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Error thresholds for self- and cross-specific enzymatic

replication

Benedikt Obermayera, Erwin Freya,∗

aArnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience,

Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany

Abstract

The information content of a non-enzymatic self-replicator is limited by Eigen’s

error threshold. Presumably, enzymatic replication can maintain higher com-

plexity, but in a competitive environment such a replicator is faced with two

problems related to its twofold role as enzyme and substrate: as enzyme, it

should replicate itself rather than wastefully copy non-functional substrates, and

as substrate it should preferably be replicated by superior enzymes instead of

less-efficient mutants. Because specific recognition can enforce these propen-

sities, we thoroughly analyze an idealized quasispecies model for enzymatic

replication, with replication rates that are either a decreasing (self-specific) or

increasing (cross-specific) function of the Hamming distance between the recog-

nition or “tag” sequences of enzyme and substrate. We find that very weak

self-specificity suffices to localize a population about a master sequence and

thus to preserve its information, while simultaneous localization about comple-

mentary sequences in the cross-specific case is more challenging. A surprising

result is that stronger specificity constraints allow longer recognition sequences,

because the populations are better localized. Extrapolating from experimen-

tal data, we obtain rough quantitative estimates for the maximal length of the

recognition or tag sequence that can be used to reliably discriminate appropriate

and infeasible enzymes and substrates, respectively.
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1. Introduction

The acclaimed experimental finding (Cech, 1990) that RNA not only stores

genetic information but also provides catalytic function has inspired the RNA

world scenario (Gilbert, 1986), a hypothesis for the starting point of Dar-

winian evolution at the origin of life through self-replication of RNA-like polynu-

cleotides. Substantial progress over the last decades demonstrates the capability

of RNA enzymes (ribozymes) to catalyze diverse chemical reactions (Doudna

and Cech, 2002; Lilley, 2005; Joyce, 2007), among them the polymerization of

as many as 20 nucleotides to a template molecule (Johnston et al., 2001; Zaher

and Unrau, 2007), and even replication through template-directed ligation re-

actions involving short RNA oligomers as building blocks (Lincoln and Joyce,

2009). However, the currently known systems are not yet capable of Darwinian

evolution, lacking either the ability to replicate molecules as long and complex

as themselves or to introduce heritable variation.

For theorists, the focus has mainly been on whether the information content

of a self-replicating molecule can be maintained in the presence of replication

errors, usually employing Eigen’s well-known quasispecies theory (Eigen et al.,

1989) for the self-replication of L-nucleotide sequences. In this model, repli-

cation errors occur with an error probability μ per single nucleotide, and the

replication rates are taken as functions only of the template sequence. This

mapping from genotype to replication rate (or fitness) presents a considerable

challenge for evolutionary models, and even generic structural features of such

fitness landscapes, such as the extent of ruggedness and epistasis, are under de-

bate. Valuable insight comes from experiments on mutagenized ribozymes (Kun

et al., 2005) and from computer simulations using RNA secondary structure as

phenotype (Huynen et al., 1996; Takeuchi et al., 2005), which indicate a signif-

icant degree of neutrality around an optimal sequence, reducing the deleterious
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effects of mutations. Other theoretical studies used a large number of different

idealized fitness landscapes, e.g., with a single peak at one fittest “master” se-

quence (Swetina and Schuster, 1982; Leuthäusser, 1986; Schuster and Swetina,

1988; Woodcock and Higgs, 1996; Galluccio, 1997; Hermisson et al., 2002; Peliti,

2002; Saakian and Hu, 2006; Saakian et al., 2009), with some rather generic re-

sults (Wiehe, 1997; Jain and Krug, 2005): the population in sequence space is

characterized by a broad mutant distribution (a quasispecies) localized about

the master sequence for mutation probabilities smaller than a critical value μc

(the error threshold), while it consists of random sequences (it is delocalized)

for larger values. Because the error threshold μc ∼ 1/L is usually inversely

proportional to sequence length, the problem arises whether the maximally sus-

tainable complexity of a self-replicator suffices to perform the complex task of

self-replication (Eigen and Schuster, 1978).

In a prebiotic context, it is important to emphasize that using a fitness

landscape where rates depend only on the template sequence pertains to non-

enzymatic rather than enzymatic replication, because in the latter case the repli-

cation rates also depend on the concentrations and the characteristics of involved

enzymes. For RNA, the potential for non-enzymatic replication is questionable,

given that template-directed polymerization or ligation seems limited to short

molecules with rather specific sequences (von Kiedrowski, 1986; Acevedo and

Orgel, 1987; Wu and Orgel, 1992; Orgel, 2004). Moreover, experimental and

simulation studies demonstrate a strongly disadvantageous tendency for elon-

gating side-reactions at the cost of replication (Fernando et al., 2007). Hence,

although there have been speculations (Pace and Marsh, 1985), it remains un-

clear how a single more complex RNA should literally copy itself (Joyce, 2007;

Szostak et al., 2001).

Enzymatic replication is more plausible (Orgel, 1992), but raises the question

whether high replication efficiency (high fitness) is a property of the substrate

or the enzyme. In the latter case, a superior replicase does not enjoy a selective

advantage, because it replicates non-functional mutant templates just as well as

itself, while it is not guaranteed in the former case that a superior template is
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functional at all. Likewise, mutations generate substrates that are replicated less

efficiently, but they also produce less-efficient enzymes (Maynard Smith, 1979),

thus affecting the replication rates of all potential substrates. On theoretical

grounds, one should expect that a superior replicator is a good enzyme and a

good substrate at the same time. As enzyme, it should therefore replicate only

functional substrates, and as substrate, it should be replicated preferably by

efficient enzymes. It has long been realized that in a competitive environment

these propensities are crucial for the emergence, improvement and perpetuation

of replicase activity, which is essentially an altruistic trait that is not by itself se-

lected for (Michod, 1983). The commonly proposed solution to render enzymatic

replication evolutionarily stable is to impose a form of group selection, e.g., via

compartmentalization in vesicles, in order to keep similar molecules closely to-

gether (Szathmáry and Demeter, 1987; Alves et al., 2001; Fontanari et al., 2006),

even though this requires a simultaneous and coordinated emergence of replica-

tors and protocells (Szostak et al., 2001). However, known ribozymes act with

moderately or even strongly substrate-specific efficiency (Joyce, 2007), such that

specific recognition may also have a significant influence. Since unspecific re-

actions require sophisticated substrate-binding properties that could well have

been a rather late invention in prebiotic evolution (Johnston et al., 2001), it

seems natural to assume that replication efficiency should depend strongly on

the interaction between enzyme and substrate.

