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Evolutionary stability of optimal foraging: partial preferences1

in the diet and patch models2

Vlastimil Křivan3

Department of Theoretical Ecology, Institute of Entomology, Biology Center, Academy of Sciences of4

the Czech Republic, and Department of Mathematics and Biomathematics, Faculty of Science,5

University of South Bohemia, Branǐsovská 31, 370 05 České Budějovice, Czech Republic6

Abstract

In this article the patch and diet choice models of the optimal foraging theory are
re-analyzed with respect to evolutionary stability of the optimal foraging strategies.
In their original setting these fundamental models consider a single consumer only
and the resulting fitness functions are both frequency and density independent. Such
fitness function do not allow us to apply the classical game theoretical methods to
study evolutionary stability of optimal foraging strategies for competing animals. In
this article frequency and density dependent fitness functions of optimal foraging are
derived by separation of time scales in an underlying population dynamical model and
corresponding evolutionarily stable strategies are calculated. Contrary to the classical
foraging models the results of the present article predict that partial preferences occur
in optimal foraging strategies as a consequence of the ecological feedback of consumer
preferences on consumer fitness. In the case of the patch occupation model these partial
preferences correspond to the Ideal Free Distribution concept while in the case of the
diet choice model they correspond to the partial inclusion of the less profitable prey
type in predators diet.

Keywords: evolutionarily stable strategy, game theory, ideal free distribution,
population growth, predator-prey models

1. Introduction7

Optimal foraging theory (OFT; e. g., MacArthur and Pianka, 1966; Charnov, 1976;8

Stephens and Krebs, 1986) assumes that organisms forage in such a way as to maximize9

their fitness measured as energy intake rate. These models assume a homogeneous10

(fine-grained) environment with several resource types that a consumer encounters11

sequentially, and predict the optimal consumer diet. This line of research led to the12

prey model (also called the “diet choice”; Charnov, 1976). This model assumes that13

consumer fitness is measured as the average energy intake rate. The classical example14
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of such a situation is the experiment with great tits where a single animal feeds on15

two food types delivered on a conveyor belt (e. g., Krebs et al., 1977; Berec et al.,16

2003) which assures that prey are not depleted by predation. Thus, no interference17

or competition for food between consumers is considered. A similar reasoning can be18

applied to the case where a consumer forages in a heterogeneous environment consisting19

of discrete foraging patches. In this case the consumer should move to the patch with20

the highest payoff. These predictions are based on fitness functions that are both21

density and frequency independent. They consider a single consumer and resource22

densities that are not influenced by predation. Thus, they miss completely competition23

between consumers that can be either due to interference, or due to exploitation of24

resources. In fact, such models can be applied only to laboratory experiments with a25

single consumer that does not influence resource density (e. g., a single great tit feeding26

on two prey types delivered on the conveyor belt).27

More realistic models must consider consumer competition (either interference com-28

petition, or exploitative competition). A density dependent approach in patchy envi-29

ronments led to the concept of the Ideal Free Distribution (IFD; Fretwell and Lucas,30

1969). These authors assumed that patch payoff decreases with increasing number of31

individuals in that patch (e. g., this captures interference among birds) and predicted32

that under the IFD no individual can increase its fitness by changing its strategy33

measured by residence times in different patches. Because under the IFD all patches34

provide animals with the same fitness the question arises whether such a situation is35

stable or not. Indeed, assuming a single mutant with an infinitely large resident pop-36

ulation that is distributed according to the IFD, fitness of that mutant is independent37

and the same as is the fitness of resident animals. One approach to study stability in38

such situations is to use the concept of evolutionarily stable strategies (Maynard Smith39

and Price, 1973; Hofbauer and Sigmund, 1998). In fact it has been shown that the IFD40

is an evolutionarily stable strategy of the habitat selection game (Křivan et al., 2008).41

However, this concept of stability assumes that the fitness function is frequency depen-42

dent, i. e., it depends both on the mutant as well as on the resident strategy. Frequency43

dependence allows us to predict whether a mutant strategy will increase in the resident44

population or not. Here the idea is that the resident strategy sets the environment45

(e. g., the resident consumer strategy sets the resource densities) and if a mutant strat-46

egy with a higher fitness exists then this strategy spreads, replaces residents, sets a47

new environment and so on until an evolutionarily stable strategy (ESS) is reached.48

Another approach that considers explicitly resource–consumer population dynam-49

ics together with optimal foraging was also used in theoretical ecology (reviewed in50

Abrams, 2010). These models show how resident individuals that follow optimal for-51

aging strategy influence resource levels which, in turn, influence consumer numbers52

and strategy. Although dynamical models capture the ecological feedback, they do53

not provide us with information about the evolutionary stability of optimal foraging54

strategies. To study this question it is necessary to study conditions under which55

the optimal foraging strategy is resistant to mutant invasions. Studying evolution-56

ary stability in dynamic models of optimal foraging is more complicated than in static57
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models of behavioral ecology (such as the Hawk-Dove model, or the Prisoners dilemma;58

