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Abstract 

How to design an “evolvable” artificial system capable to increase in complexity? 

Although Darwin’s theory of evolution by natural selection obviously offers a firm 

foundation, little hope of success seems to be expected from the explanatory adequacy of 

modern evolutionary theory, which does a good job at explaining what has already 

happened but remains practically helpless at predicting what will occur. However, the 

study of the major transitions in evolution clearly suggests that increases in complexity 

have occurred on those occasions when the conflicting interests between competing 

individuals were partly subjugated. This immediately raises the issue about “levels of 

selection” in evolutionary biology, and the idea that multi-level selection scenarios are 

required for complexity to emerge. After analyzing the dynamical behaviour of competing 

replicators within compartments, we show here that a proliferation of differentiated 

catalysts and/or improvement of catalytic efficiency of ribozymes can potentially evolve in 

properly designed artificial cells where the strong internal competition between the 

different species of replicators is somewhat prevented (i.e., by choosing them with equal 

probability). Experimental evolution in these systems will likely stand as beautiful 

examples of artificial adaptive systems, and will provide new insights to understand 

possible evolutionary paths to the evolution of metabolic complexity. 

 

Keywords: Artificial cells; Functional complexity; Monte Carlo methods; Qβ  replicase; 

Ribozymes; Stochastic corrector model. 
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1. Introduction 

 

At the turn of the 21st century we are witnessing an ambitious scientific program to 

synthesize artificial cells or protocells that capture the essentials to be considered “alive” 

(Szostak et al., 2001; Pohorille and Deamer, 2002; Deamer, 2005; Luisi, 2006; Luisi et al., 

2006; Mansy and Szostak, 2009; Rasmussen et al., 2009). This move immediately raises 

the question: what are the criteria for minimal life? From a bottom-up point of view a 

minimal living entity can be conceptualized as a chemical system comprising three 

subsystems: a metabolic network, template replication, and a boundary structure (Gánti, 

1971, 2003; Szathmáry et al., 2005). From a top-down perspective (“minimal cell” project; 

see Luisi 2007) the problem is more related to the question of what is the minimum level of 

complexity we can attain in actual living systems without losing crucial properties. In any 

case, we concur with Luisi et al. (2006) that such entities have to satisfy three basic 

requirements: self-maintenance, self-reproduction, and evolvability (i.e., the ability of a 

population of entities to generate diversity and experience Darwinian evolution). Implicit 

here is the notion that the three subsystems in Gánti’s (1971) chemoton concept can be 

combined to yield three different doublet infrabiological systems (Szathmáry et al., 2005). 

 One of the simplest constructs that (apparently) meets the criteria for minimal life is 

the so-called “RNA-cell”, a purely imaginary object containing in a vesicle two ribozymes: 

one with replicase activity, and the other catalyzing the synthesis of membrane components 

(Szostak et al., 2001; Luisi et al., 2006). Although this system is based on hypothetical 

ribozymes and, therefore, still poses formidable challenges associated with its eventual 

assembly, current technology allows some alternatives in the realm of infrabiological 

systems. For instance, artificial cells that allow for RNA replication −using the RNA-

directed RNA replication enzyme Qβ  replicase−  and vesicle division have already been 
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assembled (Oberholzer et al., 1995). These infrabiological systems are completely devoid 

of metabolism, but they are however capable of replication and mutation as required for 

Darwinian evolution, with a caveat: the enzyme and RNA molecules in Oberholzer’s et al. 

(1995) construct are not reproduced from inside and, therefore, will be eventually diluted 

and cause the “death” of the system (see Luisi, 2006, 2007). Assuming that this drawback 

can be overcome in some infrabiological systems, evolution experiments with populations 

of vesicles can in principle be done, but the question is: what could be achieved with these 

experiments?  

The answer is that nothing very exciting unless the functional complexity of RNAs 

entrapped in the vesicles is allowed to increase, and vesicle growth and reproduction are 

somewhat linked to that complexity (i.e., multi-level selection has to be imposed). The 

reason is simply because natural selection acting exclusively on individual replicators 

fosters the evolution of molecular parasites that are better targets for replication but do not 

contribute to the “common good” (see Scheuring, 2000; Szabó et al., 2002; Takeuchi and 

Hogeweg, 2007, 2009; Branciamore et al., 2009), as already illustrated by the classical 

studies of in vitro evolution of RNA molecules carried out by Spiegelman and his 

colleagues (Mills et al., 1967; Spiegelman, 1971). These authors isolated and purified the 

more than 4,000 nucleotides-long single-stranded Qβ  RNA that encodes a number of 

proteins, including Qβ  replicase. When this RNA was added to a solution containing Qβ  

replicase and energy-rich nucleotide triphosphates, new infectious RNA strands were 

synthesized. However, when they kept the RNA population in perpetual growth by using 

the technique of serial transfer, competition between RNA strains was just for resources 

and replication: the RNA molecules replicated, with errors, faster and faster. As a 

correlated response these RNAs evolved shorter sequences and lost their infectiousness. 