In this paper, we analyze a general model of enzymatic replication account-

ing both for varying degrees of specificity and the characteristically broad quasi-

species distributions in order to address the consequences for the error thresh-

old. Similar to models for the evolution of regulatory DNA motifs (Gerland and

Hwa, 2002), we assume that specificity depends on the quality of binding to

some recognition or tag sites (Weiner and Maizels, 1987). Idealizing this con-

dition, we use replication rates that depend on the Hamming distance between

these sequence regions of enzyme and substrate via a decreasing (self-specific) or

increasing (cross-specific) function. After formulating the model and discussing

our analytical approach in a methods section, we show for these two scenarios
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results from stochastic simulations and numerical solutions of deterministic rate

equations. Using our analytical toolbox, we discuss the resulting localization

conditions, error thresholds and the phase diagram. In our conclusions, we use

experimental values for polymerization rates to obtain simple estimates for the

maximum number of nucleotides that can be used for recognition.

2. Model

In the framework of quasispecies theory, each molecule is characterized by its

sequence Si = (σ
(i)
1 . . . σ

(i)
L ) of L binary nucleotides σ

(i)
� ∈ {0, 1}. In an infinitely

large population, its concentrationXi evolves according to the deterministic rate

equations (Eigen et al., 1989)

Ẋi =
∑
j

MijRjXj −Xi

∑
j

RjXj . (1)

Here, Mij = μdij (1 − μ)L−dij is the mutation probability between sequences

Si and Sj with Hamming distance dij =
∑

� |σ(i)
� − σ

(j)
� |, where μ is the er-

ror probability per single nucleotide (usually called “mutation rate”), and the

replication rate Ri of sequence Si is given by:

Ri = Ai +
∑
j

BijXj . (2)

Whereas the non-enzymatic rate Ai depends only on the genotype Si, the second

term implies frequency-dependent selection and makes our model intrinsically

nonlinear. It encodes the catalytic interactions of two molecules: Bij measures

how well Sj catalyzes the replication of Si. The second term in Eq. (1) en-

sures the normalization
∑

j Xj = 1, and a degradation term −DiXi therefore

drops out of Eq. (1) since we assume that the decay rate Di ≡ D is sequence-

independent for simplicity. Note that actual RNA sequences replicate via a

complementary intermediate, while our idealized model assumes direct replica-

tion in a single step. It has been shown that these two approaches are essentially

equivalent for the symmetric situations considered here (Stadler, 1991).
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To capture the pertinent features of a situation where replicase enzymes

prefer to replicate themselves instead of their competitors, we assume that the

quality of specific recognition influences catalytic rates more strongly than the

actual genotypes of enzyme and substrate. Hence, we effectively only model

the recognition regions of ribozymes, which are often clearly separated from the

catalytic domains (Lilley, 2005). Of course, the proper function of the latter

region is indispensable, but in our idealized model we neglect the influence of

mutations: as we have shown previously in a simple model, their effect on the

error threshold is largely independent from the more interesting consequences of

mutations in the recognition region (Obermayer and Frey, 2009). The sequence

length L is thus restricted to the number of nucleotides that take part in recog-

nition. Probably mediated via specific base-pairing interactions (Doudna and

Cech, 2002), the quality of recognition can be taken as function of the number

of mismatches between the binding sites of enzyme and substrate, and we let

the catalytic matrix Bij therefore depend via a specificity function f(d) only

on the Hamming distance dij between enzyme and substrate. Further, because

rate enhancements through ribozyme catalysis can be substantial (Doudna and

Cech, 2002), such that non-enzymatic replication rates are comparably small (if

nonzero at all), we neglect their genotype dependence altogether and choose a

flat fitness landscape for Ai:

Ai ≡ α, Bij = βf(dij). (3)

Because we are interested in the stationary state, the parameter α (if nonzero)

merely sets the time scale while β measures the selection strength.

We will first analyze a scenario for self-specific replication, where replication

rates increase with similarity of enzyme and substrate. To have the degree of

specificity explicitly tunable via a parameter p, we use the specificity function

fs(d) = (1− d/L)p. (4)

As a contrasting example, we will then analyze a similarly defined specificity

function where replication rates increase with complementarity between enzyme
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and substrate:

fc(d) = (d/L)p. (5)

The numerical and analytical approach presented in the next section can readily

be applied to other functional forms of the specificity function.

3. Methods

For reasonably large sequence length, the full 2L-dimensional system Eq. (1)

can only be analyzed using stochastic simulations in a finite population of N

sequences. Here, we employ the straightforward stochastic simulation algorithm

used by Wilke et al. (2001). At time t each sequence Sk, present in Nk copies,

has a probability p0,k = Nk/
∑

iNi(1+Ri) to be copied without mutations into

the population at time t+1, and a probability pmut,jk = MjkRkNk/
∑

iNi(1+

Ri) to be selected and mutated into sequence Sj . Following initialization, our

observables of interest are measured by averaging over time after reaching a

stationary state.

In order to derive analytical results, we exploit that the stationary states of

Eq. (1) are localized about a particular “master” sequence S∗, which is necessary

to preserve its information content. In contrast, delocalization indicates that

such a sequence S∗ cannot be maintained due to replication errors. Since the

possibility of non-trivial dynamics such as periodic orbits cannot be excluded

for general replicator-mutator equations like Eq. (1) (Stadler et al., 1995), there

might also be other reasons for the absence of localization. However, we did

not find any signs of complex dynamical behavior in our simulations, and one

can easily convince oneself that the delocalized state, where all sequences have

the same concentration and therefore identical replication rates, can lead to lo-

calization: since replication rates are essentially proportional to concentration,

stochastic concentration fluctuations imply higher rates. Unless hindered by

excessive mutations, this can induce a transition to a state localized about some

randomly chosen master sequence, which then also has the highest replication

rate (see Obermayer and Frey (2009) for a visualization). Such “fixation” events
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are very similar to the phenomenon of consensus formation, e.g., in language

dynamics (Blythe, 2009). Note that our idealized replication rates do not pre-

determine any specific master sequence for localization. This symmetry would

be broken in a full model where replication rates depend on the full genotypes

of enzyme and substrate (and not just the Hamming distance between their

recognition regions).

