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Abstract
We report the development of a quick process for fabricating lithium niobate ridge waveguides with
smooth walls, aspect ratios larger than 500 and side wall verticality of 88°. The method is based on
optical grade dicing, and allows the fabrication of ridges with a top width of 1µm and a depth of more
than 500µm. Smart-cut ridge waveguides and strongly confined proton exchanged ridge waveguides
are demonstrated. We show that the method enables the fabrication of ridge waveguides with
propagation losses as low as 0.5dB/cm. A new fabrication process is thus proposed for the fabrication
of optical components with enhanced acousto-optic, electro-optic or nonlinear interactions. The high
aspect ratios open opportunities toward the development of 3D photonic components in thin films of
LiNbO3, and toward hybrid integration of LiNbO3 components.

1.1 Introduction

Ridges waveguides in lithium niobate subtrates have been attracted much attention over the past thirty
years, due to their potentialities of enhancing electro-optical, nonlinear or acousto-optical interactions.
In 1974 Kaminow et al. reported the fabrication of ridges in the view of increasing the electro-optic
interaction in comparison with planar waveguides [1]. Since then, Ti-indiffusion or proton exchange
(PE) based techniques have become routine procedures for the fabrication of low loss LiNbO3 optical
waveguides. Ti-indiffused waveguides or their PE counterparts exhibit low refractive index contrasts
and consequently a weak confinement of light. If etched on their sides, standard waveguides can
benefit from a higher lateral index contrast, which enables an increased confinement of light and a
higher overlap coefficient between the guided optical wave and the modulating microwave signal in
electro-optic (EO) devices. Consequently, ridges appear as an efficient tool for reducing the halfwave
voltage of EO modulators. By introducing air between two adjacent optical channels, they also help
preventing light coupling, and contribute to the improvement of extinction ratios [2]. In addition,
ridges help broadening the EO bandwidth by providing a low dielectric material around the electrodes,
which reduces the velocity mismatch between the light wave and the microwave signal [3]. The
studies dedicated to the fabrication of ridges have known a regain of interest very recently, due to the
development of new microstructured or nanostructured LiNbO3 photonic components [4-6] for which
a strong light confinement is mandatory. The high number of papers that still deal with the subject
shows that there is a current need for a method enabling the fabrication of ridges with low propagation
losses, smooth and vertical walls with a process that is not too much time consuming and expensive.

Ultrafast laser machining, which is amenable to directly pattern any material with trenches as deep as
several hundreds of micrometers could appear as a potential candidate for meeting the requirement of



a quick process. A recent paper has shown the feasibility of the technique for the fabrication of
polaritonic structures in LiNbO3 substrates, with aspect ratios (depth/width) of 10 or more [7].
However, a roughness below 100nm seems difficult to be reached by laser machining, due to the
significant chemical and structural alterations induced by the laser spot [7]. Other approaches based on
direct plasma etching techniques have been tested. Their high chemical reactivity with the material
make fluor gases the best candidates for plasma etching LiNbO3 substrates, but on the downside they
lead to the formation and redeposition of LiF composites [8]. Hence, the etched surfaces exhibit a
roughness that is not compatible with low optical losses. Improving the smoothness of the walls
requires a preliminarily step that prepares the material. As an example, proton exchange replaces Li
ions with protons [9-11] and helps preventing LiF redeposition: the resulting structures can exhibit a
roughness lower than 20nm and aspect ratios of 10 [10]. But the associated side wall verticality does
not exceed 82°, and depths larger than 10µm cannot be attained without a severe deterioration of the
roughness. Wet etching techniques associated with ion implantation, proton exchange or domain
inversion, have also been widely studied [12-14]. If the wet etching process is prepared with an
annealing step, and followed by a subsequent step of Ti-indiffusion, the method shows to be very
efficient for the fabrication of ultra-smooth ridges with a roughness of 20nm and propagation losses as
low as 0.05dB/cm [15,16]. But such processes can only be applied on the –z face of LiNbO3

substrates. There is however a high interest in achieving similar performances on X-cut substrates,
which are widely used for the fabrication of electro-optic components. It should also be outlined that
except laser machining, all the techniques reported above typically require more than ten hours of total
processing, and preliminary lithographic steps.