The two lessons to be learned from these experiments are (Bell, 1997): (i) that the rate of 
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self-replication is the only attribute that can be selected directly; and (ii) that in contrast to 

the in vitro experiments bacteriophage Qβ  cannot get rid of most of its genome in its 

natural state because it would be unable to infect bacteria.  

  An additional warning is that any successful technological construct that meets at 

least one of the first two requirements for minimal life has also to deal with the associated 

evolutionary hurdles. In other words, it is not enough for the hypothetical RNA-cell above 

to be capable of self-maintenance and self-reproduction; it also has to persist in the long 

run. For instance, real cells have an organized cell division and duplicate themselves with 

the same genetic content, but this is difficult to implement in artificial cells where 

duplication occurs through purely physico-chemical forces and the parental material is 

randomly transmitted to progeny. In this context, it might be rewarding to also consider the 

lessons learned from theoretical models that impose a spatial structure to a population of 

replicators by encapsulating them into vesicles (compartments, protocells). Niesert et al. 

(1981) were the first to propose a vesicle model, which was further elaborated by 

Szathmáry and Demeter (1987) who described the “stochastic corrector model” (SCM; see 

also Grey et al., 1995; Zintzaras et al., 2002). The initial stimulus behind vesicle models 

was to solve the conundrum of the evolutionarily dynamic coexistence of unlinked genes. 

The dynamical behaviour of the system depends on two types of stochasticity: (i) 

replication of templates within protocells, and (ii) random assortment of templates into 

offspring protocells. Even though templates compete within compartments, selection on 

stochastically produced offspring variants (between-protocell selection) can rescue the 

population from extinction, which reaches equilibrium with a constant frequency of the 

optimal protocell. Gene redundancy is necessary to avoid an unsupportive assortment load; 

that is, the drop in average fitness due to the random loss of any essential template after 

stochastic fission of templates in the two daughter protocells.  
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So far theoretical considerations have mainly stressed the sloppiness of vesicle 

models due to the complex balance among redundancy, assortment load, and mutation load 

(Santos et al. 2004; Fontanari et al. 2006), which causes protocells’ survival to dwell 

somewhere between two Homer’s monsters: Scylla and Charybdis (Niesert et al., 1981; see 

also Niesert, 1987). Under this scenario it is difficult to envisage that vesicle models could 

have any potential for evolutionary novelties besides the proper balance between the two 

levels of selection for just long-term persistence of the population. However, we show here 

that under some conditions novel evolutionary directions can emerge in artificial cells 

through the generation of functional diversification. In other words, these systems can be 

evolvable because there is the potential for acquiring novel functions through genetic 

changes.  

  The remainder of the paper is organized as follows. Firstly, we somewhat depart 

from previous static analyses that have neglected a continuous evolution of both replication 

rate and functional activity of the templates. Since any group selection in the form of 

vesicle growth and reproduction is likely antagonistic with the RNA replication rate, as 

illustrated by the Qβ  situation, a trade-off between replication rate and functional activity 

likely arises. Secondly, we show that the dynamical analysis of the interaction between the 

two levels of selection in the standard theoretical approach offers some insights on how 

functional diversification of templates could be eventually achieved in vesicle models. 

Thirdly, in order to leave open the possibility for artificial cells to increase in functional 

complexity we claim that a deviation from the standard kinetics of the SCM has to be 

realized somehow, and suggest ways to do that. These considerations allow us to conclude 

that a proliferation of differentiated catalysts and/or improvement of catalytic efficiency of 

ribozymes will be likely observed in evolution experiments with artificial cells, and will 

stand as a beautiful example of artificial adaptive systems.
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2.    A simple trade-off model of two-level selection 

 

We use here the basis behind the Monte Carlo implementation of the SCM prompted by 

Zintzaras et al. (2002) and Santos et al. (2004). Each vesicle is assumed to consist of two 

types of RNAs whose joint functions are essential for growth and eventual vesicle splitting. 