Given localization about S∗, we can significantly reduce the dimensionality

of Eq. (1) by lumping all sequences Si with a Hamming distance k to S∗ together

into “error class” k. Without loss of generality, we assume that S∗ = (00 . . . 0).

This well-known procedure (Schuster and Swetina, 1988; Woodcock and Higgs,

1996) permits to formulate reduced rate equations formally equivalent to Eq. (1)

in terms of new variables xk denoting the concentration of error class k in the

population:

ẋk =
∑
ji

mkj [ajδji + bjixi]xj − xk

∑
ji

[ajδji + bjixi]xj . (6)

Here and in the following, we use lowercase letters for all variables in the re-

duced system. For our model Eq. (3), the non-enzymatic rates are given by

ai ≡ α. The accordingly reduced mutation matrix and the catalytic matrix

depend only on the Hamming distance between pairs of sequences in different

error classes (measured with respect to the master sequence), which allows us

to combinatorially assess all possibilities for their relative distance. The total

probability of distributing 0 ≤ k − j + 2� ≤ L mutations to move a sequence

from error class j into error class k has been derived previously as (Woodcock

and Higgs, 1996)

mkj =
∑
�

(
L− j

k − j + �

)(
j

�

)
(1− μ)L−(k−j+2�)μk−j+2�. (7)

The replication rate Eq. (2) also depends on the frequency of each sequence in

each error class. With the homogeneity assumption that all
(
L
j

)
sequences in

class j are equally populated, this complication can be resolved, and the reduced
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matrix bij reads analogously

bij = β
∑
n

(
L− i

j − i + n

)(
i

n

)
f(j − i+ 2n)(

L
j

) . (8)

Numerical solutions to the (L + 1)-dimensional rate equations given in Eq. (6)

can now easily be found by means of standard algorithms.

A more detailed understanding of these solutions can be obtained from the

population distribution’s normalized first moment a = 〈k〉 /L = 〈σ〉, which as

the mean Hamming distance 〈k〉 = ∑
k kxk to the master S∗ = (00 . . . 0) char-

acterizes the width of the distribution and measures the mean value 〈σ〉 of each
sequence’s binary nucleotides. Writing down an equation for the first moment

of Eq. (6) requires a hierarchy of expressions for higher moments, which can

be truncated by means of a moment closure technique. For the self-specific

case, we assume that the stationary Hamming distance distribution is approx-

imately binomial, xk ≈
(
L
k

)
ak(1− a)L−k, because this reproduces the expected

distribution in the limits a→ 0 (complete localization about one sequence) and

a→ 1/2 (the delocalized state, where the binary nucleotides are random num-

bers). Moreover, it solves the rate equations Eq. (1) exactly for linear fitness

landscapes without epistasis (Woodcock and Higgs, 1996) and for an extension

of the quasispecies model to a game theory setting (Lässig et al., 2003). With

this binomial ansatz, a is the population distribution’s only parameter, and for

our model of the replication rates Eq. (3), it obeys the equation

(1− 2a)
{
μL [α+ βS(1 − 2a(1− a))]

− a(1− a)(1 − 2μ)βS′(1− 2a(1− a))
}
= 0. (9)

This equation for a, which is one of our main analytical results (see Appendix

A.1 for a derivation), holds for any specificity function f(d), which enters via

the function

S(x) =
∑
k

(
L

k

)
f(k)xL−k(1− x)k. (10)

An intuitive interpretation of this auxiliary function derives from recognizing

that the quantity α+ βS(1− 2a(1− a)) measures the mean replication rate (or
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mean fitness)
∑

j RjXj of the population if a solves Eq. (9). Such solutions a(μ)

can be obtained explicitly only in special cases where S(x) attains a simple form

(see Appendix A.2), but we can easily solve for μ(a) and invert graphically to

obtain a bifurcation diagram:

μ(a) =

[
2 +

α+ βS(1− 2a(1− a))

βa(1− a)S′(1− 2a(1− a))

]
−1

. (11)

For cross-specific replication with the specificity function Eq. (5), we expect

two equivalent subpopulations localized about complementary sequences, which

corresponds to a superposition of binomial distributions: xk ≈ 1
2

(
L
k

)[
ak(1 −

a)L−k +(1− a)kaL−k
]
. To obtain an equation similar to Eq. (9) for their mean

widths a, we cannot use the first moment of the reduced rate equations (it

vanishes by construction, because the distribution is symmetric about a = 1/2),

but use the second moment
〈
Δk2

〉
=

∑
k(k − 〈k〉)2xk, leading to a lengthy

result explicitly given in Appendix B.1 and a corresponding expression for the

bifurcation diagram (see Eqs. (B.5) and (B.7)).

4. Results and Discussion

4.1. Self-specific replication

Our first scenario is concerned with self-specific replication, where replication

rates increase with similarity of enzyme and substrate through the specificity

function Eq. (4). As argued in the preceding section, stochastic fluctuations

increasing the frequency of one particular sequence also increase its replication

rate, such that the population can localize about this master sequence S∗. Fig-

ure 1 shows the stationary Hamming distance distribution xk, which measures

the concentration of sequences with k mutations relative to S∗, for different

degrees of specificity from the linear case p = 1 to complete self-specificity

p→ ∞, where enzyme and substrate have to be identical. We compare results

from stochastic simulations to numerical solutions of the reduced rate equa-

tions, Eq. (6). The excellent agreement between simulation and deterministic
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theory justifies the homogeneity assumption made in symmetrizing the speci-

ficity matrix (see Eq. (8)). In the simulations shown in Fig. 1, we initialized all

sequences at a predetermined master sequence in order to avoid noise from the

intrinsically stochastic “fixation” events, but we also tested other initial condi-

tions with modest inhomogeneities, which were quickly “washed out” and did

not give rise to measurable differences in the stationary state.

