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Abstract. Thermal radiation sensors are based on two signal transduction stages: radiation to thermal and thermal to
electrical. The most common of these sensors are the radiation thermocouple using the Seebeck effect and the
bolometer applying the thermoresistive effect. While the bolometer requires a bias current for signal generation the
thermocouple is generally operated unbiased. The paper theoretically investigates a biased thermocouple instead,
which can be thought of as a combination of both thermal radiation sensor types. Its responsivity and detectivity is
calculated based on previous theories of the performance of bolometers and radiation thermocouples, respectively,
thereby including the Peltier effect. The electrical resistance and thermal conductance of the thermocouple as input
parameters for these calculations are modeled using a simple strip geometry to facilitate one-dimensional analytical
electrothermal modeling.

1. Introduction

Generally, a thermal sensor yields an electrical output signal with an input or intermediate signal of the
thermal type [1]. In a thermal radiation sensor, the input signal is the radiation power, which is
converted into heat by an absorber. Thus, it creates or changes a temperature gradient in a thermal
isolation structure, which constitutes the intermediate signal and is transduced into an electrical output
signal by a temperature (difference) sensor. Thermal radiation sensors are advantageous compared to
photonic detectors because of their broadband response over the infrared spectrum enabled by
appropriate volume absorbers and their uncooled operation due to the thermal sensor principle.
Moreover, in the far-infrared or Terahertz range, respectively, input signal reception by antenna-
coupling is an option for thermal radiation sensors. The most common thermal radiation sensors are
the radiation thermocouple (or thermopile terming a serial connection of thermocouples) and the
bolometer. The former uses the thermoelectric or Seebeck effect in a thermocouple to implement a
temperature difference sensor while the latter applies the thermoresistive effect, i.e. the temperature
dependence of an electric resistor, for temperature sensing. The thermometric transduction coefficient ζ
(unit of measurement V/K) indicates the efficiency of the transduction from the thermal to the electrical
domain by the temperature sensor. Considering the radiation thermocouple, which generates a
thermoelectric signal voltage from the temperature difference between the hot and the cold
thermocouple junctions, the transduction coefficient is equal to its Seebeck coefficient γ. In the case of
the bolometer, which, contrary to the thermocouple, needs a bias current causing a voltage drop UBO for
the generation of the signal voltage, the coefficient is given by the product ζ =αBOUBO. Here
αBO=(1/RBO)(dRBO/dT) is the temperature coefficient of the bolometer electrical resistance RBO.

The voltage responsivity SU of a thermal radiation sensor is given by SU=εζ/A (ε: absorptivity or
emissivity, respectively, A: thermal admittance of the thermal isolation structure). Consequently, each of
the two transduction stages of a thermal radiation sensor (radiation to thermal represented by ε and
thermal to electrical represented by ζ) should be as efficient as possible while its thermal isolation
structure should have the lowest possible admittance. An advantage of the bolometer compared to the
radiation thermocouple is the option to raise ζ and, consequently, its responsivity not only by improving
the corresponding material property but by increasing the bias current. On the contrary, a bias current
implies a more expensive circuitry and an additional source of noise, known as flicker 1/f noise.
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The purpose of this paper is to investigate theoretically a combination of both thermal radiation
sensor types by considering a biased thermocouple. The concept to improve the sensitivity of
thermocouples by adapting the principle of the bolometer was proposed as early as 1945 by Conn [2],
but pursued hardly ever up to the present. Conn coined the term thermocouple bolometer to designate a
biased radiation thermocouple operated like a bolometer. In the following, the responsivity and
detectivity of a thermocouple bolometer (TB) will be calculated based on the theories of the
performance of bolometers by Jones [3], Smith et al. [4] and Mather [5] and of radiation thermocouples
by Smith et al. [4] thereby including the Peltier effect. The electrical resistance and thermal conductance
of the TB, which are input parameters for these calculations, will be modeled using a simple strip
geometry to facilitate one-dimensional analytical electrothermal modeling. The modeling results will be
compared with a conventional resistance bolometer (RB) to assess if thermocouple bolometers can be
advantageous in appropriate modes of operation.