The enzyme Qβ  replicase is assumed to catalyze the replication of RNAs in a manner 

similar to Qβ  phage with tRNA-like 3’ genome tags (i.e., a recognition site for the 

replicase at the end of the template; see Schaffner et al., 1977). Therefore, the RNA 

templates ( 1T  and 2Τ , in multiple copies each) are organized as having a target region that 

defines an average affinity toward the replicase (i.e., whether they are good substrates for 

the replicase) plus a sequence of nucleotides involved in their function (enzyme 

efficiency). The problem now is to devise a set of rules that capture the essence of a two-

level process of selection, where selection acts directly on rates of replication and 

indirectly on enzyme efficiency and protocell grow, after imposing a trade-off between 

target affinity ( τ ) and enzyme efficiency ( ε ); see e.g., Könnyű et al. (2008). The trade-off 

function we chose was a typical concave relationship ( ) ( )1 1τ ε ε= − +  

( ) ( )1 1ε τ τ= − +⎡ ⎤⎣ ⎦ ; with 0 01  0 98. ε , τ .≤ ≤ . But we emphasize that the qualitative results 

presented here are robust for different trade-off functions ( ) ( )1 1 pτ ε ε= − +  

( ) ( )1 1 pε τ τ⎡ ⎤= − +⎣ ⎦ , with “realistic” values of p  ( 1 5p− ≤ ≤ ). 

Let us now consider a finite population of K vesicles enclosing 
iTn  copies of each 

template 1T  and 2Τ  at 0t . In each time step, a vesicle is randomly chosen according to its 

relative fitness for template replication. At the vesicle level, the fitness function we used 

was: 
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where C is a constant (set to 1) and the enzymatic efficiency of ribozyme  i involves 

enzyme concentrations and catalytic constants. Catalytic efficiency is an exponential 

function of the binding strength between the enzyme and the substrate of the catalyzed 

reaction (Kacser and Beebe, 1984). 

 However, as it stands the numerator in Eq. (1) “imposes” to write down in the 

algorithm that protocell fitness is set to zero if any 0
iTn = . Although this follows our 

rationale that the death of vesicles happens whenever they lack an essential template, it 

would seem more appropriate to avoid the ad hoc assumption by making this numerator 

more similar to C in Eq. (3). Below (section 3) we discuss our numerical results assuming 

different fitness functions at the vesicle level.  

Once a vesicle has been chosen, a random template is replicated according to its 

replication probability, which obviously depends on its target affinity towards the ( Qβ ) 

replicase (see below). If the number of templates in the vesicle is below twice the initial 

number at 0t , the step ends; that is, vesicle’s fitness is updated following Eq. (1), it is 

turned back to the population, and the next step starts by randomly chosen a vesicle 

according to its relative fitness. Otherwise, the vesicle splits and templates are randomly 

assorted into two daughter vesicles. One offspring replaces the parental vesicle and the 

other a randomly chosen one from the population. Our protocol is, therefore, based on the 

classical Moran process (Moran, 1958; Ewens, 1979). 

 A critical feature in our Monte Carlo method is template replication. Remember, we 

have two conflicting levels of selection. Within-vesicle selection always selects for high 

target affinities and, hence, poor enzyme efficiency because of the imposed trade-off. 

However, between-vesicle competition imposes a compromise between these two traits 

because the realized vesicle growth depends on both enzyme efficiency (increases vesicle 
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fitness) and target affinity (increases the number of templates and, hence, growth rate as 

defined in the simulation process). Replication of the parental template would introduce 

mutations affecting the enzyme efficiency of the copy largely independently of its target 

affinity. In the Qβ  RNA in vitro experiments infectiousness was lost mainly by the 

shortening of RNA strands to a sixth or so of the original size, but we can ignore here these 

specific details and simply assume an average reduction in the copy’s enzyme efficiency. 

Suppose the efficiency of the parental template (e.g., P
1T ) is Pε , from which we want to 

obtain the efficiency of the copy Cε
ι . The following function was conveniently used: 

 

( )( ) ( )
( )
max P P

C P
P

1 2   
 

Sgn δ ε ε Sgn δ δε
ε ε ,

k δε

⎡ ⎤+ −⎣ ⎦= +
+

ι    ( )4  

 

where δ  is the raw change in enzyme activity sampled from a normal distribution 

( )3 32 10 , 2 10δ δN μ σ− −= − × = ×  (i.e., random mutations are expected to be mostly 

detrimental), ( )Sgn δ  is the sign of δ  ( 1± ), and k  is a smoothness parameter. When 

0δ > , for any of Pε value the activity of the copy C Pε ε>ι . When 0δ < ,  C Pε ε<ι . To 

sum up, the average mutation slightly decreases enzyme activity but neutral or 

compensatory mutations are allowed, thus somewhat mimicking the effects of mutations 

on the enzymatic activity of real ribozymes (Kun et al., 2005). 