Maynard Smith and Price, 1973; Hofbauer and Sigmund, 1998) because it requires to59

analyze population dynamics for both resources, resident and mutant consumers (e. g.,60

Křivan and Cressman, 2009; Cressman and Křivan, 2010).61

To sum up, the problem is that some models of optimal foraging are described by fit-62

ness functions that are both frequency and density independent, and they do not allow63

us to predict optimal foraging strategies when interference or resource depletion occur.64

On the other hand, in the full dynamic setting that describes explicitly the effect of65

resident strategies on resource densities, the resulting models are multidimensional and66

difficult to analyze with respect to evolutionary stability of optimal strategies. My aim67

is to show how frequency dependent fitness functions can be obtained from frequency68

independent fitness functions, using a time scale argument. I start with a frequency69

independent fitness function defined as the per capita population growth rate. Then I70

consider resource–consumer population dynamics and I assume that resource dynamics71

run on a faster time scale when compared with consumer population dynamics. This is72

the case of many resource-consumer systems where resource generation time is shorter73

than consumer generation time (e. g., many plants have short generation times rela-74

tive to mammalian herbivores). This time scale separation allows me to assume that75

at each consumer density resources are at the corresponding population equilibrium.76

Substituting this resource equilibrium to the consumer fitness function leads to a fre-77

quency dependent fitness function that can be analyzed from evolutionary perspective.78

I apply this approach to diet and patch choice paradigms of optimal foraging theory.79

In both cases this approach predicts emergence of partial preferences for alternative80

prey/patch types. In the case of the patch model partial preferences describe the con-81

sumer Ideal Free Distribution (Fretwell and Lucas, 1969). Although partial preferences82

are not predicted by the classical frequency independent models of optimal foraging,83

they were observed in many foraging studies (for a review see Stephens and Krebs,84

1986). Explanations for partial preferences range from incorrect classification of re-85

source and sampling by consumers (Krebs et al., 1977; Rechten et al., 1983), resource86

crypsis (Erichsen et al., 1980), incorrect estimation of encounter rates with resource87

by consumers (McNamara and Houston, 1987; Hirvonen et al., 1999), limited mem-88

ory capacity of consumers (Mangel and Roitberg, 1989; Bélisle and Cresswell, 1997),89

and limited knowledge of the environment (Berec and Křivan, 2000). In this article90

I will show another mechanism that explains emergence of partial preferences by the91

ecological feedback of consumer preferences on their fitness.92

2. The patch occupation model93

I will consider an environment consisting of two foraging patches containing re-94

sources with abundance xi in patch i (i = 1, 2). If ei denotes the efficiency with which95

resources are converted to new consumers, λi is the consumer search rate for resources96

in patch i, and mi is the consumer mortality rate in patch i then consumer fitness97

expressed as the instantaneous per capita population growth rate (cf. consumer per98
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capita population growth rate in model (3) below) is99

W = (e1λ1x1 −m1)v1 + (e2λ2x2 −m2)v2 (1)100

where vi (v1+ v2 = 1) is the proportion of the time a consumer stays in patch i. Thus,101

vi measures the consumer preference for patch i. Assuming that consumer preferences102

are adaptive, the optimal consumer strategy is to stay in patch 1 when patch payoff103

is higher there than in patch 2 and vice versa. Thus, the strategy that maximizes104

consumer fitness W is105

v1 =

{
1 if e1λ1x1 −m1 > e2λ2x2 −m2

0 if e1λ1x1 −m1 < e2λ2x2 −m2.
(2)106

This simple prediction states that consumers should move to the patch that provides107

them with the highest fitness. It is clear that mutants using a different strategy obtain108

a lower fitness and therefore, the above strategy is evolutionarily stable. However,109

due to interference or resource depletion it is also obvious that as more and more110

consumers move to a patch, this patch payoff must decrease, which is not captured by111

maximization of fitness function W. To model effects of consumers on resources, I will112

consider the following population dynamics (e. g., Fryxell and Lundberg, 1994, 1997;113

Křivan, 1997; Křivan and Schmitz, 2003)114

dx1

dt
= a1x1

(
1− x1

L1

)
− v1λ1x1y115

dx2

dt
= a2x2

(
1− x2

L2

)
− v2λ2x2y (3)116

dy

dt
= (e1λ1x1 −m1)v1y + (e2λ2x2 −m2)v2y117

where y is consumer density, Li is the resource i carrying capacity, and ai is the resource118

per capita population growth rate. I stress here that consumer fitness (1) is indeed the119

per capita consumer population growth rate in model (3).120

Using model (3) I derive a new frequency dependent fitness function. I consider121

a mutant with a strategy ṽ = (ṽ1, ṽ2) in a population of residents with a strategy122

v = (v1, v2) and I re-write frequency independent fitness function (1) as a function of123

both mutant and resident strategies124

W (ṽ, v) = (e1λ1x1 −m1)ṽ1 + (e2λ2x2 −m2)ṽ2.125

The dependence of this function on the resident strategy (v = (v1, v2)) is indirect126

