1 and tl.) The difference between the
two sums is

(S − I)
∑

l

1
2
Δg(tl)ΔW (tl). (A.6)

Were g and W smooth functions, each term of (A.6) would be proportional
to (Δt)2 and the difference between the two approximations would disappear in
the limit Δt→ 0. However, because of the property (A.3), if Δg is proportional
to ΔW , then the expectation of a term is proportional to (ΔW )2 = Δt. Then,
the difference (S-I) remains finite in the limit; the sums (S) and (I) converge
to two different values. These two limits constitute two different definitions of
the stochastic integral (A.1). For stochastic differential equations (SDE) the
two different ways of integration establishes two different solutions, i.e. two
inequivalent interpretations of the SDE.

We assume that in the real word the fluctuations are correlated, i.e. the
environment cannot change arbitrarily fast. Then, we assume that the corre-
lation time is short compared to the timescale of population dynamical effects.
Therefore, we study the limit of zero correlation time, as specified by Eq. (1),
leading to Stratonovich-interpretation of Eq. (2) (Braumann 1999, 2007). It is
something different than considering the continuous-time process as a limiting
case of a discrete dynamics with independent and identically distributed (i.i.d.)
random variables as noise, e.g. Itô-interpretation (Feldman and Roughgarden
1975).
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Bored by the growing volume of the Itô-Stratonovich literature, Smythe
et al. (1983) established the validity of the Stratonovich approach for describing
continuous stochastic phenomena experimentally. They observed also that the
naive numerical discretization, corresponding to the Itô-interpretation, leads to
an incorrect result.

Consider now the discretization of our model defined by the SDE (2). Naively,
one would arrive at the iteration

ni,t+Δt − ni,t =
[−ai(nt −Ki)− bi(nt −Ki)2

]
ni,tΔt + σini,t

√
Δtξt. (A.7)

(The factor
√

Δt ensures compliance with Eq. (A.3) when the i.i.d. ξt has a
variance 1.) However, the Δt → 0 limit of this iteration would lead to the Itô,
instead of the Stratonovich-interpretation of the stochastic dynamics (2). One
has to take into account the correction (A.6).

Only the stochastic term of the iteration (A.7) is of interest. Then ΔW (t)
corresponds to

√
Δtξt and g(t) = σinit; therefore Δg(ti) = σiΔni(ti). However,

Δni(ti) = σini(ti)ΔW (ti) (A.8)

by the iteration; only the stochastic term was taken into account. Therefore,

Δg(ti) = σ2
i ni(ti)ΔW (tl) (A.9)

and a term in the correction (A.6) reads as

1
2
σ2

i ni(ti)(ΔW (tl))2 =
1
2
σ2

i ni(ti)Δt. (A.10)

The expectation value of this correction leads to the correction term 1
2σ2

i ni in
the iteration (24).

We proceed to prove Eq. (28). Averaging is defined via integration, so the
considerations above apply. The Itô average of the product mξ is zero: value
of m in each time step depends only on the values of ξ of the previous steps,
which is independent from the current ξ. Therefore the Stranovich average mξ
comes entirely from the Stratonovich-Itô correction. As now g(t) corresponds
to m(t) and Δm = Δn, Eq. (A.8) leads to the relation (28).
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