In ref. [17], the use of a dicing saw is mentioned for the development of periodically poled Zn:LiNbO3

ridges waveguides. Here we provide a detailed process for obtaining smooth ridges waveguides with
aspect ratios that can be larger than 500, propagation losses as low as 0.5±0.48dB/cm and with a side
wall verticality of 88°. The method applies indifferently to Z-cut or X-cut substrates, for any direction
of propagation, and takes less than thirty minutes of process for the fabrication of one ridge. It presents
a particular interest for the development of smart waveguide prototypes, when only one small area of
the wafer needs to be processed. It also offers new opportunities of developing thin films of LiNbO3,
and eases the way toward hybrid integration of LiNbO3 photonic components.

2. Description of the process and preliminary results

The process described hereunder can be used indifferently with X-cut, Z-cut LiNbO3 substrates, and
slice-cut samples. The thickness of the LiNbO3 layers may vary from 1µm (namely layers made by
smart cut) to 1mm (Crystal Technology congruent LiNbO3 wafers). A first step consists in fabricating
a planar waveguide either by Ti-indiffusion, Annealed Proton Exchange or via thin film forming
technologies such as Smart Cut, which is used to produce silicon on insulator (SOI) wafers [18,19].
The purpose of fabricating a planar waveguide is to provide a vertical confinement of the light wave.
The ridge structure is realized in a second step by “optical grade dicing” with a circular precision saw
(DISCO DAD 321).

In view of performing the dicing step, the LiNbO3 wafer is firstly stuck onto a 90µm thick UV
sensitive adhesive film surrounded by a frame. The frame is itself maintained by a vacuum substrate
holder. The important criteria for obtaining a proper polishing of the substrate rely on the choice of the
blade, and on its speed. In the present case, the blade has a diameter of 56mm and a thickness of
200µm. The speed of the blade is controlled in order to polish the substrate simultaneously with its
dicing: the rotation speed and the moving speed of the dicing saw are respectively 10000 rpm and
0.2mm/s. The spindle of the saw is cooled with water in order to keep a constant temperature of 18°C



during the process. The high flow of water is also used in the aim of mixing the LiNbO3 particles with
diamond particles, similarly to what is done in polishing systems. Such a process results in grooves
that are diced and polished at the same time. If the grooves are spaced from a few microns, they form
ridge waveguides between them.

The first main advantage of the method is outlined in figure 1(a), where we can see that aspect ratios
(width/depth) larger than 500 may be reached. More precisely, we show in the right of figure 1(a)
ridges with a top width of 1µm and a depth of 526µm. Even if this performance is not needed for the
implementation of optical waveguides with low losses, it provides nevertheless an idea of the
enormous capability of the method, and opens appealing alternatives towards the development of thin
LiNbO3 layers. As an example, the thin films may be exploited for the implementation of
tridimensional optical circuits by means of bright spatial solitons [20]: thanks to the high index
contrast provided by the deep ridge, the photorefractive effect is expected to be enhanced and to lead
to an increased confinement of self trapped waveguides. The deep grooves provided by optical grade
dicing may also be very appealing for ensuring hybrid integration of LiNbO3 components, or for
guiding fibres toward the optical waveguides.

(a) (b)

(a) (b)

(c) (d)
Figure 1. SEM views of the ridge structures. (a) Trenches with a depth of 526 µm. Rights: inserts
show zoom views of the thinnest ridge of the serie (b) Different depths can be achieved on the same
sample. (c) Smart-cut waveguide with a width of 7.5 µm and a thickness of 4 µm. (d) Smart-cut
waveguide with a 1 µm thick layer of lithium niobate.



In figure 1(b), we outline that a control of the ridge profiles can be achieved with the dicing saw: on
the left of the image, the ridges exhibit non vertical walls and a depth of 20µm while ridges on the
right exhibit a depth of 35µm and vertical walls. These two profiles were obtained by changing the
shape and the depth of the blade.