through resource abundance that is set by the resident strategy in model (3). To make127

this dependence explicit I will assume that resource population dynamics run on a128

fast time scale when compared with consumer population dynamics so that for each129

consumer density resources relatively quickly reach their corresponding equilibrium130
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densities. When residents use strategy v = (v1, v2), the resource equilibrium at con-131

sumer density y, calculated from (3), is xi = Li(1− λiviy/ai), (i = 1, 2). Substituting132

this density in W leads to a frequency dependent fitness function133

W (ṽ, v) = r1ṽ1

(
1− v1y

K1

)
+ r2ṽ2

(
1− v2y

K2

)
, (4)134

where135

ri = eiλiLi −mi and Ki =
ai(eiλiLi −mi)

eiLiλ2
i

(5)136

are the per capita consumer population growth rate and the environmental carrying137

capacity in patch i. It is an interesting observation that the new frequency dependent138

fitness function is described by logistic consumer population growth in each patch. In139

other words, if we assume that consumer population growth in each patch is logistic,140

we would arrive immediately to fitness function (4). Evolutionarily stable strategy for141

fitness functionW was derived by Cressman et al. (2004) and I briefly recall main results142

here. Assuming that r1 > r2, there are two possibilities. Either consumer density is143

low (y < (r1 − r2)K1/r1) in which case only the better patch 1 will be occupied, or144

when consumer population is above the critical threshold then both patches will be145

occupied by consumers, patch payoffs will be the same and the corresponding ESS is146

v∗1 =
K1r2

K1r2 +K2r1
+

K1K2(r1 − r2)

(K1r2 +K2r1)y
. (6)147

Under this strategy no individual can increase its fitness by changing its strategy and148

this strategy cannot be invaded by individuals using a different strategy. This shows149

that when patch payoffs are the same the ESS depends on the consumer population150

density. This ESS corresponds to the IFD of Fretwell and Lucas (1969). When con-151

sumers re-distribute instantaneously according to the IFD at each consumer density,152

consumer population growth is described by a piecewise logistic equation153

dy

dt
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r1y
(
1− y

K1

)
if y ≤ (r1−r2)K1

r1

r1r2(K1 +K2)

K2r1 +K1r2
y
(
1− y

K1 +K2

)
if y > (r1−r2)K1

r1
,

(7)154

(Křivan and Sirot, 2002). The equilibrium of this model is K1 +K2 and at this equi-155

librium consumer preferences satisfy156

v∗1
v∗2

=
K1

K2

. (8)157

These preferences correspond to the so called balanced dispersal under which no mu-158

tants can invade (McPeek and Holt, 1992; Padrón and Trevisan, 2006; DeAngelis et al.,159

2007).160
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Now I compare solutions of the resource-consumer model (3) (Figure 1, solid lines)161

with optimal consumer strategy given by (2), with solutions of the single-species lo-162

gistic model (7) (Figure 1, dashed lines). Křivan and Schmitz (2003) showed that163

for Li > mi/(eiλi), consumer population dynamics described by (3) converge on the164

equilibrium density K1 +K2 at which the corresponding IFD is given by formula (8)165

exactly as for model (7). This means that model (7) with optimal strategy (6) con-166

verges on the same equilibrium as the original resource–consumer model (3) (Figure167

1). In addition, if resource population dynamics are much faster than consumer pop-168

ulation dynamics (Figure 1, left panel), population trajectories of the reduced model169

(7) are close to trajectories of the original model (3). If both resource and consumer170

population dynamics operate on comparable time scales (Figure 1, right panel) the171

differences between trajectories get larger.172

3. The diet choice model173

Now I will consider the diet choice model. Assuming two prey types, consumer174

fitness in a fine-grained environment is175

e1λ1u1x1 + e2λ2u2x2

1 + h1λ1u1x1 + h2λ2u2x2
, (9)176

(Charnov, 1976). Here xi is density of resource i in the environment, λi is the consumer177

search rate for prey type i, ui is the consumer preference for prey type i (0 ≤ ui ≤ 1),178

hi is the handling time, and ei is the net energy gain obtained from prey type i. I stress179

here that on the contrary to the patch model, the diet choice model does not assume180

that the sum of strategies equals to one. Optimal foraging theory assumes that resource181

densities are fixed, and maximization of (9), with respect to consumer preferences for182

either resource, leads to the zero-one rule (Charnov, 1976). This rule predicts that183

consumers will always forage on the most profitable resource type, i. e., the resource184

type with the highest ratio ei/hi. In what follows I will assume that the resource185

type 1 is more profitable than the alternative resource type 2 (i. e., e1/h1 > e2/h2).186