The limit p→∞ with fs(d)→ δd,0, depicted in Fig. 1(c), leads to a general-

ized Schlögl model of auto-catalytic replication, which has been partly analyzed

by Stadler et al. (1995). In this limit we can employ the well-known “error-tail”

approximation (Schuster and Swetina, 1988): we define x0 as the concentration

of the master sequence, α + βx0 its replication rate and (1 − μ)L the proba-

bility not to have a mutation. All other sequences are lumped together in the

error tail with concentration 1− x0 and replication rate α (the concentration of

suitable replicase enzymes is so small that the frequency-dependent term in the

replication rate does not contribute). Neglecting back mutations from the error

tail into x0 (corresponding to the large-genome limit), we obtain the simple

equation

ẋ0 = (α+ βx0)(1− μ)Lx0 − x0r̄, (12)

with r̄ = (α+ βx0)x0 + α(1 − x0) the mean replication rate. In the stationary

state, we easily find that the delocalized state x0 = 0 is stable for all μ, while a

branch of solutions with nonzero x0 emerges for (1−μ)L > 2(
√
α(α + β)−α)/β

through a discontinuous transition (see also Campos et al. (2000); Obermayer

and Frey (2009); Wagner et al. (2010) for similar results in related models).

Whereas for the somewhat related sharply-peaked fitness landscape, where only

the master sequence has a higher replication rate, the error threshold arises

through a continuous bifurcation (Baake and Wiehe, 1997), the discontinuity

observed here expresses the qualitatively different behavior we previously termed

“escalation of error catastrophe” (Obermayer and Frey, 2009): as the mutation

rate grows, the proportion of fittest sequences, i.e., of the necessary replicase

enzymes, is diminished and therefore their replication rate. This in turn reduces
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their concentration, until at the error threshold the concentration of enzymes

x0 is not large enough to have them replicate with an efficiency sufficient for

localization.

Although Eq. (12) approximates the exact result for x0 very well (see the

dashed line in Fig. 1(c)), it is valid only for L → ∞ (because back mutations

are neglected) and p→∞ (because the replication rate of the error-tail is taken

as concentration-independent). In order to gain a more general perspective, we

use the analytical solutions of Eq. (9) for the mean Hamming distance to the

master (the population distribution’s first moment a = 〈k〉 /L) obtained from

the bifurcation diagram Eq. (11). A comparison between the exact solution a(μ)

resulting from the reduced rate equations Eq. (6) via numerical continuation1

and Eq. (11) is shown in Fig. 2 for L = 8, α = β = 1 and different values of

p in the specificity function Eq. (4). Recalling the symmetry of the original

model, Eq. (3), namely that the population can localize about any sequence,

the remaining reflection symmetry a → 1 − a about the delocalized solution

a = 1/2 indicates that after symmetrization localization is only possible about

the master sequence or its complement. The stable branches associated with

localized solutions start for μ = 0 at a = 0 (or a = 1), i.e., full localization

about one sequence (or its complement), and higher mutation rates give rise to

broader distributions with larger mean, until these localized regimes disappear

at critical mutation rates μc denoted by circles. The delocalized solutions, on

the other hand, gain stability at finite mutation rates μ̃c (denoted by crosses),

and we find bistability for μ̃c < μ < μc. A similar situation is encountered in

formally related models of grammar evolution (Nowak et al., 2001; Komarova,

2004).

Explicit expressions for the error threshold μc = maxμ(a) are available from

Eq. (11) when the auxiliary function S(x) (defined in Eq. (10)) has a simple form

(see Appendix A.2). For instance, μc = β/(4αL+ 2β(L+ 1)) for p = 1, where

specificity decreases linearly with the distance between enzyme and substrate.

1AUTO software package available via http://indy.cs.concordia.ca/auto/.
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Although an error threshold is absent for linear fitness landscapes without epis-

tasis (Woodcock and Higgs, 1996), here the intrinsically nonlinear model gives

a sharp transition even in this apparently similar case. For very strong speci-

ficity p → ∞ we find μc = W [β/(eα)]/(2L) using Lambert’s W-function, and

we recover the result μc = ln(β/α)/(2L) that can also be obtained from the

error-tail approximation in the limit β � α. Further, the delocalized state

a = 1/2 is the only solution of Eq. (9) in the complete absence of specificity

(fs(d) ≡ 1), supporting the intuition that unspecific replication does not suffice

to preferentially maintain the information of one particular sequence. Interest-

ingly, taking p → 0 in Eq. (4) gives the finite even though exponentially small

value μc = β/(2L+1(α+β)). This result implies that limited localization is pos-

sible even for very weak specificity (if p = 0 in the specificity function Eq. (4),

enzymes replicate everything except their exact complement, because always

fs(L) = 0).

From the bifurcation diagram obtained via Eq. (11), we easily read off exact

results for the value μ̃c = μ(1/2) where the delocalized state gains stability. E.g.,

for the generalized Schlögl model p→∞, we get μ̃c = β/(α2L+1 +4β) (Stadler

et al., 1995). This exponentially small yet finite value is consistent with our

previous conclusion that the delocalized regime is stable for all values of μ

within the error-tail approximation, Eq. (12), which holds for L→∞. Further,

we find that the two critical values μ̃c and μc are identical for p = 0, 1, 2.