 Assume now that the target affinity towards the replicase for the same parental 

template P
1T  is Pτ , which can also mutate to Cτ

ι  in the copy. A similar function to Eq. (4) 

was used: 
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( )( ) ( )
( )
max P P

C P
P

1 2   
 

Sgn γ τ τ Sgn γ γτ
τ τ ,

k γτ

⎡ ⎤+ −⎣ ⎦= +
+

ι    ( )5  

 

where γ  is the raw change in target affinity now sampled from 

( )4 45 10 , 5 10γ γN μ σ− −= − × = × , and m ax 1τ =  is its maximum value.  

Once the pair of values C C, τ ει ι  were obtained, we defined a circle centred at 

C C, τ ει ι  in order to ensure that the final target affinity and enzyme efficiency of the copy 

C C, τ ε  remain in the permissible region imposed by the trade-off, and allowed a suitable 

shift ( )C Cτ τ r sin θ= +ι , ( )C Cε ε r cos θ= +ι ; with r  being the absolute value sampled from 

an ( )0  0 002N , .  distribution, and θ  a random angle in radians.  

 The simulation programs were implemented in the MATLAB algebra program 

environment (V7; MathWorks, 2005), and in Compaq Visual Fortran90 (2000) using the 

IMS library. 

 

3. Between-template competition (standard kinetics of the SCM) 

 

Before addressing the net consequences of the trade-off model, let us first discuss about the 

choice of raw changes introduced for enzyme activity (δ) and target affinity (γ) in Eqs. (4) 

and (5), respectively. Values 32 10δμ
−< − ×  and 45 10γμ

−< − ×  would easily result in a 

high input of deleterious mutations and, therefore, a substantial drop in average fitness that 

could threaten the eventual survival of the vesicle population. However, recall that here we 

are not interested in the issue of whether or not vesicle models can overcome the 

information crisis of prebiotic evolution because of the bottleneck imposed by the error-
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threshold (see Zintzaras et al., 2002; Stadler and Stadler, 2003; Santos et al., 2004; 

Silvestre and Fontanari, 2008), but in the evolutionary dynamics of artificial cells where 

templates are replicated by highly evolved enzymes as (e.g.) the Qβ  replicase. Since with 

this enzyme the mutation rate per base per replication would be 310μ −≈ (Drake, 1993), it 

could in principle be possible to encapsulate up to 100 different ribozymes of sequence 

length 70 nucleotides each (Kun et al., 2005). 

 Fig. 1 shows some representative runs for different number of copies of each 

template at 0t  ( 6  20
iTn ,= ) assuming 500K =  (qualitatively identical results are obtained 

for different population sizes). Target affinities and enzyme efficiencies for both templates 

{ }T1 T2
, , , τ ε τ ε  generally settle down in a similar region of the permissible space 

imposed by the trade-off, which apparently suggest that vesicle fitness is maximized when 

T1 T2
, , τ ε τ ε= . This is, however, not necessarily true and strongly depends on the 

redundancy levels of templates 1T  and 2T  (see Appendix). For instance, Fig. 2 plots two 

different scenarios: in the first case (Fig. 2a) 20
iTn =  for both 1T  and 2T , whereas in the 

second case (Fig. 2b) 
1

38Tn =  and 
2

2Tn = . With equal levels of redundancy vesicle growth 

is maximized, and mutational load (Haldane, 1937; Crow, 1970) is minimized when 

T1 T2
, , τ ε τ ε= . With unequal levels of redundancy, vesicle growth increases with higher 

target affinities of the most abundant template, but this causes a high mutational load 

which is, conversely, minimized with increasing levels of enzyme efficiency for the same 

template. Note also that the minimum mutational load with unequal levels of redundancy 

( 43.2 10−× ) is lower than that when 20
iTn =  for both 1T  and 2T  ( 46.6 10−× ), which remains 

true after correcting for the fitness of the parental cells. The same qualitative arguments 
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apply for different trade-off functions ( ) ( )1 1 pτ ε ε= − +  ( ) ( )1 1 pε τ τ⎡ ⎤= − +⎣ ⎦  with 

“realistic” values of p (see above). To summarize, Fig. 2 and the Appendix show that the 

actual net growth of the vesicle, which is obviously a function of the combined dynamics 

of metabolism and total template replication, is not maximized when 
T1 T2

, , τ ε τ ε= . 