Therefore, resource 1 will be always included in the consumer diet (u1 = 1) while the187

second resource type will be included only if density of the first resource decreases188

below the threshold density189

x∗1 =
e2

λ1(e1h2 − e2h1)
, (10)190

(e. g., Charnov, 1976; Stephens and Krebs, 1986). Consumer strategy is not uniquely191

predicted by the diet choice model when the more profitable prey density equals x∗1,192

because under this condition any strategy will lead to the same fitness.193

Now I will derive a frequency dependent fitness function and find the corresponding194

ESS. For this I consider ecological feedback between consumers and resources that is195

described by the following Rosenzweig–MacArthur predator-prey dynamics (Křivan196
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and Schmitz, 2003)197

dx1

dt
= a1x1

(
1− x1

L1

)
− λ1x1y

1 + h1λ1x1 + h2λ2u2x2

dy

dt
=

(
e1λ1x1 + e2λ2u2x2

1 + h1λ1x1 + h2λ2u2x2

−m

)
y.

(11)198

This model considers population dynamics of the preferred resource (x1) and consumers199

(y). It assumes that the alternative resource type density x2 stays constant. This can200

be the case where there is an influx of alternative food resources to the system from201

outside sources (allochthonous resource; Huxel and McCann, 1998). Parameter u2202

describes consumer preferences for the alternative resource.203

Fitness of a mutant consumer with strategy ũ2 in a population of residents with204

strategy u2 is205

W (ũ2, u2) =
e1λ1x1 + e2λ2ũ2x2

1 + h1λ1x1 + h2λ2ũ2x2
(12)206

and I derive a frequency dependent fitness function as in the case of the patch model.207

For each fixed consumer strategy the resource 1 isocline (given by dx1/dt = 0) is an208

upside down parabola (Figure 2). Assuming that resource dynamics run on a fast time209

scale when compared with consumer demography, trajectories move in the direction of210

the arrows in Figure 2 and they quickly reach the stable part of the resource isocline211

(solid line)212

x1+ =
−1 + h1L1λ1 − h2u2x2λ2 +H(u2)

√
1− c(u2)y

2h1λ1

(13)213

where214

H(u2) = 1 + h1L1λ1 + h2x2u2λ2, c(u2) =
4h1L1λ

2
1

a1H2(u2)
.215

I remark that the resource isocline is defined only for consumer densities that satisfy216

y < 1/c(u2) which I will assume below. Substituting the equilibrium resource density217

x1+ in (12) leads to the frequency dependent fitness function218

W (ũ2, u2) =
2h1(e1L1λ1 + e2x2ũ2λ2)− e1H(u2)(1−

√
1− c(u2)y)

2h1H(ũ2)− h1H(u2)(1−
√
1− c(u2)y)

. (14)219

The selection gradient ∂W
∂ũ2

(ũ2, u2) predicts the direction of selective pressure (Vincent220

and Brown, 2005; Dercole and Rinaldi, 2008). When the gradient is positive, preference221

for the alternative prey type will increase, while if it is negative, preference will decrease.222

The gradient is zero at the singular strategy (Appendix A)223

u∗2 =
L1λ

2
1(e1h2 − e2h1)

a1h2λ2x2(L1λ1(e1h2 − e2h1)− e2)
y − e1

λ2x2(e1h2 − e2h1)
(15)224
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provided this value is between zero and one, i. e., consumer density satisfies y∗1 ≤ y ≤ y∗2225

where226

y∗1 =
a1e1h2(L1λ1(e1h2 − e2h1)− e2)

(e2h1 − e1h2)2L1λ2
1

227

and228

y∗2 =
a1h2(L1λ1(e1h2 − e2h1)− e2)(e1 + (e1h2 − e2h1)x2λ2)

(e2h1 − e1h2)2L1λ2
1

229

from Appendix A. For consumer densities for which y < y∗1, I set u
∗

2 = 0 and for y > y∗2,230

I set u∗2 = 1. Figure 3A shows dependence of the singular strategy on consumer density.231

It is proved in Appendix A that the singular strategy is not only evolutionarily stable232

but also convergence stable (Eshel, 1983; Eshel et al., 1997). This means that (1)233

the singular strategy is resistant to invasion of a small number of mutants that use a234

different strategy, and (2) it is also resistant to changes in the resident strategy (i. e.,235

when the resident strategy is slightly perturbed, it will return to the convergence stable236

singular point). Strategies that are evolutionarily and convergence stable are thought237

as the end point of evolution (Vincent and Brown, 2005; Dercole and Rinaldi, 2008).238

Now I will analyze the singular consumer strategy as a function of consumer density.239