Recognizing that Fig. 2 describes a pitchfork bifurcation at a = 1/2 and μ = μ̃c,

we infer that the two critical mutation rates are equal (μc = μ̃c) whenever the

pitchfork is supercritical, whereas bistability between localized and delocalized

states for intermediate mutation rates μ̃c < μ < μc is possible in the subcritical

case, leading to the discontinuous transition observed in Fig. 1. The bistability

regime vanishes as the curvature μ′′(1/2) in the bifurcation diagram changes

sign, which gives from Eq. (11) an approximate expression for the corresponding

critical value of β:

β∗ = α

[
S′2(1/2)

S′′(1/2)− 2S′(1/2)
− S(1/2)

]−1

. (13)
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This general result can readily be evaluated for any specificity function entering

the auxiliary function S(x) defined in Eq. (10). It predicts bistability for all

values β < β∗ = α 2L−1(L− 2) if p→∞ in our choice Eq. (4) of the specificity

function, and no bistability for weak specificity because the critical value of the

coupling constant is negative (β∗ ≤ 0) for small p < pmin = 2 +O(L−1). Since

the mean Hamming distance 〈k〉 = aL is discontinuous at the error threshold

only in the bistability regime β < β∗(p), we argue that the observation of

a discontinuous mean replication rate (mean fitness) α + βS(1 − 2a(1 − a))

depends on the specificity of second order catalysis, which generalizes the result

of Wagner et al. (2010).

The results of the binomial closure approximation Eq. (9) are summarized

in the phase diagram Fig. 3, where the two critical mutation rates μc and μ̃c are

shown as functions of the selection strength β and the specificity degree p for

α = 1. The thick line denoted β∗ indicates the boundary of the bistability regime

μc > μ̃c. Fig. 2 demonstrates that the binomial approximation is quantitatively

excellent in the supercritical situation β > β∗ (in particular, it gives exact

results for μc and μ̃c), and qualitatively correct otherwise, where the values

for μc are somewhat underestimated: near the error threshold, the variance

of the population distribution is considerably larger than that of a binomial.

Nevertheless, we emphasize that the result μc = ln(β/α)/(2L) in the limiting

case p → ∞ agrees with the value obtained from the error-tail approximation

for large β. The remarkable performance of the binomial closure approximation

can be appreciated in more detail from the projected phase diagrams shown in

Fig. 4.

A noticeable feature of these phase diagrams is that the error threshold μc

increases for stronger specificity p (see Fig. 4(b)), which implies that higher

mutation rates can be tolerated, i.e., that longer sequences can be maintained.

This seems at first counter-intuitive, because weaker specificity constraints on

the recognition sequence should allow more mutational “freedom”. However, as

shown in Fig. 2 and Fig. 1, smaller values for p lead to much broader distribu-

tions: mutants are still reasonably well replicated by master enzymes, but the
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master is only moderately well (but not quite as efficiently) replicated by the

mutants. The resulting broadening of the distribution effectively reduces the

replication rate of the master and escalates the error catastrophe (Obermayer

and Frey, 2009). Thus, the necessity for an enzymatic replicator to discriminate

not only between functional and non-functional substrates, but also between

efficient and unproductive enzymes, is again emphasized.

We finally want to remark on the case α = 0, i.e., no background level for

the non-enzymatic replication rate. Most of the above results obtained from

the binomial closure approximation can be simply evaluated for α = 0 (note

that then β sets the timescale and drops out), but the strong specificity limit

p → ∞ deserves extra attention. The error-tail approximation indicates that

the error threshold vanishes (μc → 1), but from Eq. (9) we find the exact result

μc = μ̃c = 1/6 for L� 1, i.e., a macroscopic yet finite value (see Appendix A.2).

This remarkable result can be explained by recalling that the traditional result

μc ≈ ln r/L (Eigen et al., 1989; Wiehe, 1997) for the error threshold depends

on the replication advantage r of the master relative to a possibly small but

finite value for the mutants. In our case, rates are directly proportional to

concentration, and because the master sequence has a concentration of order 1,

while in an infinitely large population distant mutants have concentrations of

order 2−L, this relative advantage itself is of order 2L, and cancels the length

dependence of the error threshold. In the corresponding non-enzymatic case,

results for so-called “truncation” fitness landscapes have lead to some debate

about the applicability of the error threshold concept in the presence of lethal

mutations (Wilke, 2005; Summers and Litwin, 2006; Takeuchi and Hogeweg,

2007; Saakian et al., 2009). Accordingly, we should cautiously note that our

results for α = 0 will probably be affected when accounting for the effects

of finite populations and the full dependence of the replication rates on the

genotypes of enzyme and substrate.
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4.2. Cross-specific replication

To increase the information content of replicating systems beyond the lim-

ited complexity of a single replicator, auto-catalytic reaction networks such as

hypercycles (Eigen and Schuster, 1978; Stadler et al., 1995) have been proposed,

where different molecular species catalyze each other’s replication in a possibly

complex interaction graph. Only very little is known for these systems regard-

ing the issue of reaction specificity and the cross-interactions of each species’

mutant clouds. The simplest conceivable networks are 2-member cross-catalytic

hypercycles. While the two members (which actually replicate via complemen-

tary intermediates) need not be strictly complementary, we assume that they are

sufficiently distinct that an idealized model requiring complementary recognition

regions captures the essentials. This suggests to analyze the specificity function

Eq. (5) where replication rates increase with Hamming distance between enzyme

and substrate. In this case, we expect the formation of two sub-populations lo-

calized about complementary sequences, each catalyzing the replication of the

other. The main question to be answered is how specificity affects coexistence.

In the standard Eigen model, quasispecies coexistence is prevented by com-

petitive exclusion except in degenerate cases, because the “fittest” individuals

take over the population (Swetina and Schuster, 1982). Interactions between

sub-populations, e.g., based on complementarity of binary traits (de Oliveira

and Fontanari, 2002), are known to enable coexistence. In our case, we expect

novel conditions for coexistence: even though each subpopulation depends on

the presence of the other for efficient replication, it is unclear how the possibly

broad mutant distributions influence each other.

From numerical solutions to the reduced rate equations and simulation re-

sults, where we initialized the population split between the master sequence and

its complement (see Fig. 5), we find that localization is only possible for p > 1.

This important result is confirmed through the binomial moment closure approx-

imation (see Appendix B.2), which has for p = 1 only the solution a = 1/2,

corresponding to the delocalized state. Because the complementary distribu-

tions overlap too much if catalytic rates increase only linearly with Hamming
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distance, the populations are not localized strongly enough to ensure coexis-

tence.