However, deviation from an even concentration of both templates results in a higher 

assortment load and, hence, selection to maximize vesicle growth is opposed by selection 

at the vesicle level because it results in a higher probability of lineage extinction.  

 We now digress slightly about our fitness function in Eq. (1) and the “written” 

assumption that protocell fitness is set to zero if any 0
iTn = , that is, the death of vesicles 

happens whenever they lack an essential template. Simulations were also run by setting the 

numerator in Eq. (1) equal to 1 (see Eq. (3)), and by assuming a multiplicative fitness 

function 
T T1 1

,1 ,2
1 1

 
n n

i j
i j

w ε ε
= =

= ∗∑ ∑  . In both cases vesicle’s fitness is 0 if enzymatic efficiency 

is 0. Numerical results were qualitatively similar to those already reported, which clearly 

suggests that the way we choose vesicles (notice that Eq. (1) gives more weight to the 

rarest template type) seems to be less important than template competition for replication 

and eventual growth and division of vesicles. The reason for this can perhaps be better 

appreciated in Fig. 2b (left panel) where cell growth positively increases as a function of 

the target affinity of the more abundant template type. 

 Although the preceding analyses suggest that there is some room for divergence in 

templates’ target affinities and enzyme efficiencies, the question naturally arises: could it 

be possible for templates 1T  and 2Τ  to set apart into two different clusters according to 

target affinities ( τ ) and enzymatic efficiencies ( ε ) if the inherent strong internal 
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competition in vesicle models is somewhat alleviated to reduce the assortment load? If so, 

how could it be implemented when assembling artificial cells? 

 In principle, assortment load could be alleviated by assuming high levels of 

redundancy at 0t , and Fig. 3 shows a representative run with 100
iTn =  for both 1T  and 2Τ . 

Some differentiation is observed in template’s properties: in this particular example 

template 1T  has average values 1 10 3425, 0 4485τ . ε .= = , and template 2Τ  

2 20 3760, 0 3625τ . ε .= = , in the final population. The number of copies of 2Τ  per vesicle 

increased from 100 to a final average of 267.8 , and that of 1Τ  dropped to 10.5  but still 

enough to keep the assortment load small (i.e., the probability for a daughter vesicle of not 

receiving any copy of essential template 1Τ  is 310−Ρ ∼ ). But the problem with high levels 

of redundancy is that evolvability could be prevented because of the increased risk that 

Darwinian selection would be stopped because of dilution of favourable mutations in an 

“orgy of redundancy” (Koch, 1984). We show next that evolution experiments with 

artificial cells can potentially combine the best of both worlds: template differentiation and 

low assortment low while keeping redundancy at reasonably low levels for positive 

selection to happen. 

 

4. Within-template competition  

 

Let us imagine a way to prevent the strong internal competition in vesicle models. For 

instance, assume that during the replication process the Qβ  replicase first “chooses” at 

random between templates 1T  and 2Τ  with equal probability, and then replicates one of the 

iTn  copies according to its replication probability; that is, assume that strong internal 
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competition occurs only within the same template type. The outcome now is a qualitative 

change in the internal dynamics of standard vesicle models that results in the 

differentiation of templates 1T  and 2Τ  into two clusters in accordance with target affinities 

and enzymatic efficiencies, and this happens largely independent of initial levels of 

redundancy (as long as redundancy is not too low; say 3
iTn ≤  at 0t ). For instance, Fig. 4 

plots the combination of values where the final population of vesicles with initially 

6  20
iTn ,=  copies for each template stabilizes (c.f. with Fig. 1). In the particular case when 

6
iTn = , template 1T  has average values 1 10 1462, 0 4205τ . ε .= =  with 5.4 copies per 

vesicle, and template 2Τ  2 20 2998, 0 3507τ . ε .= =  with 10.9  copies. When 20
iTn =  the 

corresponding final figures are 1 10 2971, 0 4170τ . ε .= =  with 24.6 copies, and  

2 20 3898, 0 3696τ . ε .= =  with 32.2 copies. Note, however, that functional divergence 

seems less pronounced with high levels of redundancy (c.f. Figs. 1 and 4), which is 

probably due to the “cooperative” dynamics of template growth imposed by the “within-

template competition”. In other words, there seems to be a complex balance between cell 

growth, which selects for unequal templates’ concentration, and “cooperative” dynamics, 

which selects in the opposite direction and pushes 
T1

, τ ε  to become equal to 
T2

, τ ε  

because this maximizes cell growth if template concentrations are equal (Fig. 2 and 

Appendix).  