2. Power balance equation and bias current

The bias circuit of the thermocouple bolometer is shown in Fig. 1. The bias current I is positive if
flowing from p to n through the thermocouple p-n junction as presented in Fig. 1. It causes a
proportional Peltier heat flow

TITPP γ=)( , 0np ≥−= γγγ (1)

(γm with m=n, p is the absolute Seebeck coefficient of the m-strip). A negative Peltier heat flow caused
by a negative bias current flowing from n to p is related to Peltier cooling. To determine the power input
Π to the TB strip the Peltier heat flow has to be added to the Joule heating power P and the radiation
induced component W of the power input to the TB, Π=PP+P+W. Introducing the total non-radiation
induced (i.e., bias induced) heat load PT=PP+P generated in a TB strip yields Π=PT+W. The power
balance equation states that Π is equal to the sum of the power flow to the heat sink Pth and the power
stored into the thermal capacitance C of the TB strip:

dt

dT
CPth +=Π (2)

( t: time). In a small signal analysis, i.e. assuming T−TS=∆T<<T where T and TS denote the strip average
and the heat sink temperatures, respectively, the power flow to the heat sink is proportional to the
temperature difference with the thermal conductance G as the proportionality factor, Pth=G∆T, hence

T
dt

d
CTG ∆∆Π ⋅+⋅= . (3)

Using Fourier transforms Eq. (3) is transformed into the algebraic equation
)()()( ωΠω∆ωω∆ =⋅+⋅ TCiTG (4)

(ω: angular frequency) resulting in

)(

)(
)(

ω
ωΠω∆

A
T = . (5)

Here the definition of the complex thermal admittance

)1()( ωτωω iGCiGA +=+= ,
G

C=τ (6)

has been employed (τ: thermal time constant). In the DC limit equivalent to ω=0 the complex thermal
admittance reduces to the thermal conductance G=A(0)=A0 (as a convention, the index “0” will be used
throughout this paper to designate the DC value of a variable).

The temperature difference ∆T, cf. Eq. (5), causes a thermoelectric voltage
TUTE ∆γ ⋅= (7)

in the TB. UTE corresponds to a thermoelectric impedance ZTE=UTE/I and results in modifications of the
expressions concerning the resistance, the voltage drop and the Joule heating power of a TB compared
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with a RB as summarized in Table 1. Note that the addition of the thermoelectric impedance due to the
Peltier effect is the only modification of the bolometer resistance considered here, which means that
additional p-n junction contact effects are assumed to be negligible. While this approach is reasonable
for metals or semimetals as materials of the thermocouple, it generally cannot be applied to
semiconductors and does not, e.g., include the nonlinear rectifying contact phenomena inherent to a Si
p-n junction diode.

For the calculation of the bias current, we consider the limit of negligible radiation power, i.e.
∆T=PT/A. Now the thermoelectric voltage UTE=(PP+P)γ/A can be expressed in terms of the
thermocouple’s complex dynamic impedance ZD defined in [4],

P
A

IZU DTE

γ+= , 0
2

≥=
A

T
Z D

γ
. (8)

ZD can be employed to introduce the thermocouple effective resistance RTC by

DBOTC ZRR += . (9)

Using Eqs. (8) and (9) the TB resistance R=RBO+UTE/I is rewritten as

Y

R
R TC

−
=

1
, I

A
Y

γ= . (10)

The bias current can be calculated applying Kirchhoff’s loop rule to the bias circuit shown in Fig. 1.
Adding up the voltage drops U=UBO+UTE across the TB and UL=ZLI across the load impedance yields
UB= UBO+UTE+UL. With UBO=RBOI we get

LBO

TEB

ZR

UU
I

+
−

= . (11)

Again applying Eqs. (8) and (9) results in

LTC

B

ZR
A

P
U

I
+

−
=

γ

. (12)

In the further calculations the derivative dI/dT will be required. Differentiation of Eq. (12) yields the
equation (RTC+ZL)dI+I⋅dRTC=(−γ/A)dP assuming that dA is negligible. Using the definition of the
temperature coefficient of the thermocouple effective resistance,

dT

dR

R
TC

TC
TC

1=α , (13)

and the relation dP=AdT yields (RTC+ZL)dI+(IαTCRTC +γ)dT =0, hence,

LTC

TCTC

ZR

RI

dT

dI

+
+

−=
γα

. (14)

3. Responsivity of the thermocouple bolometer

The current responsivity is defined by

dW

dI
SI = (15)

while the voltage responsivity is given by

dW

dU
SU = . (16)

These responsivities are related by

L
I

U Z
dI

dU

S

S
−== . (17)