The bifurcation diagram μ(a) obtained from our approximation scheme (see

Eq. (B.7)) is shown in comparison with the exact result from the reduced rate

equations in Fig. 6 for different values of p. We obtain information about the

parameter a from the variance
〈
Δk2

〉
=

∑
k(k − 〈k〉)2xk, in the case of two

complementary binomials given by
〈
Δk2

〉
= L2/4 − L(L − 1)a(1 − a). Using

this expression to infer a from the measured variance gives very good agree-

ment between binomial closure approximation and exact numerical results es-

pecially for small p, because now the first two moments are correct. The critical

mutation rates μc and μ̃c can be found from the bifurcation diagram, e.g.,

μc = W [β/(2αe)]/(2L) for p → ∞, which is identical to the corresponding re-

sult for self-specific replication if we replace β → β/2. Hence, in this limit we

obtain two clearly separated binomial distributions representing two equivalent

and catalytically coupled populations: indeed, in the localized state the sum

xk + xL−k from Fig. 5(b) is equal to xk in the self-specific situation shown in

Fig. 1(c) once we replace β → β/2. The “coupling constant” is only half as large

because only one half of the population is available as enzymes for the other.

In particular, the negligible interaction between the respective mutant clouds

allows one to employ the error-tail approximation assuming independent species

and error tails as in (Campos et al., 2000; Obermayer and Frey, 2009). Further,

we find that the pitchfork bifurcation is always subcritical, i.e., that μc > μ̃c.

We summarize our main results by plotting projected phase diagrams of μc and

μ̃c as functions of p−1 and β in Fig. 7. This confirms that both critical mutation

rates μc and μ̃c vanish linearly with p−1, because μ(a) ∝ p−1 as p→ 1, which

gives the sharp bound p > 1 for coexistence of two populations. Finally, the

case α = 0 of zero non-enzymatic replication rate is similar to the self-specific

case: the slight chance of distant mutants to find an appropriate enzyme gives

an enormous replication advantage to the mainly populated master sequences

and therefore macroscopic values for the error threshold (see Appendix B.3 for

details).
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5. Conclusion

Because enzymatic replication provokes the necessity for enzymes to favor

functional substrates and for substrates to prefer efficient enzymes, we analyzed

the effects of specific replication on the error threshold. In our model, which

accounts for the full quasispecies mutant distributions, replication rates depend

on the Hamming distance between enzyme and substrate via an adjustable de-

gree of specificity. Combining stochastic simulations, numerical solutions of

reduced rate equations and analytical solutions to a binomial closure approx-

imation, we could analyze the entire phase diagram and assess how mutation

rate μ, selection strength β and specificity degree p influence the localization

about a master sequence in order to preserve its information content. We found

that for self-specific replication very weak specificity suffices for localization,

whereas stronger specificity gives more tolerance against mutations but leads to

bistability with the delocalized regime of random sequences. In particular, the

binomial closure approximation permits to obtain analytical expressions for the

bifurcation diagram and an upper bound β∗ for the bistability regime, which can

be evaluated for any specificity function fs(d). Apart from our special choice,

Eq. (4), a mesa-shaped function would also be conceivable, in correspondence to

fitness landscapes for transcription factor binding allowing for some “fuzziness”

or neutrality in the binding sequence (Gerland and Hwa, 2002). Preliminary

results indicate that in this case the binomial closure approximation gives at

least qualitative agreement as well. While our approximation is not restricted

to large L, this limit can probably be more systematically be described using

the maximum principle employed previously in quasispecies theory (Hermisson

et al., 2002; Saakian and Hu, 2006). In the case of cross-specificity, we found

that coexistence of subpopulations localized about complementary sequences is

possible only if replication rates increase faster than linearly with Hamming

distance.

Although our model is based on idealizing assumptions, we can extrapolate

from currently available experimental data to obtain rough quantitative esti-
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mates for the maximal length Lc of the recognition or tag sequences that can

be used by replicase enzymes to specifically and reliably discriminate appro-

priate and useless templates (and vice versa). Considering that non-enzymatic

template-directed polymerization rates are on the order of several hours to days

per base (Acevedo and Orgel, 1987; Wu and Orgel, 1992), while ribozyme-

catalyzed polymerization gives rates in the hour range (Johnston et al., 2001;

Zaher and Unrau, 2007), we can estimate the ratio β/α somewhere near 5-20

if polymerization is the rate-limiting step. Assuming a self-specific enzymatic

replicator with a mutation rate on the order of 3% as in (Johnston et al., 2001),

we obtain a critical length Lc = 11-15 for weak specificity p = 1, and a larger

value Lc = 18-33 for p→∞, because stronger specificity constraints allow longer

sequences due to better localization. These values are significantly smaller than

the lengths of, e.g., the 154-nucleotide specificity domain of Bacillus subtilis

RNase P (Lilley, 2005) or the tRNA-like structures supposed to act as “genomic

tags” for the replication of RNA viruses (Weiner and Maizels, 1987). Many

of the nucleotides in these instances have a structural role, which makes them

effectively redundant or neutral (Kun et al., 2005), and only a minority is ac-

tually involved in recognition. Also, recent research indicates that “stalling” of

polymerization after mismatch incorporation might significantly reduce the er-

ror threshold (Rajamani et al., 2010). Nevertheless, our result suggests that the

error threshold puts hard constraints on the information content of enzymatic

replicators as well.
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Figure 1: Solutions for self-specific replication with fs(d) = (1− d/L)p. Stationary Hamming

distance distribution xk as function of mutation rate μ from numerical solutions to the reduced

rate equations Eq. (6) (straight lines) and a stochastic simulation of the full system Eq. (1)

in a population of N = 104 sequences of length L = 32 (dots) for α = 1, β = 5 and (a) p = 1,

(b) p = 5, and (c) p = ∞ (here, the dashed line shows the error-tail approximation for x0).

The insets depict the average Hamming distance a = 〈k〉 /L to the master sequence.

Figure 2: Bifurcation diagram of Eq. (6) for the normalized mean Hamming distance a =

〈k〉 /L with L = 8, α = 1, β = 1 and different values of the specificity degree p. Thick lines

indicate stable branches, dashed lines unstable branches and thin dotted lines the results of

the binomial closure approximation Eq. (9), which is barely visible for p = 0.1 and p = 1.