However, for all situations investigated, at some time in the evolution of the vesicle 

population we observed that templates 1T  and 2Τ  set apart into two different clusters 

according to target affinities and enzymatic efficiencies. This happens only when we 

impose a two-level selection (within-template within-vesicle selection, and between-

vesicle selection); otherwise both kinds of templates settle down at similar values (results 
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not shown). To sum up, assuming that there is a trade-off between target affinity and 

enzyme efficiency as suggested by the in vitro experiments with bacteriophage Qβ , 

substantial functional divergence between templates could be expected if the strong 

internal competition is somewhat alleviated (assuming initial redundancy is not too high). 

But the obvious question is: how is this achieved in practical terms? There are two 

potential answers to this question. The first is related to the basic growth dynamics of 

replicators. The second to the fact that the preceding analysis equates vesicle growth to 

copy number and ignores that RNA replication produces ( )+  and ( )−  strands, where one 

strand, say ( )+ , is the functional ribozyme and the ( )−  strand is the template (“gene”).  

In the field of prebiotic evolution non-conventional growth laws, such as hyperbolic 

and parabolic, have been widely discussed (von Kiedrowski, 1993; Szathmáry and 

Maynard Smith, 1997). Both represent departures from simple Malthusian growth: they are 

faster and slower than it, respectively. Parabolic growth was experimentally demonstrated 

to happen with small synthetic replicators (von Kiedrowski, 1986), and its consequences 

for selection in a competitive setting are remarkable: survival of everybody (Szathmáry 

and Gladkih, 1989). Inhibition of RNA synthesis by Qβ  replicase can occur, probably due 

to competition between ( )+  and ( )−  strands for the same enzyme molecules (Kondo and 

Weissmann, 1972). Thus, it is known that a fraction of ( )+  and ( )−  strands anneal to 

double-stranded form even in natural RNA replication today (Biebricher et al., 1984). This 

self-inhibition could lead to some coexistence, but in a very wasteful manner. A more 

interesting way of dynamical coexistence might be achieved by niche differentiation of the 

templates: obviously, if the two types of templates consisted of A:U  and G:C  pairs, 

respectively, they would not compete for the same nucleotides. Although ribozymes 

composed of one of these two pairs of nucleotides may be possible (see Reader and Joyce, 
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2002) this extreme case cannot hold generally. Realistic situations could nevertheless 

alleviate competition through niche differentiation within protocells. This suggestion 

warrants further analysis.  

There is some experimental support for the assumption that vesicles split when their 

template concentration reaches a given threshold (whatever that may be in real vesicles), as 

assumed in our model. Thus, Chen et al. (2004) have shown that membrane growth and 

eventual protocell division can be driven by the osmotic pressure exerted by replicating 

RNA molecules encapsulated in fatty acid vesicles, and suggested that faster replication 

would lead to faster vesicle growth and fitter protocells. However, from the standard 

kinetics of the SCM we already know that faster vesicle growth cannot always be easily 

equated to vesicle fitness (see Appendix). Experimental evolution studies using artificial 

cells would mostly rely on the enzymatic function of the ( )+  strands (assumed here to be 

the functional ribozyme) to assess vesicle fitness. Therefore, if cell division is determined 

by some metabolic product other than the total number of templates, then selection for 

better enzymes, as well as for a minimum concentration of coexisting enzymes whose 

collective catalysis reaches a given threshold criterion for selection, will be guaranteed and 

functional divergence between templates will be a likely outcome. The major evolutionary 

increases in complexity have occurred on those occasions when the conflicting interests 

between competing individuals were partly subjugated (Maynard Smith and Szathmáry, 

1995), and it is probably not far-fetched to think of the within-template competition 

scenario above as a suitable form of “cooperative” dynamics in actual vesicles. We 

therefore believe that some fascinating findings in evolution experiments with artificial 

cells are waiting for us in the coming years. 

 



 18

5. Concluding remarks 

 

Takeuchi and Hogeweg (2009) have recently studied the evolution of a RNA-replication 

system (consisting of a parasite and a replicase) where multi-level selection was 

incorporated by simulating either (i) spatial self-organization in two-dimensional 

aggregates that constraint diffusion; or (ii) explicit compartmentalization as assumed here. 

Parasites could switch between two conformational states: one increasing replication rate 

and the other decreasing replication rate and facilitating the vesicle growth. Interestingly, 

their model discovered an emergent trade-off for those conformational states due to the 

complex interaction between the two-levels of selection (within- and between-

compartments). Our present model is somewhat complementary in that we already 

assumed a trade-off between target affinity and enzyme efficiency (as illustrated by the in 

vitro experiments with bacteriophage Qβ ), and interactions between those properties arise. 