The derivative in Eq. (15) can be calculated by dI/dW=(dI/dT)(dT/dW) where dI/dT is given by Eq. (14)
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while dT/dW is obtained by differentiation of Eq. (5) and can be approximated by dT/dW=1/(A−dPT0/dT)
assuming again a negligible dA. The subtrahend in the bracket term corresponds to the feedback
thermal conductance

dT

dP
G T

F
0−= , (18)

which is used to introduce the effective thermal admittance Aeff=A+GF. Thus, the TB current
responsivity formula finally reads

)( LTCeff

TCTC
I ZRA

IR
S

+
+

−=
γα

. (19)

The TB voltage responsivity is calculated from Eq. (19) by means of Eq. (17). The effective thermal
admittance can be expressed analogously to Eq. (6), i.e.

)1()( effeffeffeff iGCiGA ωτωω +=+= (20)

where τeff=C/Geff denotes the effective thermal time constant and
)1( 0LGGGG Feff +=+= (21)

is the effective thermal conductance. L0=GF/G can be interpreted as a DC feedback gain. A negative
feedback enhancing the thermal conductance, thus reducing responsivity and time constant, is associated
with L0>0. Eq. (19) can be rewritten by means of Eqs. (20) and (21). The TB current responsivity then
reads

)1)()(1( 0 effLTC

TCTC
I iZRLG

IR
S

ωτ
γα

+++
+

−= ,
01 Leff +

= ττ . (22)

The detailed calculation of L0 is given in the Appendix A. Its result is









+

−−
+
+

−=+=
LTC

TCTC
TEF

LTC

LBO
ETFTEFETF RR

TR

RR

RR
LLL

0

00

0
0 1

αΛβΛ (23)

where LETF and LTEF denote the electrothermal and the thermoelectric components, respectively, of the
DC feedback gain while ΛETF and ΛTEF are abbreviations, i.e. ΛETF=αTC0RTC0I0

2/G=(αTC0RTC0I0)⋅(I0/G) and
ΛTEF=γ⋅(I0 /G)=Y0. Furthermore, RL=ZL0 and β represents the expression

0
2

0

00

)1(

)1(

TCL

TCL

RYR

RYR

+−
−−

=β . (24)

If RL→∞, i.e. in the constant current mode of operation, then LETF= −ΛETF and LTEF= −ΛTEF. The DC
value of the thermocouple effective resistance, cf. Eq. (9), is given by RTC0=RBO+RD where RD=ZD0 is
its DC dynamic resistance. Introducing the dimensionless figure of merit of a thermocouple

GR

T

R

R
M

BOBO

D
TC

2γ== (25)

RTC0 can be rewritten as
)1(0 TCBOTC MRR += . (26)

The DC value of the TB current responsivity SI0 is obtained from Eq. (22) to be

rG

IR
S TCTC

I ⋅
+

−=
γα 000

0 , ))(1( 00 LTC RRLr ++= . (27)

Using the above definitions of ΛETF and ΛTEF and Eq. (23) we get

( )[ ])( 00000
0 TRRRRRRRI

S
TCTCLTCTEFLBOETFLTC

TEFETF
I αΛβΛ

ΛΛ
−+−+−+

+
−= (28)

from Eq. (27). If RL→0, i.e. in the constant voltage mode of operation, and for small γ and αTC0, i.e. if
Y0(γ)<<1, RD<<RBO equivalent to MTC(γ)<<1 as well as αTC0T<<1, then Eq. (28) simplifies to
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)1(1

)1(1

00
0 X

X

RI
S

ETF

ETF

TC
I −+

+
−=

Λ
Λ

,
ETF

TEFX
Λ
Λ= , (29)

which corresponds to the DC part of a related equation given by Kaila and Russell [6].
Let us now consider two limiting cases of Eq. (28) in their consequences regarding the DC

voltage responsivity of the TB, which is calculated by the relation SU0= −RLSI0 from Eq. (28). The first
one is the case of the conventional RB associated with γ=0 while the second one is the case of the
unbiased thermocouple associated with I=0. In the first limiting case we get

)1(0
0 βΛ

Λ
−

=
I

B
SU ,

BOL

L

RR

R
B

+
= ,

BOL

BOL

RR

RR

+
−

=β (30)

where Λ=αBOPBO/G is the bolometer DC electrothermal feedback gain in the constant voltage mode and
B denotes the bridge factor. Eq. (30) corresponds to the results of the theory of the bolometer by Smith
et al. (cf. §3.3.1 in [4]). For RL→∞ B=β=1 is obtained and, thus, SU0=(1/I0)⋅Λ/(1−Λ), which complies
with the results of de Nivelle et al (cf. Eq. (4) in [7]). In the second limiting case

LDBO

L
U RRR

R

G
S

++
= γ

0 (31)

is obtained. For RL→∞ Eq. (31) is simplified to the known formula of the open circuit DC thermocouple
voltage responsivity SU0=γ/G (cf. §3.2.2 in [4]).