If resource 1 carrying capacity is low so that240

L1 < x∗1 (16)241

(where x∗1 is given by (10)) consumers will include the alternative prey type in their242

diet (u∗2 = 1) at all consumer densities, because the critical thresholds y∗1 and y∗2 are243

negative. Because x∗1 is the critical threshold predicted by the optimal foraging theory,244

below which the alternative prey type is included in the consumers’ diet, the present245

model predicts that at low environmental carrying capacities for the preferred prey type246

consumers will behave as generalists. This is because at such low carrying capacities247

the density of the more profitable prey type can never be higher than is the switching248

threshold x∗1.249

When the carrying capacity of the preferred resource is higher than is the switching250

density (i. e., the inequality in (16) is reversed), u∗2 is a piecewise linear function of the251

consumer density y (Figure 3A). In this case at low consumer densities consumers will252

behave as specialists feeding on the more profitable resource type only. As the number253

of consumers increases resource 1 density will decrease and consumers will start to feed254

on the alternative resource as well, and their preferences for this resource will increase255

with consumer numbers. When at high numbers consumers will feed on the alternative256

food items upon each encounter. This shows that when the consumer fitness reflects257

frequency and density dependence given by the ecological feedback, partial preferences258

do arise in the diet choice model.259

Now I will consider consumer population dynamics. Consumer dynamics along the260

stable branch of the prey isocline are obtained by substituting expression for x1+ in the261

consumer equation in (11). This leads to the following consumer population growth262
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equation263

dy

dt
= ry

⎛
⎝1− K(u2)

1 +
√
1− c(u2)y

⎞
⎠ (17)264

where r = e1
h1

−m and K(u2) = 2 e1+(e1h2−e2h1)x2λ2u2

H(u2)(e1−h1m)
(Appendix B). Substituting for u2265

in model (17) the singular strategy (u∗2), describes consumer dynamics with optimal266

diet selection. For consumer densities for which the consumer singular strategy u∗2 is267

between 0 and 1, consumer population dynamics simplify to268

dy

dt
= y

e2 − h2m

h2

.269

Depending on the sign of e2 − h2m, consumer density either increases or decreases270

when partial preferences occur. Because the above equation has no non-trivial pop-271

ulation equilibrium it follows that no population equilibrium where consumers would272

show partial preferences for the alternative prey type exists. Consumer equilibria for273

consumer densities that are higher than y∗2 (i. e., when u∗2 = 1) or smaller than y∗1274

(i. e., when u∗2 = 0) are given by the interior equilibrium of (17) y∗ = K(u2)(2−K(u2))
c(u2)

275

where I substitute 0 or 1 for u2 (these are given explicitly in Appendix B). Figure276

3B shows one such trajectory of model (17) driven by the consumer singular strategy277

(solid lines). The corresponding resource 1 density is calculated from (13). Figure 3C278

shows the corresponding consumer singular strategy. These results predict that at low279

consumer densities where resource 1 density is near to its carrying capacity, consumers280

specialize on the more profitable resource type. As consumers increase in numbers, the281

preferred resource density decreases to the critical switching density (x∗1) predicted by282

the classical model of optimal foraging. From then on, consumer preferences for the283

alternative prey type start to increase, keeping the preferred resource density at the284

switching threshold for some time (i. e., times approx. between 5 and 14 in Figure 3B).285

Because e2−mh2 > 0 in Figure 3B, consumer density increases (it would decrease oth-286

erwise). Once the consumer preference reaches 1 (i. e., consumers attack the alternative287

resource upon each encounter), consumers and resources tend to a stable equilibrium.288

This general pattern of population dynamics is also clearly shown in Figure 3D where289

the trajectory from panel B is projected on the consumer isocline (the solid dot de-290

notes the population equilibrium). Thus, in the region of consumer densities where291

preferences for the less profitable resource type are between 0 and 1, consumers exhibit292

partial preferences. This is a new result because the classical diet choice model does293

not predict such a gradual shift in consumer preferences at the switching prey density294

(Stephens and Krebs, 1986). Trajectories of model (11) with the optimal consumer295

foraging strategy are shown in Figure 3B as dashed lines. It is clear that they converge296

to the same equilibrium as trajectories of the single species model. Using a completely297

different approach Křivan (1996) (see formula (32) there) calculated consumer strategy298

at the switching threshold x1 = x∗1 (i. e., when the classical diet choice model does not299

define consumer preference for the alternative prey type uniquely). It is an interesting300
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observation that the formula for partial preferences obtained there coincides with the301

singular strategy u∗2.302

4. Discussion303

In this article I have shown how to derive a frequency dependent fitness function304

from a frequency independent fitness function by using a time-scale argument. The time305

scale argument assumes that resource population dynamics run on a faster time scale306

when compared with consumer population dynamics. Having a frequency dependent307

fitness function allowed me to study optimal foraging strategies for multiple consumers308

and depletable resources. In particular I showed that partial preferences for alternative309

resources arise in the diet and patch models of optimal foraging.310

The diet and patch choice models are two paradigms of the optimal foraging theory311

(MacArthur and Pianka, 1966; Emlen, 1966). They assume that per capita energy312

intake rate is a proxy for consumer fitness that is maximized by adaptive consumer313

foraging behavior. The diet choice model assumes that two or more resources are evenly314

distributed in the environment and consumption of these resources does not influence315

their numbers. This assumption is clearly violated in most natural systems. To comply316

with these assumptions, e. g., conveyor belts that bring food directly to consumers were317

used in experiments (Krebs et al., 1977; Berec et al., 2003). So what is missing in the318

diet choice model is the link between consumer numbers and consumer strategy. This319

link defines an ecological feedback mechanism: consumer foraging strategy influences320

resource densities which, in turn, set the consumer strategy and density. To model this321

ecological feedback mechanism some authors considered population dynamics together322

with the optimal foraging models (e. g., Fryxell and Lundberg, 1994; Křivan, 1996;323