We therefore concur with Takeuchi and Hogeweg’s conclusion: the complex dynamics of 

vesicle models can indeed generate novel evolutionary directions and increase complexity 

in RNA replicator systems. 

We think our model can also be taken as a complementary solution for the 

evolution of functional diversification to that proposed by Kacser and Beeby (1984; see 

also Beeby and Kacser, 1990). These authors focused on the functional properties of 

catalytic proteins to advance a kinetic-based mechanism where an initial enzyme with 

broad substrate specificity leads to a collection of enzymes with differentiated specificities. 

However, their simulation experiments with protocell populations (Beeby and Kacser, 

1990) obviously ignored the potential of genetic conflicts simply because they did not deal 

with replicable information carriers, and the kinetics of vesicle growth was the only 

selection criterion. Nevertheless, complexification of protocell genomes, based on 
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duplication and divergence (cf. Maynard Smith and Szathmáry, 1995) and parasite taming 

(Könnyű et al., 2008) should be investigated in detail in the future. 

The criterion that vesicle division happens when a critical level of total template 

number has been reached apparently comes somewhat  close to “soft group selection”, also 

analyzed by Traulsen et al. (2005), where individual and group selection favour the same 

variants, since faster-growing templates yield earlier vesicle division (see our analysis in 

the Appendix). However, soft group selection does not prevail since protocells lacking one 

of the templates cannot grow at all. Also, the metabolic function renders template growth 

frequency-dependent, not considered by Traulsen et al. (2005). 

Inspired by the natural model of cellular compartmentalisation, Agresti et al. (2005) 

developed a system termed in vitro compartmentalization (IVC). IVC uses 

compartmentalization to link genotype (a nucleic acid that can be replicated) and 

phenotype (a functional trait such as a binding or catalytic activity). Instead of 

compartmentalizing genes in cells, as in nature, in IVC the genes are compartmentalised in 

aqueous microdroplets dispersed in a water-in-oil emulsion. ICV has certain limitations 

that can be overcome by making and manipulating droplets in digital microfluidic systems 

(Whitesides, 2006; Herold and Rasooly, 2009). We believe that droplet-based microfluidic 

“evolution machines” will constitute a powerful tool for quantitative studies on ribozyme 

evolution, and will enable us to test to what extent it is possible the proliferation of 

differentiated catalysts and/or to improve the catalytic efficiency of ribozymes. This will, 

in turn, help our understanding of how biochemical complexity could have arisen during 

the early steps in the origin of life. 
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Appendix 

 

Here we analyze the growth of protocells understood as the growth of total template 

concentration. We keep the volume of the vesicles fixed; this is an obvious simplification 

since volume would grow as a result of membrane growth in an autonomous protocell (cf. 

Gánti, 2003). Keeping cell volume fixed helps us to focus on concentrations directly.  

Fig. A1 depicts the efficiency of metabolism, essentially based on Eq. (2), with the 

modification that the number of the two templates is also taken into account. For the 

particular case 
1 2

10T Tn n= =  (equal template numbers) it is clear that as metabolic 

efficiencies 1Tε  and 2Tε  increase, total metabolism becomes maximal. With asymmetrical 

redundancies (
1

2Tn = , 
2

18Tn = ) the effect ( 2Tε ) of the more abundant template ensures 

steeper growth in metabolic efficiency (the case is symmetrical for the exchange of 

template indices). Note that these are the metabolic efficiencies on which both templates 

grow though cell fitness.  

 Now we look at the speed of total template growth. Fig. A2a shows the total growth 

of templates, where the template affinities are calculated from enzymatic efficiencies 

according to the trade-off function ( ) ( )1 1 pτ ε ε= − + , with 2p = . The region plot depicts 

those areas as a function of enzymatic efficiencies and redundancy (
1Tn  and 

2 1
20T Tn n= − ) 

where the growth rate of total template number is highest. It is clear that this total template 

growth favours some nasty parameter combinations For example, when there are few 

copies of template 1T  (
1Tn  is low), then total template growth is maximized when the 

template affinity of the other template is high (whereas that of the other template does not 

matter). This means that if a template has already grown to large redundancies, its growth 

will be further favoured by the seemingly within cell-level criterion of fast total template 
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growth, in turn favouring high replication rate and low metabolic efficiency for the 

abundant template. Thus one should expect spontaneous symmetry breaking, depending on 

which protocell lineage one follows (note the symmetry of Fig. A2a). Of course these plots 

should be combined multiplicatively with the internal metabolism of the protocell. Fig. 