4. Detectivity of the thermocouple bolometer

The specific detectivity of a radiation sensor (referred to as detectivity for brevity throughout this paper)
is defined by

NEP

F
D ε=* (32)

where F is its receiver area and NEP denotes the noise equivalent power per square root bandwidth
(NEP), which gives cmHz1/2/W as the measuring unit of D*. Note that the optical NEP is given by
NEP/ε , which means that, with respect to NEP, the ideal case ε=1 is assumed. Three main noise
components are considered in bolometers: temperature fluctuation noise (also termed phonon or
thermal noise) represented by NEPT, Johnson noise (NEPJ) and 1/f noise (NEPF). For the total NEP
the relation

2222
FJT NEPNEPNEPNEP ++= (33)

holds true if the noise contributions are independent. The components are given by

GTkNEP BT
22 4= , (34)

2
2 1

4
Λ
ωτi

TPkNEP BOBJ

+= , (35)

2
22 12

Λ
ωτ

ω
π i

PcNEP BOFF

+= (36)

[5, 7] where kB denotes Boltzmann’s constant, cF=ηH /(ncVR), ηH is the Hooge parameter [8], nc the
charge carrier density and VR the volume of the resistor. A correction factor due to the temperature
dependence of the thermal conductance as introduced by Mather in the expression of the phonon
noise [5] is not taken into account, i.e. set to unity, in Eq. (34), which is justified for small
temperature gradients. Dividing Eq. (35) by Eq. (34) we get (NEPJ/NEPT)

2=(1+ω2τ2)/MBO for the
bolometer where

GR

TU
TM

BO

BOBO
BOBO

2)(ααΛ == . (37)
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For the thermocouple, on the other hand, (NEPJ/ NEPT)
2=(1+ω2τ2)/MTC with MTC given by Eq. (25) is

valid (cf. §7.1 in [4]). Thus, analogously to the dimensionless figure of merit of a thermocouple, MBO

can be considered as the dimensionless figure of merit of a RB. On the other hand, Eq. (36) divided by
Eq. (35) gives

22
JF NEP

s
NEP

ω
= ,

Tk

Pc
s

B

BOF

2

π= . (38)

Concerning the TB, Eq. (34) applies likewise. Eq. (38) is also assumed to remain valid. The
bolometer DC electrothermal feedback gain Λ=αBOPBO/G can be expressed as Λ=−I0SI0r by applying
Eq. (27) to a RB (i.e. at γ=0). Using this relation for the substitution of |Λ| in Eq. (35) results in
NEPJ

2=4kBTRBO(1+ω2τ2)/(SI0r)2. As an approximation this expression of the Johnson NEP deduced for
RB will be also applied to TB employing SI0r=−(αTC0RTC0I0+γ)/G valid for a TB (cf. Eq. (27)) rather
than SI0⋅r=−αBOUBO/G valid for a RB. Within this approximation, the Johnson noise component of the
TB can finally be expressed by

)1(
)(

4 22
2

000

2
2 τω

γα
+

+
=

IR

GTRk
NEP

TCTC

BOB
J . (39)

Dividing Eq. (39) by Eq. (34) results in

2
22

2 1
TJ NEP

M
NEP

τω+= (40)

where

GR

TIR
M

BO

TCTC
2

000 )( γα +
= (41)

is the dimensionless figure of merit of a TB. Concerning the limiting cases Eq. (41) reduces to M=MBO if
γ=0 and M=MTC if I=0, respectively. Starting from Eq. (33) and applying Eqs. (34), (38) and (40) the
total NEP of a TB can be written as







 +++=

ω
τω s

M
NEPNEP T 1

1
1

22

(42)

with M given by Eq. (41). By calculating the derivative of the total NEP with respect to ω from
Eq. (42) the optimum angular frequency ωopt yielding the minimum NEP or the maximum detectivity,
respectively, can be deduced from the cubic equation 2ωopt