Fryxell and Lundberg, 1997; Křivan, 1997; Křivan and Schmitz, 2003; Ma et al., 2003).324

In these models it often happens that population dynamics tend to densities at which325

models of optimal foraging do not predict the optimal strategy uniquely. For example,326

in the patch model consumers will distribute between the two patches so that patch327

payoffs will equalize (Křivan, 1997). Under this situation there is no selection against328

mutants that can use any strategy, because individual fitness is independent of the329

strategy. Similarly, dynamical models of diet choice drive periodically density of the330

more profitable prey type to the threshold where optimal consumer diet is not uniquely331

predicted (Křivan, 1996). In fact, this non-uniqueness causes fundamental problems332

for the existence of solutions to these population models (Colombo and Křivan, 1993;333

Křivan, 1996).334

A simpler approach to study evolutionary stability is based on the concept of evo-335

lutionarily stable strategies (e. g., Maynard Smith and Price, 1973; Hofbauer and Sig-336

mund, 1998; Cressman, 2003; Vincent and Brown, 2005). However, to apply methods337

of static game theory, the fitness function must be frequency dependent, i. e., it must338

allow us to measure the effect of mutants on the resident strategy. In this article I339

derived two frequency dependent fitness functions for patch and diet choice models.340

These fitness functions are based on the assumption that resource population dynamics341
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run on a faster population time scale when compared with consumer population dy-342

namics. Using these fitness functions I derived the corresponding evolutionarily stable343

strategies for the patch and the diet choice model. In both cases the corresponding344

ESS predicts partial preferences for resources to occur. In the case of the patch model345

separation of the resource and consumer time scales leads to consumer population346

growth that is described by the logistic equation for which the evolutionarily stable347

strategies were studied (e. g., Křivan and Sirot, 2002; Morris, 2003; Cressman and348

Křivan, 2006). These works show that the evolutionarily stable strategy corresponds349

with the IFD (Fretwell and Lucas, 1969). Similarly, when time scaling is applied to the350

diet choice model the resulting consumer population growth equation seems to be new.351

Moreover, partial preferences arise for a range of consumer densities in both models.352

This is a new prediction because partial preferences were not predicted by the optimal353

foraging theory (Charnov, 1976). In fact, my present analysis clearly shows that at354

low consumer densities consumers should specialize on the more profitable prey/patch355

type only. However, as consumer density increases, consumers also start to utilize the356

alternative, less profitable prey/patch type with increasing strength. This prediction357

should be easily tested using appropriate data on consumer preferences.358

These predictions may have several consequences in population ecology. For exam-359

ple, if consumer preferences depend on consumer numbers, functional responses used360

in multiple species models should reflect this situation. Thus, they should depend not361

only on resource densities, but also on consumer densities (for a recent review of flexible362

foraging on the functional response see Abrams, 2010). Such a dependency could lead363

to a more mechanistic explanation of the effect of consumer density on the functional364

response.365
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Appendix A: Evolutionary stability of the diet choice model457

Fitness function (14) can be written as458

W (ũ2, u2) =
Aũ2 +B

Cũ2 +D
459

where460

A = 2e2h1x2λ2, B = 2h1e1L1λ1 − e1H(u2)(1−
√
1− c(u2)y),461

462

C = 2h1h2x2λ2, D = 2h1(1 + h1L1λ1)− h1H(u2)(1−
√
1− c(u2)y),463

464

c(u2) =
4h1L1λ

2
1

a1(1 + h1L1λ1 + h2x2u2λ2)2
, H(u2) = 1 + h1L1λ1 + h2x2u2λ2.465

First, I calculate the singular strategy and study its evolutionary stability. The gradient466

of the fitness function with respect to the mutant strategy467

∂W

∂ũ2
(ũ2, u2) =

AD − BC

(D + Cũ2)2
.468

At the singular strategy this gradient when evaluated at ũ2 = u2 must be zero, i. e.,469

AD −BC = 0. When I substitute expressions for A, B, C, D and after some simplifi-470

cation I obtain the following equation471 √√√√1− 4h1L1yλ
2
1

a1(1 + h1L1λ1 + h2u2x2λ2)2
= 1− 2h1((e1h2 − e2h1)L1λ1 − e2)

(e1h2 − e2h1)(1 + h1L1λ1 + h2u2x2λ2)
. (18)472

This equation posses a solution only provided the right hand side is between 0 and 1,473

i. e., when474

e2
λ1(e1h2 − e2h1)