Circles indicate critical mutation rates μc where the localized regime vanishes, crosses show

values μ̃c where the delocalized state changes stability (horizontal branches corresponding to

delocalized states are drawn slightly shifted for visualization).

Figure 3: Phase diagram of localization regimes in the parameter space of mutation rate μ,

selection strength β and specificity degree p (log-log-log scale) obtained from Eq. (9) for L = 8

and α = 1: below the upper plane μc, a localized solution exists, while above the lower plane

μ̃c the delocalized state becomes stable. Bistability (μc > μ̃c) is possible only for β < β∗(p).

Figure 4: Projected phase diagrams of localization regimes for self-specific replication with

L = 8 and α = 1 obtained from Eq. (6): (a) as function of β with p = 10 fixed; (b) as function

of p with β = 10 fixed. Below μc (thick line), a localized solution exists, while above μ̃c (thick

dashed line) the delocalized state becomes stable. The dotted lines denote the result for μc

obtained via the binomial closure approximation. Bistability (μc > μ̃c) is possible only for

β < β∗(p) (or p > p∗(β)).

Figure 5: Hamming distance distribution xk as function of mutation rate μ as in Fig. 1, but

for cross-specific replication with α = 1, β = 10, L = 32, and (a) p = 5 or (b) p = ∞. The

insets show the variance
〈
Δk2

〉
=

∑
k(k − 〈k〉)

2xk (in a symmetric population, 〈k〉 = L/2).

Figure 6: Bifurcation diagram of Eq. (6) as in Fig. 2, but for cross-specific replication in

terms of the population parameter a, which denotes the width of the two subpopulations and

is calculated from the variance
〈
Δk2

〉
in the Hamming distance distribution. Parameters are

L = 8, α = 1, and β = 1.

Figure 7: Projected phase diagrams of localization regimes as in Fig. 4, but for cross-specific

replication with L = 8 and α = 1: (a) as function of β with p = 10 fixed; (b) as function of p

with β = 10 fixed.
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Appendix A. Self-specific replication

Appendix A.1. Derivation of Eq. (9)

To obtain Eq. (9), we compute the first moment
∑

k kẋk of the reduced rate

equations Eq. (6) under the assumption that xk = xb
k ≡

(
L
k

)
ak(1 − a)L−k is

binomially distributed. This gives four terms

T1 =
∑
jk

kmkjajx
b
j T2 =

∑
ijk

kmkjbjix
b
i x

b
j

T3 = −
∑
k

k xb
k

∑
j

ajx
b
j T4 = −

∑
k

k xb
k

∑
ij

bjix
b
i x

b
j .

(A.1)

The reduced mutation matrix mkj and the catalytic matrix bij are given in

Eqs. (7) and (8). Note that although not immediately obvious, the catalytic

matrix bij = bji is symmetric, because the binomial in the denominator of

Eq. (8) normalizes it to the single sequence level. We further keep in mind that(
n
k

)
= 0 if k < 0 or k > n if n and k are integer, so we do not need to keep track

of the summation limits in the following calculations.

While it is straightforward to find T1 = αL(a+ μ(1− 2a)) and T3 = −αaL,
we concentrate first on T4, which reads after performing the summation over k

T4 = −βaL
∑
ijn

(
L− j

i− j + n

)(
L

j

)(
j

n

)
fs(i− j + 2n)ai+j(1− a)2L−(i+j). (A.2)

Replacing i′ = i− j + 2n and rearranging
(
L−j
i′−n

)(
L
j

)(
j
n

)
=
(
L−i′

j−n

)(
L
i′

)(
i′

n

)
, we can

sum over j and n, and are left with

T4 = −βaL
∑
i′

(
L

i′

)
fs(i

′)(1 − 2a(1− a))L−i′(2a(1− a))i
′

= −βaLS(1− 2a(1− a)).

(A.3)

The term T2 can after similar rearrangements be written as the product of two

generalized Vandermonde matrices:

T2 = β
∑
i′

(
L

i′

)
fs(i

′)
∑
jk

k

⎡
⎣ μ 1− μ

1− μ μ

⎤
⎦
L−k,j

⎡
⎣(1 − a)2 a(1− a)

a2 a(1− a)

⎤
⎦
j,i

,

(A.4)
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where the Lth Vandermonde matrix with parameters a, b, c, and d is defined as⎡
⎣a b

c d

⎤
⎦
i,j

≡
∑
�

(
L− j

i− �

)(
j

�

)
aL+�−i−jbj−�ci−�d�. (A.5)

This allows us to use a nice multiplication identity (Rawlings and Sze, 2005) for

these matrices: ⎡
⎣a b

c d

⎤
⎦
⎡
⎣e f

g h

⎤
⎦ =

⎡
⎣ae+ bg af + bh

ce+ dg cf + dh

⎤
⎦ , (A.6)

which gives:

T2 =β
∑
i′

(
L

i′

)
fs(i

′)
∑
k

k

⎡
⎣ a2 + μ(1− 2a) a(1− a)

(1 − a)2 − μ(1− 2a) a(1− a)

⎤
⎦
L−k,i′

(A.7)

=β
[
L(a+ μ(1− 2a))S(1− 2a(1− a)) (A.8)

− (1− 2a)a(1− a)(1 − 2μ)S′(1 − 2a(1− a))
]
. (A.9)

Adding up T1 + T2 + T3 + T4 = 0 gives Eq. (9).

Appendix A.2. Solutions of Eq. (9)

This equation can be solved whenever S(x), defined in Eq. (10), assumes a

simple form. For fs(d) = (1− d/L)p as in Eq. (4), S(x) is a polynomial of order

L, except for integer 0 < p < L, where it is of order p. A few instances for

L > 2 are given by

S(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− (1− x)L, p = 0,

x, p = 1,

1
Lx+ L−1

L x2, p = 2,

xL, p =∞.