In figures 1(c) and (d), we show how the optical grade dicing process can be applied to the
development of LiNbO3 photonic wires integrated on thin films of Lithium niobate. Thin lithium
niobate films may be formed using a process similar to the Smart Cut process used to fabricate silicon
on insulator (SOI) wafers [18,19]. Alternatively, such thin films may be formed through bonding and
mechanical or chemical thinning. The dielectric bond layer for the film also serves as an optical
cladding for vertical confinement. As can be seen in the figures 1(c) and 1(d), end facets and sidewalls
of the films were free of chipping and delamination, demonstrating that the optical grade dicing
method is not limited to homogeneous congruent substrates.

One can notice that the samples are not cleaned after the process for avoiding any risk of breaking:
consequently some dusts may be seen on the walls of the patterns. The optical characterization has
been performed without cleaning the samples.

3. Optical characterization

Light confinement within the waveguides has been tested for various widths and depths of ridges
implemented on Ti-indiffused or PE planar waveguides and smart-cut layers. The output of the
waveguides is visualized at 1550 nm wavelength, with a 40x microscope objective that focuses the
output light on a LHESA vidicon camera. The calibration of the digitalized pixels has been
preliminarily performed by imaging a waveguide with a known intensity profile. Our purpose is to
investigate the possibilities of confining light with minimal propagation losses.

The first series of ridges are planar waveguides made of 85nm thick layers of titanium. These Ti-layers
have been diffused into the substrate during 10 hours at 1020°C. In these conditions, the Ti-indiffusion
depth is of 5.3µm along the extraordinary axis, and of 4.2µm along the ordinary axis. These series
have been fabricated for evaluating the influence of the ridge profile upon the TE and TM optical
modes. Optical modes of X-cut Z-propagating ridges waveguides are reported in figure 2. In this
particular configuration, both TE and TM polarizations are submitted to the ordinary refractive index.
In figure 2 (a), the SEM image shows an angle of 40° between the surface of the substrate and the
side-walls of the ridges . This sidewall-angle becomes 88° for the 35µm deep ridge of figure 2 (d). The
impact of the non verticality of the walls is seen in figures 2(b) and (e) and summarized in table 1: the
full width at half maximum (FWHM) is reduced 1.9 times when the sidewall angle becomes 88°
(figure 2(b)) instead of 40° (figure2(e)). In terms of lateral and vertical confinement, the behaviour is
roughly the same for both TE and TM polarizations.



Figure 2. Study of ridge waveguides with a top width of 4.2µm. (a), (b) and (c): Study of a non
vertical ridge with a top width of 4.2µm. (a) SEM view, (b) and (c) output TM and TE modes
respectively. (d), (e) and (f): Study of a quasi-vertical ridge with a top width of 4.2µm and a depth of
35µm. (d) : SEM view, (e) and (f) output TM and TE modes respectively.

We can also see in figure 2 that the lateral confinement is obtained at the expense of the vertical
confinement. In order to provide a better vertical confinement, we have developed a second series of
ridges waveguides with a stronger refractive index contrast. This is achieved by immersing the Ti-
indiffused samples into a bath of melted benzoic acid at 200°C: in these conditions, the Li+ ions
located at the surface of the substrate are replaced with H+ ions. This proton exchange process induces
a variation of the extraordinary refractive index of 0.13, on a depth that depends on the temperature
and time of immersion [21]. Several immersion times have been tested by steps of 3 hours up to a
maximum of 15 hours of immersion time. These tests have shown us that minimal immersion duration
of 12 hours is needed to obtain single mode propagation within a ridge with a top width of 3.5µm. The
resulting thickness of the exchanged layer is estimated to be 2.7µm. The distribution of output
intensity resulting from 6 hours and 12 hour of proton exchange at 200°C are exposed in figure 3(a)
and (b) respectively for a 3.5µm large and 50µm deep ridge waveguide. In the case seen in figure 3(a),
the exchanged layer is not thick enough: the light is guided within the rib delimited by the walls of the
ridge rather than within the top exchanged layer. On the other hand, a proton exchange step of 12
hours allows the propagation of a well confined single mode. The TE mode shows a lateral FWHM of
1.6µm±0.4µm, and a vertical FWHM of 2.2µm±0.5µm. The TM mode is not guided, due to the
anisotropic behaviour of the proton exchange process. In figure 3(c), we show the output of a 12 hours
exchanged ridge waveguide with a width of 6 µm and a depth of 526 µm. This image confirms the
possibility of guiding ligth through extremely deep ridges. It can be noticed that beyond a width of
5.5µm, the 12 hours exchanged ridges waveguides become multimode.