3+sωopt
2−s /τ2=0. Cardano’s formula yields

6
3 323 32 s

pqqpqqopt −+−−+++−=ω ,
2

3

4216 τ
ss

q −= ,
36

2s
p −= . (43)

If the 1/f noise is negligible, i.e. s→0, then the DC operation (ωopt=0) gives the highest detectivity, as
expected. Using Eqs. (32), (34) and (42) the detectivity of a TB finally reads















 +++

=

ω
τω

ε
s

M
Gk

F

T
D

B 1
1

1
2

*
22

. (44)

From Eq. (44) it is obvious that the electrical resistance RBO as well as the thermal conductance G and
capacitance C have to be evaluated for the calculation of D*, which will be done in the next section.

5. Electrical resistance, thermal conductance and thermal capacitance calculation

To facilitate analytical modeling calculations a simple geometry is chosen essentially made up of a free-
standing substrate strip stretching over an thermally insulating rectangular cavity and supporting the
thermocouple n- and p-layers, cf. Fig. 2. The receiver area for this geometry is F=wL. The cavity edge is
assumed to be at heat sink temperature TS. The resistivity of the thermocouple layers ρm (m=n, p)
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depends on the strip’s average temperature T. Using ∆T=T−TS instead of T we have
( )TT mSmm ∆αρ∆ρ += 1)( (45)

where ρSm is the m-layer resistivity at heat sink temperature and αm denotes its respective temperature
coefficient. The respective m-layer electrical resistance is given by

m

m
mm wd

l
TTR )()( ∆ρ∆ = (46)

where ln=l , lp=L−l and dm is the m-layer thickness. Since RBO(∆T)=Rn(∆T)+Rp(∆T), we find using
Eqs. (45) and (46)

( )T
d

l

d

l

w
TR

p

Spp

n

Snn
BO ∆α

ρρ∆ +









+= 1

1
)( ,

SpSn

pSpnSn

RR

RR

+
+

=
αα

α (47)

where RSm=Rm(0). The temperature coefficient of the resistance RBO, given by αBO=(1/RBO)dRBO/dT,
yields αBO(∆T)=α/(1+α∆T) from Eq. (47), hence α=αBO(0).

As to the thermal conductance of the TB strip one has to consider two components, which are
the thermal conductance due to the strip in-plane thermal conductivity GLm and the thermal surface
conductance GMm (m=n,p again refers to the m-strip). They are calculated by [9]

( )ssmm
m

Lm dd
l

w
G κκ += (48)

where κm and κs are the m-layer and the substrate thermal conductivities, respectively, and ds is the
substrate thickness and

])()(4[)( 3TThwlTG SSBsmmMm ∆σεε∆ +++= . (49)

The first term in the square bracket of Eq. (49) represents the conductive or convective heat transfer
quantified by the heat transfer coefficient h to the ambient while the second term represents the
radiative heat transfer where εm and εs are the m-layer and the substrate absorptivities and σSB is the
Stefan-Boltzmann constant. The thermal conductance is proportional to the sum of these components,

)]()([)( TGTGGGTG MpMnLpLn ∆∆ξ∆ +++⋅= . (50)

Here ξ is a bolometric correction factor. Its detailed calculation is explained in the Appendix B.
Eqs. (47) and (50) express the electrical resistance and the thermal conductance, respectively, as

a function of ∆T, which is in turn a function of the bias voltage UB. In the limit of negligible W

)(

)(0

TG

U,TP
T BT

∆
∆∆ = (51)

is found from Eq. (5) at ω=0. Eq. (51) has to be solved self-consistently to determine ∆T= ∆T(UB). In
this equation the DC value PT0 of the total non-radiation induced heat load is given by

)()]([)()()( 0000 BBLBBSBT U,TIU,TIRUU,TITTU,TP ∆∆∆∆γ∆ −++⋅= (52)

where

LBO

B
B RTR

TU
UTI

+
−

=
)(

),(0 ∆
∆γ∆ (53)

in accordance with Eq. (11). Finally, the thermal capacitance is calculated by

sVspVpnVn VcVcVcC ++= (54)

where cVm and cVs are the m-layer and the substrate volumetric heat capacities and Vm=lmwdm and
Vs=Lwds are the respective volumes.