(A.10)

To find solutions a(μ) 
= 1/2, we write x = a(1− a) and solve Eq. (9) for x:

x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

(
2μα+β

β

)1/L

, p = 0

α+β
β

μL
1+2μ(L−1) , p = 1

μ− 1
2LW

(
− 2αμL

β e2μL
)
, p =∞.

(A.11)
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For the last case, we approximated (1 − 2x)L ≈ e−2xL and μ/(1 − 2μ) ≈ μ

for the important asymptote L � 1 with μL fixed, and used Lambert’s W-

function. A more complicated expression is obtained for p = 2. The solution

a = 1
2

(
1±√1− 4x

)
is then easily computed, and the error thresholds μc follow

from evaluating the condition x = 1/4 (for p = 0, 1, 2), or from requiring the

W-function to give a real result (for p =∞):

μc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

β
α+β2

−(L+1), p = 0,

β
4αL+2β(L+1) , p = 1,

β
4αL+β(L+3) , p = 2,

1
2LW

(
β
eα

)
, p =∞.

(A.12)

Finally, it is easy to evaluate the bifurcation diagram Eq. (11) at a = 1/2 to

get the critical mutation rate μ̃c = μ(1/2):

μ̃c =
βS′(1/2)

2βS′(1/2) + 4L(α+ βS(1/2))
. (A.13)

For our specificity function fs(d) = (1− d/L)p, we obtain explicitly

μ̃c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−(L+1) β
α+β , p = 0

β
4αL+2β(L+1) , p = 1

β
4αL+β(L+3) , p = 2

β
α2L+1+4β , p =∞.

(A.14)

Note that μc = μ̃c for p ≤ 2.

While most of these results can be evaluated also for α = 0, the case p→∞
is special. Here, Eq. (9) gives x = μ/(1−2μ) if we again approximate (1−2x)L ≈
e−2xL, hence the error threshold is μc = 1/6, independent of β and L.

Appendix B. Cross-specific replication

Appendix B.1. Derivation of an equation for a

To obtain an equation for the parameter a, we compute the second moment∑
k k

2ẋk of the reduced rate equations, Eq. (6), under the assumption that
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xk = xc
k ≡ 1

2

(
L
k

)
[ak(1 − a)L−k + aL−k(1 − a)k] is a sum of two complementary

binomials, because in this case the first moment vanishes by construction. The

four terms T1-T4 are defined and evaluated analogously to Eq. (A.1), and after

some algebra we find:

T1 =
1

2
αL

[
L− 2(L− 1)(a(1 − a)(1− 2μ)2 + μ(1− μ))

]
(B.1)

T2 =
1

2
β
[
L(L− 2(L− 1)(a+ μ(1− 2a))(1− a− μ(1− 2a)))C(1 − 2a(1− a))

+ 2a(1− a)(1− 2a)2(1 − 2μ)2(L− 1)C ′(1 − 2a(1− a))

+ 2(a(1− a)(1 − 2a)(1− 2μ))2C′′(1− 2a(1− a))
]

(B.2)

T3 =− 1

2
αL[L− 2(L− 1)a(1− a)] (B.3)

T4 =− 1

2
βL[L− 2(L− 1)a(1− a)]C(1− 2a(1− a)). (B.4)

Here, we have defined C(x) = 1
2

∑
k

(
L
k

)[
fc(k)+fc(L−k)

]
xL−k(1−x)k. Adding

up T1 + T2 + T3 + T4 = 0 gives the condition

(1− 2a)2

{
μ(1− μ)L(L− 1)

[
α+ βC(1 − 2a(1− a))

]
− βa(1 − a)(1− 2μ)2

[
(L− 1)C ′(1− 2a(1− a))

+ a(1− a)C′′(1− 2a(1− a))
]}

= 0. (B.5)

Most importantly, Eq. (B.5) reads for p = 1 in the specificity function fc(d) =

(d/L)p:

−(1− 2a)2L(L− 1)μ(1− μ)(α + β/2) = 0, (B.6)

which has only the solution a = 1/2.

Appendix B.2. Bifurcation diagram

Solving Eq. (B.5) for μ gives the bifurcation diagram:

μ(a) = 1
2

[
1±

(
1 +

4βa(1−a)[(L−1)C′(1−2a(1−a))+a(1−a)C′′(1−2a(1−a))]
L(L−1)[α+βC(1−2a(1−a))]

)
−1/2

]
,

(B.7)
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where we take the negative sign and the positive root to obtain values μ near

zero (values near unity imply complementary replication and give equivalent

results for cross-specific replication).

We readily find that μ′′(1/2) > 0 if β > 0, which implies that the pitchfork

bifurcation described through Eq. (B.7) is always subcritical.

Appendix B.3. Solutions of Eq. (B.5)

The auxiliary function C(x) can be evaluated for small integer p as in

Eq. (A.10). There is no solution to Eq. (B.5) except a = 1/2 for p = 1, and the

expression for p = 2 is quite lengthy. For p =∞ and α > 0, we get

x = a(1− a) = μ− 1

2L
W

(
4αμL

β
e2μL

)
, (B.8)

which is exactly the result for the self-specific case if we replace β → β/2.

Accordingly, we get μc =W [β/(2eα)]/(2L) for the error threshold.

Observing that C ′(1/2) = 0, the critical mutation rate μ̃c = μ(1/2) is given

by

μ̃c =
1

2

[
1−

(
1 +

βC′′(1/2)

4L(L− 1)(α+ βC(1/2))

)
−1/2

]
, (B.9)

which reads explicitly

μ̃c =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, p = 1

1
2

[
1−

(
1 + 2β

4αL2+βL(L+1)

)
−1/2

]
, p = 2

1
2

[
1−

(
1 + β

α2L+β

)
−1/2

]
, p =∞.

(B.10)

We can simply take α = 0 in most of the above expressions to investigate the

case of zero non-enzymatic replication rate. In the limits p → ∞ and L → ∞,

we find that the bifurcation diagram μ(a) converges towards

μ(a)→ a(1 − a), (B.11)

except for a region near a = 1/2, because μ(1/2) has to coincide with the exact

value μ̃c = (2 − √2)/4. Because this region becomes infinitesimally small as

L→∞, we conclude that μc → 1/4 in this limit.
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