< L1 <
e2h1 + e1h2 + h2(e1h2 − e2h1)u2x2λ2

h1(e1h2 − e2h1)λ1

.475

Solving equation (18) yields the singular strategy (15). Of course, u∗2 must be between476

0 and 1 which holds for consumer densities that satisfy y∗1 ≤ y ≤ y∗2 where477

y∗1 =
a1e1h2(L1λ1(e1h2 − e2h1)− e2)

(e2h1 − e1h2)2L1λ
2
1

478

and479

y∗2 =
a1h2(L1λ1(e1h2 − e2h1)− e2)(e1 + (e1h2 − e2h1)x2λ2)

(e2h1 − e1h2)2L1λ2
1

.480

If consumer density is too low (y < y∗1), consumers will feed on the more profitable481

prey type only while at high densities (y > y∗2) they will feed on the alternative prey482

type upon each encounter. In particular, the carrying capacity for the more profitable483

prey type must be high enough, i. e.,484

L1 >
e2

λ1(e1h2 − e2h1)
485
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for consumer partial preferences to arise. If the opposite inequality holds, fitness max-486

imizes at u2 = 1. I derived the singular strategy under the assumption that the right487

hand side of equation (18) is positive, because otherwise no singular solution exists.488

Substituting the singular strategy to the right hand side of (18) leads to expression489

(e2h1 − e1h2)
2L1yλ

2
1 − a1h1(e2 + e2h1L1λ1 − e1h2L1λ1)

2

(e2h1 − e1h2)2L1yλ2
1 + a1h1(e2 + e2h1L1λ1 − e1h2L1λ1)2

490

that is positive provided491

y >
a1h1(e2 + e2h1L1λ1 − e1h2L1λ1)

2

(e2h1 − e1h2)2L1λ2
1

. (19)492

This condition must hold together with other constraints for the singular strategy to493

be between 0 and 1.494

Because AD − BC = 0 at the singular strategy, W (ũ2, u
∗

2) is independent of the495

mutant strategy ũ2 and, after some calculations, W (ũ2, u
∗

2) = e2/h2 for all mutant496

strategies u2.497

To study evolutionary stability of the singular strategy I need to check the local498

stability condition (Hofbauer and Sigmund, 1998) that asserts that mutants cannot499

spread in the resident population. The local stability condition requires that500

W (u∗2, u2) > W (u2, u2) (20)501

for every u2 �= u∗2 in a neighborhood of the singular strategy u∗2. Let g(u2) = W (u∗2, u2)−502

W (u2, u2). Thus, g(u
∗

2) = 0 and with a help of some computer algebra package (e. g.,503

Mathematica) it is easy to show that provided inequality (19) holds, g′(u∗2) = 0 and504

g′′(u∗2) =
2a31h2x

2
2(e2 + (e2h1 − e1h2)L1λ1)

4λ2
2

(e1h2 − e2h1)L2
1y

2λ4
1((e2h1 − e1h2)2L1yλ2

1 − a1h1(e2 + (e2h1 − e1h2)L1λ1)2)
> 0.505

Thus, g(u2) > 0 in a neighborhood of the singular strategy (u2 �= u∗2) and the local506

ESS condition (20) holds.507

Second, I will prove that the singular strategy is also continuously stable. This508

follows from the fact (Eshel, 1983) that509

∂2W (u∗2, u
∗

2)

∂ũ2
2

+
∂2W (u∗2, u

∗

2)

∂ũ2∂u2

=510

511

a31h2x
2
2(e2 + e2h1L1λ1 − e1h2L1λ1)

4λ2
2

(e1h2 − e2h1)L2
1y

2λ4
1(−(e2h1 − e1h2)2L1yλ2

1 + a1h1(e2 + e2h1L1λ1 − e1h2L1λ1)2)
< 0512

for consumer densities that satisfy (19).513
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Appendix B: Derivation of model (17).514

Substituting x1+ given by (13) in the right hand side of the consumer population515

growth equation (11) leads to516

dy

dt
=

y(A+ (e1 − h1m)
√
−4h1L1yλ

2
1 + a1H2

h1(
√
a1H +

√
−4h1L1yλ

2
1 + a1H2)

517

where518

A =
√
a1(−e1 − h1m+ e1h1L1λ1 − h2

1L1mλ1 + (2e2h1 − h2(e1 + h1m))u2x2λ2),519

520

H = 1 + h1L1λ1 + h2x2u2λ2.521

Extending the above fraction by expression h1(
√
a1H −

√
−4h1L1yλ2

1 + a1H2) leads to522

dy

dt
=

(e1 − h1m)y

h1

+

√
a1(u2x2λ2(e2h1 − e1h2)− e1)(

√
a1H −

√
a1H2 − 4h1L1yλ

2
1)

2h2
1L1λ

2
1

523

524

=
(e1 − h1m)y

h1

− 2
√
a1y(e1 + u2x2λ2(e1h2 − e2h1))

h1(
√
a1H +

√
a1H2 − 4h1L1yλ

2
1)