6. Modeling results and discussion

Bismuth (n-type) and antimony (p-type) have been shown to be a well-suited thermoelectric materials
combination for high detectivity thin film radiation thermopiles [10]. Suitable alloying with Sb increases
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the absolute Seebeck coefficient of thin Bi films by up to about 50%, with the optimum at x=0.13 for a
Bi1-xSbx film [11]. On this basis, n-Bi0.87Sb0.13 and p-Sb thin films are chosen here as thermocouple legs
for the TB to be modeled as an example. The junction of the BiSb/Sb thermocouple formed by these
films is assumed to have an ohmic contact with a negligible contact resistance. The parameters used for
the calculation of its responsivity and detectivity are listed in Table 2. For comparison a Bi0.87Sb0.13 thin
film RB will be modeled, whose parameters are identical to the greatest extend with those of the related
TB. Only the p-indexed parameter values of the TB labeled with an asterisk in Table 2 have to be
replaced by their respective n-indexed values to switch from the TB to the related RB. Both the TB and
the RB have a micro-bridge structure with a length of 30 µm and a width of 1.5 µm. Moreover, a high
load resistance RL=100RBO(0) in the bias circuit is chosen in both cases. The order of magnitude of the
Hooge parameter was estimated from measurements of the noise power spectrum of thin Bi films
(L=120 µm, w=10 µm, d=0.1 µm) made by Voss and Clarke [12].

An overview of the modeling results in the special case of an unbiased TB/RB (I0=0) is given
in Table 3. The results in the general case (I0≠0) are shown in Figs. 3 to 9. The dependence of the
average temperature difference on the DC bias current deduced from Eq. (51) to (53) is presented in
Fig. 3. I0 was limited in both directions so that the resulting average temperature difference did not
exceed ∆Tmax=20 K. Contrary to the RB the curve referring to the TB is not symmetric with respect to
I0=0 due to the Peltier effect. This effect also causes the cooling at negative values of I0, cf. Eq. (1),
where Peltier cooling competes with Joule heating, thus leading to a minimum ∆Tmin=−0.95 K at
I0=−0.1 mA.

For comparison of the bias-dependent properties of different bolometers, e.g., a TB with a RB
or of bolometers of different size and resistance, it is advisable to refer to bias-induced average
temperature differences as done in Figs. 4 to 9. Fig. 4 showing the absolute value of the DC voltage
responsivity illustrates the different bias-induced behavior of the TB compared with the RB. As a
matter of course, the RB has a vanishing responsivity at zero bias (∆T=0), whereas the responsivity of
the TB vanishes at ∆T=6.8 K corresponding to a bias current of about +0.18 mA. The bias current Iv

related to a vanishing DC responsivity is calculated from Eq. (27) to be Iv=−γ/(αTC0RTC0). Since γ as
well as RTC0 are always positive a negative αTC0 results in a positive bias current Iv flowing from p to n
through the thermocouple p-n junction. From Eq. (27) it can also be deduced that a biased TB will
exhibit an improved responsivity compared to an unbiased TB if the current has the same sign as the
temperature coefficient αTC0. In the modeled example a negative bias current is necessary in this case,
corresponding to the upper branch of the TB curve in Fig. 4 running from | SU0|=63 V/W at ∆T=0, cf.
Table 3, to | SU0|=96 V/W at ∆Tmin to | SU0|=234 V/W at ∆T=20 K. 

The bias-dependent behavior of the detectivity D* calculated from Eq. (44) is presented at two
different values of the angular frequency, 1 rad/s (low frequency mode) and ωopt (high frequency mode),
in Figs. 5 to 6 where the optimum angular frequency calculated from Eq. (43) is also bias-dependent as
shown in Fig. 7. A value of 2980 rad/s is found for the optimum angular frequency at ∆Tmin=−0.95 K
corresponding to D*=3.0×107 cmHz1/2/W while ωopt=8990 rad/s at ∆Tmax=20 K corresponding to
D*=7.1×107 cmHz1/2/W. The shape of the D* curves is determined by the interplay described by
Eq. (33) between the three NEP components NEPT, cf. Eq. (34), NEPJ, cf. Eq. (40), and NEPF, cf.
Eq. (38). These components and the resulting total NEP of the TB are presented at the above-mentioned
angular frequencies in Figs. 8 and 9. From these figures it can be stated with regard to the modeled TB
that the temperature fluctuation noise (NEPT) can be neglected at all frequencies including the optimum
case depicted in Fig. 9. It is rather the Johnson noise (NEPJ) that is prevailing at ωopt. A decrease of the
angular frequency, however, brings the 1/f noise (NEPF) more and more into play, which is finally
dominating the overall NEP, cf. Fig. 8, with the exception of the interval representing a bias current
close to zero where NEPJ is still dominant. Table 4 summarizes the results as to an advantageous TB
operation extracted from the modeling results. The lowest NEP value concerning the biased BiSb/Sb
thermocouple considered here is 9.5 pW/Hz1/2 at optimum angular frequency and bias ∆Tmax=20 K (cf.
Fig. 9). This compares with the measured value of 13.1 pW/Hz1/2 of an unbiased NiFe/Cr air-bridge
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thermocouple of a similar strip geometry (L=75 µm, w=1 µm) recently published by Cox et al. [13]. As
a theoretical lower bound, a background limited (BLIP) thermal sensor with a receiver area of 75 (µm)²
would show a NEP of 0.048 pW/Hz1/2 at 300 K.