A2b shows the combined plot for 
1

2Tn = . The total template growth is maximized for high 

and low template affinity (or for low and high enzymatic efficiency) for templates 2Τ  and 

1T , respectively. The conclusion that the “richer template gets richer” (Matthew effect) is 

maintained, i.e. selection would favour increased competitiveness of the template that is 

already abundant. As discussed in the main text, these plots do not take into account the 

fact that cells with only one template type are completely unviable. This is the only effect 

that prevents the spread of selfish templates in the end. At high redundancy this strong 

punishment is “not felt” by a large fraction of the compartment population, hence one 

expects some stochastic symmetry breaking in which, across the whole protocell 

population, one template type would grow better than the other. Indeed this is what we find 

(main text).   
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Legends for figures 

 

Figure 1. Sample simulations (upper panel 6
iTn = , lower panel 20

iTn = , at 0t ) showing 

the evolutionary dynamics of target affinities ( τ ) and enzymatic efficiencies ( ε ) for 

templates 1T  (black) and 2Τ (grey) assuming the standard between-template competition 

kinetics in the stochastic corrector model (SCM). The permissible region imposed by the 

trade-off function ( ) ( )1 1τ ε ε= − +  ( ) ( )1 1ε τ τ= − +⎡ ⎤⎣ ⎦  lies below the continuous 

0  1; 1  0τ , ε ,= =  curve. The trajectory lines plot the average values for all 500K =  

vesicles in the population through time, and the final clouds plot the distribution of values 

from all vesicles taken at the end of the simulations. The inset plots show the average 

fitness of the population. Time is given in arbitrary units: 1 unit time = ( )10 Copies K× ×  

time-steps. 

 

Figure 2. Cell growth and mutation load (dotted lines, right y-axis scale) as a function of 

target affinities and enzymatic efficiencies (continuous lines, left y-axis scale) of templates 

1T  (black) and 2Τ (grey). The x-axis stands for the corresponding combination of target 

affinities and enzymatic efficiencies values in both templates. For each template, target 

affinities and enzymatic efficiencies were chosen assuming the trade-off function 

( ) ( )1 1τ ε ε= − +  ( ) ( )1 1ε τ τ= − +⎡ ⎤⎣ ⎦ . (a) Equal redundancies 20
iTn =  for both 1T  and 

2T . (b) Unequal redundancies 
1

38Tn =  and 
2

2Tn = . From each combination of target 

affinity values cell growth was estimated by allowing an initial vesicle to replicate its 

templates according to replication probability (also allowing for mutations according to Eq. 

(5)) until they grew to twice the initial number, then the vesicle was assumed to reach the 
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final size and the event was counted as one successful growth. The process was repeated 

for 52.5 10×  time-steps and the cell growth calculated as the proportion of successful 

growths. Likewise, from each combination of enzymatic efficiency values each parental 

vesicle was assumed to give rise to one mutated (according to Eq. (4)) average offspring 

vesicle, and mutation load estimated as ( )0 1 0L w w w= − , where 0w  is the fitness of the 

parental vesicle and 1w  the fitness of its average offspring. 

 

Figure 3. Same as Fig. 1 with 100
iTn =  copies for both 1T  and 2T . The main point here is 

to illustrate that functional divergence can occur in the standard dynamics of the stochastic 

corrector model when initial redundancy is high because it is not strongly opposed by the 

resulting relatively small assortment load at equilibrium.  

 

Figure 4. Sample simulations (upper panel 6
iTn = , lower panel 20

iTn = , at 0t ) showing 

the evolutionary dynamics of target affinities and enzymatic efficiencies for templates 1T  

(black) and 2Τ (grey) assuming now that strong internal competition occurs only within 

each template type (see text for details). 

 

Figure A1. Metabolic vesicle efficiencies (according to Eq. (2)) with (a) equal, and (b) 

unequal levels of redundancy for 1T  and 2T . The direction of increase goes from deep 

purple to pale yellow. 

 

Figure A2. Total growth of templates 1T  and 2T . (a) At various template type 

redundancies (
1 2

20T Tn n+ = ), irrespective of the metabolic vesicle fitness. Red at the 
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boundaries indicates the smallest values (the threshold), increasing to blue (note the 

symmetry according to redundancy). (b) Slice of the upper plot (at the level 
1

2Tn = ) 

multiplied by metabolism: realized growth of templates is proportional to the whitish 

colouring. 
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