525

526

=
(e1 − h1m)y

h1

⎛
⎝1− 2h1

√
a1(e1 + u2x2λ2(e1h2 − e2h1))

(e1 − h1m)h1
√
a1H(1 +

√
1− 4h1L1yλ2

1/(a1H
2))

⎞
⎠

527

528

= ry

(
1− K

1 +
√
1− cy

)
(21)529

where r = e1
h1

−m, K = 2 e1+u2λ2x2(e1h2−e2h1)
(e1−h1m)H

and c =
4h1L1λ

2

1

a1H2 . There exists a non-zero530

equilibrium of the single species consumer model (21)531

y∗ =
K(2−K)

c
=

a1(e1 + (e1h2 − e2h1)u2x2λ2)(L1(e1 − h1m)λ1 −m+ (e2 − h2m)u2x2λ2)

L1λ2
1(e1 − h1m)2

532

which is exactly the same as the interior consumer equilibrium of model (11). For y∗533

to be an equilibrium, it must be positive, i. e., 0 < K < 2. This condition is equivalent534

to535

h1 < e1/m, L1 >
m− (e2 − h2m)u2x2λ2

λ1(e1 −mh1)
.536

Equilibrium y∗ is asymptotically stable when the sign of the derivative of the right537

hand side of (21) evaluated at this equilibrium538

J =
d

dy

(
ry

(
1− K

1 +
√
1− cy

))
|y=y∗ =

r(K − 2)

2(K − 1)
539
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is negative, i. e., 1 < K < 2. I remark that condition 1 < K is equivalent to540

L1 <
e1 + h1m+ (−2e2h1 + h2(e1 + h1m))u2x2λ2

h1(e1 − h1m)λ1
541

which is the condition for the interior equilibrium of the resource–consumer model (11),542

to be stable. For larger values of the environmental carrying capacities the interior543

equilibrium is unstable and a stable limit cycle arises in the Rosenzweig-MacArthur544

model (11) (Hofbauer and Sigmund, 1998).545

The above analysis assumed fixed consumer preference for the alternative resource.546

Now I will study population dynamics (17) driven by the singular strategy. Substituting547

singular strategy (15) in population dynamics (17) I get548

dy

dt
= y

(e2 − h2m)

h2

549

for consumer densities satisfying y∗1 < y(t) < y∗2 and (19). For h2 < e2/m consumer550

densities increase, while for larger handling times they decrease. No nontrivial equilib-551

rium exists. If y ≥ y∗2 then u2 = 1 and population dynamics on the stable manifold are552

obtained by substituting u2 = 1 to (17). These population dynamics have equilibrium553

y1eq =
a1(e1 + (e1h2 − e2h1)x2λ2)(e1L1λ1 + e2x2λ2 −m(1 + h1L1λ1 + h2x2λ2))

L1(e1 − h1m)2λ2
1

.554

Similarly when y < y∗1, u2 = 0 and population dynamics on the stable manifold are555

obtained by substituting u2 = 0 to (17). These population dynamics have equilibrium556

y0eq =
a1e1(e1L1λ1 −m(1 + h1L1λ1))

L1(e1 − h1m)2λ2
1

.557
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Figures caption.558

Figure 1: Solutions of the patch model (3) (solid line) where consumers follow559

the optimal foraging strategy given by (2), and solutions of the single-species model560

(7)(dashed line). Resource densities for model (7) are given by xi = Li(1−y(t)λivi/ai)561

with the optimal strategy vi given by (6). The left panel (A,B,C) assumes that con-562

sumer demographic parameters (e1 = 0.015, e2 = 0.01, m1 = m2 = 0.02) are much563

smaller when compared to resource parameters. This discrepancy causes resource pop-564

ulation dynamics to run on a fast time scale when compared with consumer population565

dynamics. The right panel (D,E,F) assumes more similar time scales for both resource566

and consumer dynamics (e1 = 0.15, e2 = 0.1, m1 = m2 = 0.2). Other parameters used567

in simulations: L1 = L2 = 10, a1 = 1.5, a2 = 0.5, λ1 = λ2 = 1.568

Figure 2: Resource isocline of model (11). Only the solid part of the isocline is569

stable provided resource 1 population dynamics are fast when compared to consumer570

population dynamics. Arrows indicate direction of trajectories.571

Figure 3: Panel A shows consumer preference (15) for the alternative prey type in572

the diet choice model as a function of consumer density. Panel B compares a trajectory573

of the resource–consumer model (11) (dashed lines) where consumers follow predictions574

of the classical prey model (i. e., zero–one rule) with a trajectory of the reduced model575

(17) (solid lines). The corresponding trajectory for resources is given by (13). Panel C576

shows the corresponding consumer optimal strategy. Panel D shows the solid trajectory577

from panel B in the resource 1–consumer preference–consumer density phase space.578

Parameters: a1 = 1.2, h1 = h2 = 0.2, e1 = 0.2, e2 = 0.05, λ1 = λ2 = 0.5, x2 = 8,579

m = 0.2, L1 = 10.580
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