(a) (b) (c)

Figure 3. Output modes of proton exchanged Ti-indiffused ridges waveguides visualized with a 40x
objective focusing on a LHESA Vidicon camera. (a) Visualisation of the light confined between the
walls of a 35µm deep, 3.5µm large ridge waveguide for an immersion time of 6 hours at 200°C in
melted benzoic acid. (b) Output of a 35µm deep 3.5µm large ridge waveguide for an immersion time
of 12 hours. (c) Output of a 526µm deep 6µm large ridge waveguide for an immersion time of 12
hours.

We have tested the influence of a subsequent annealing upon the optical mode in order to reduce the
propagation losses inherent to PE waveguides. The resulting optical mode is non symmetric, and
seems brighter in the region near the walls of the ridge than in its centre region. We attribute this effect
to a non homogeneous diffusion of the protons, due to the walls of the ridge. This effect can be
overcome by realizing the annealing step before dicing the samples: we are currently working on
annealed proton exchanges planar waveguides in order to determine the optimal conditions for
combining low propagation losses, high electro-optic interaction and optimal confinement of the light.

Another way of vertically confining light consists in exploiting thin LiNbO3 layers fabricated by wafer
bonding and thin film forming technology such as Smart Cut. Dielectric bond layers used in such
methods have index values comparable to glass, which produces a high degree of vertical
confinement. The output of a 7µm large, 35 µm deep ridge waveguide made of a 4µm thick layer of

X-cut lithium niobate is exposed in figure 4, showing a lateral FWHM of 1.3±0.3 µm, and a vertical

FWHM of 1.6±0.4 µm.
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Figure 4. Output mode of a ridge waveguide with a width of 7µm made of a 4µm thick layer of
lithium niobate.

The propagation losses are measured by exploiting the Fabry-Perot effect between the entrance and the
output of the 7.45mm long ridges fabricated on planar Ti-indiffused waveguides. Measurements are
performed by scanning the transmitted optical intensity wavelength by wavelength, with a resolution
of 0.01nm from 1550nm to 1554nm. The propagation losses α are extracted from the transmitted
intensity maxima and minima according to the expression:

X (µm)

Y
(µ

m
)

-4 -2 0 2 4

-10
-8
-6
-4
-2
0
2
4
6

X (µm)

Y
(µ

m
)

-4 -3 -2 -1 0 1 2 3 4

-4
-3
-2
-1
0
1
2
3
4

X (µm)

Y
(µ

m
)

-4 -3 -2 -1 0 1 2 3 4

-4
-3
-2
-1
0
1
2
3
4



(1)

where α is expressed in dB/cm, R is the reflectivity, L=7.45 mm is the length of the waveguides, and

can be described as the contrast of the amplitude of the electric field :

(2)

Imax and Imin are respectively the maximum and the minimum of the transmitted intensity. In figure 4,
we have provided an example of transmitted intensity. The reflectivity R is estimated from the group
index ng of the ridge waveguide:

(3)

The group index is itself estimated from the free spectral range (FSR) of the transmission spectrum, as
reported in reference [22]. The lowest propagation losses that have been measured are reported in
figure 4. They result from a waveguide with a top width of 6 µm and a depth of 35 µm. If we follow
equation (1) in its most advantageous way, we can claim propagation losses as low as 0.02 dB/cm,
which is comparable to what is obtained through optimized Ti-indiffused waveguides. However, the
indirect estimation of the propagation losses leads to considerable uncertainty of the measurement. In
the view of evaluating more precisely the propagation losses, we have measured the transmitted
intensity independently ten times, which has led us to an average estimation of the propagation losses,

and to an estimation of the measurements error bar: α=0.50±0.48 dB/cm.