Let us now compare the TB with the RB regarding the bias-dependent detectivity as illustrated
in Figs. 5 and 6. In the low frequency range, cf. Fig. 5, it is obviously advantageous to operate the TB
unbiased to avoid 1/f noise. Here the detectivity of the TB (2.33×107 cmHz1/2/W, cf. Table 3) is one
order of magnitude greater than the detectivity of the corresponding RB even at the maximum bias
∆Tmax=20 K. Any biasing of the TB would decrease the detectivity at low frequencies. However, at
optimum frequency, cf. Fig. 6, biasing by a negative current increases the detectivity of the TB, namely
by a factor of 3 at ∆Tmax=20 K. Here the detectivity of the RB is slightly higher compared with the TB
only at ∆T>16.9 K.

7. Conclusion

Depending on the operational frequency, the thermocouple bolometer essentially being a biased
radiation thermocouple can be advantageously operated in two basic operating modes to optimally
control the influence of 1/f noise. In the low frequency mode it is operated unbiased to suppress 1/f noise
dominating in this frequency range. In the high frequency mode where 1/f noise is exceeded by Johnson
noise it is operated using a bias current of the same sign as its temperature coefficient of resistance αTC0,
thus improving considerably its detectivity in comparison to the unbiased operation. In this way of
operation, the thermocouple bolometer combines the known advantage of a radiation thermocouple over
a resistance bolometer, namely its unbiased and, hence, 1/f noise-free operation, with the resistance
bolometer characteristic to increase its responsivity and detectivity by raising the bias current. In the
example considered here, a detectivity improvement by a factor of 3 was calculated in the high
frequency mode at a bias-induced temperature difference of 20 K, but there is potential for further
improvements by choosing appropriate thermocouple materials with large temperature coefficients of
resistance in addition to a high thermoelectric figure of merit.

Appendix A

The derivative in Eq. (18) for the calculation of feedback thermal conductance GF can be rewritten as
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derived from the DC part of Eq. (12) assuming that dG is negligible, Eq. (A.2) is rewritten as
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Here RL=ZL0 is the load resistance. From P0= R0I0
2 follows
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The relation between RTC0 and R0 is
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0
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with Y0=γI0/G obtained from Eq. (10) at ω=0. Assuming again that dG is negligible differentiation of
Eq. (A.6) yields
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Using Eqs. (A.6) and (A.7) to transform Eq. (A.5) dP0/dRTC0 is found to be
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Again using Eq. (A.3) to rewrite Eq. (A.8) finally yields
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Now the DC feedback gain L0=GF/G=−(1/G)⋅dPT0/dT can be calculated from Eqs. (A.1), (A.4) and (A.9)
resulting in
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which is rewritten to form Eq. (23).

Appendix B

The bolometric correction factor ξ is calculated as the zero bias limit (UB =0) of the bias-dependent
correction factor ξU(UB) by considering a RB, i.e. γ=0, and additionally excluding irradiation, i.e. W=0.
In this case the thermal conductance G can be expressed by PBO/∆T. Applying this relation and solving
Eq. (50) for ξU(UB) we get
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and finally the bolometric correction factor
)0(Uξξ = . (B.3)

Hence, ∆T(UB) has to be calculated to determine ξ, which can be accomplished by modeling the
stationary temperature distribution in the bolometer strip based on the geometry shown in Fig. 2. For
this purpose the one-dimensional heat transport equation
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has to be solved [9]. Here δTm(x) is the deviation of temperature distribution along the strip from the
heat sink temperature, νm

2 is the thermal conductance ratio
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and
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Applying the boundary conditions δTm(0)=0 and δTm(lm)=θ the solution is [9]
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where θ denotes the temperature difference between the hot junction and the heat sink. θ can be
determined by the condition of heat flow continuity at x=l, which reads

0),( =∑
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The result is
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Eq. (B.7) with θ substituted by Eq. (B.9) shows that δTm=δTm(x, ∆T(UB),UB) where the dependence on
∆T(UB) and UB arises from the quantities given by Eqs. (B.5) and (B.6). Finally, by integration over the
spatial coordinate x, the mean temperature difference of the bolometer strip to the heat sink ∆T is
calculated to be
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This integral equation has to be solved self-consistently for ∆T(UB). Then, with the result inserted in
Eqs. (B.1) and (B.2), the bolometric correction factor can be calculated using Eq. (B.3).
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Captions

Table 1. Formulae of the resistance, the voltage drop and Joule heating power of a TB compared with
a RB.

Table 2. Parameters used for modeling the responsivity and detectivity of a Bi0.87Sb0.13/Sb thin film
TB and a Bi0.87Sb0.13 thin film RB, respectively. The p-indexed parameter values labeled with an
asterisk (*) have to be replaced by their respective n-indexed values for the RB modeling.

Table 3. Overview of modeling results at zero bias.

Table 4. TB operating modes and biasing recommendations.

Figure 1. TB bias circuit. UB: bias voltage, I: bias current, R: TB resistance, UTE: thermocouple
thermoelectric e.m.f., RBO: bolometer electrical resistance, ZL: load impedance.

Figure 2. TB strip geometry. w: strip width, L: total length of the free-standing strip, l: n-strip length.

Figure 3. Bias-induced average temperature difference ∆T vs. DC bias current I0 (TB: full curve, RB:
dashed curve).

Figure 4. Absolute value of the DC voltage responsivity SU0 vs. bias-induced average temperature
difference ∆T (TB: full curve, RB: dashed curve).

Figure 5. Detectivity D* at an angular frequency of 1 rad/s vs. bias-induced average temperature
difference ∆T (TB: full curve, RB: dashed curve).

Figure 6. Detectivity D* at optimum angular frequency vs. bias-induced average temperature
difference ∆T (TB: full curve, RB: dashed curve).

Figure 7. Optimum angular frequency ωopt vs. bias-induced average temperature difference ∆T (TB:
full curve, RB: dashed curve).

Figure 8. NEP and its components of the TB at an angular frequency of 1 rad/s vs. bias-induced
average temperature difference ∆T .

Figure 9. NEP and its components of the TB at optimum angular frequency vs. bias-induced average
temperature difference ∆T .
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Table 1

Quantity RB TB

resistance RBO R = RBO+ZTE = RBO+UTE/I
voltage drop UBO = RBOI U = RI = UBO+UTE

Joule heating power PBO = UBOI P = UI = PBO+UTEI

Table 2

Parameter index: n index: p index: s

γ (µV/K) −100 [11] +35* [14] -
ρS (µΩm) 7 [11] 1* [14] -

α (%/K) −0.45 [11] +0.18* [14] -
κ (W/(m⋅K)) 3 [15] 13* [14] 1

ε 1 1 1
cV (106 Ws/(m3⋅K)) 1.7 1.7 1.7

l (µm) 15 15 -
d (µm) 0.4 0.4 1
w (µm) 1.5

nc (1024/m3) 3 [16]
ηH 10-5 [12]

h (W/(m2⋅K)) 0 (vacuum)
TS (K) 300

Table 3

quantity at I0=0 TB RB

α (%/K) −0.371 −0.45
RBO (Ω) 200 350
RTC0 (Ω) 202.6 350

G (µW/K) 2.12 1.32
τ (µs) 50.5 81.1

SU0 (V/W) 63.0 0
D0* (107 cmHz1/2/W) 2.33 0

Table 4

TB operating mode Prevailing
noise

Recommended TB biasing Resulting advantage

low frequency mode 1/f noise unbiased no 1/f noise
high frequency mode Johnson noise same sign of bias current and

temperature coefficient of resistance
enhanced responsivity

and detectivity



15
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Fig. 3
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Fig. 5
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Fig. 7
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Fig. 9
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