The propagation losses and the group index have been estimated for different widths of the 35 µm
deep ridge waveguides. The results are presented in figure 6: they show that contrary to what happens
in non vertical ridges [9,15], the propagation losses and the group index are pretty much the same for
both polarizations. We can also observe that the losses tend to increase when the width of the ridge is
reduced, which is not surprising since thin waveguides are more sensitive to imperfections of the walls
or to the remaining dusts. However, the propagation losses remain relatively low even for thin ridges:
they are typically of 2.5±2.4 dB/cm for a ridge with a top width of 3.5µm.
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Figure 5. Transmitted intensity measured through a ridge waveguide with a top width of 6µm and a
depth of 35µm. The measurements were performed for a TE polarized mode propagating in the Z
direction of a X-cut substrate submitted to Ti-indiffusion before the dicing step.
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Figure 6. Influence of the width of the ridge upon the propagation losses and the group index for TE
(dotted blue line) and TM (solid red line) polarisations. The depth of the ridge is of 35µm, and the
light propagates along the Z-axis of the X-cut substrate. The ridges are implemented on Ti-indiffused
planar waveguides.

Table 1. Summary of the experimental results

Planar 
waveguide 

Direction of 
propagation 

Top 
width 

Side-wall 
verticality 

Polarization Lateral 
FWHM 

Vertical 
FWHM 

Propagation 
losses 

Ti-
indiffused 

Z 4.2µm 40° TE 4.8µm 4.8µm 1.1dB/cm

TM 4.7µm 5µm 2.2dB/cm

4.2µm 88° TE 2.3µm 7µm 2.5dB/cm

TM 2.3µm 7µm 2.2dB/cm

6µm 88° TE 3µm 5.6µm 0.5dB/cm

TM 2.8µm 5.4µm 0.8dB/cm

7.4µm 88° TE 3.5µm 5.2µm 0.9dB/cm

TM 3.4µm 5.2µm 0.6dB/cm

Ti-
indiffused 
+ 12h PE 

Y 3.5µm 88° TE

Simulation 

1.6µm

2.3µm 

2.2µm

1.2µm 

15dB/cm

Smart-Cut Y 7µm 88° TE 1.3µm 1.6µm -

A summary of the experimental results is presented in table 1. The depth is not reported as a key
parameter in the table: according to our observations, the influence of the depth becomes negligible if
the ridges are deeper than 20µm. For smaller depths, it is difficult to obtain vertical walls and the
lateral confinement is weaker. A strong confinement of the optical mode can be achieved with the use
of Smart Cut or proton exchange processes, but this strong confinement is associated with propagation



losses higher than 10dB/cm. Finally, a compromise between confinement and propagation losses
consists in patterning a Ti-diffused planar waveguide, with a top width of 6µm, and a depth higher
than 20µm: in that configuration, propagation losses of 0.5dB/cm can be reached, with a lateral
FWHM of 3µm.

4. Conclusion

As a conclusion, optical grade dicing process shows to be an extremely efficient tool for quick
fabrication of straight ridge waveguides with smooth walls and high aspect ratios. We have
demonstrated that a proper choice of the speed of the blade (namely 10000 rpm) during the dicing step
can lead to smooth ridges with aspect ratios larger than 500 and a side wall verticality of 88°C.
Propagation losses as low as 0.5±0.48 dB/cm have been measured on X-cut Z-propagating 6µm wide
Ti-indiffused ridges waveguides. Tests were performed for combining a vertical confinement of light
with the lateral confinement provided by the ridge structures. Thus, proton exchanged ridge
waveguides with vertical FWHM of 2.2 µm, and smart-cut waveguides with a vertical FWHM of 1.6
µm have been tested. An optimal structure has been put in evidence with Ti-diffused planar waveguide
exhibiting a top width of 6µm and a depth higher than 20µm: in that configuration, propagation losses
of 0.5dB/cm can be reached, with a lateral FWHM of 3µm. Work is in progress for optimizing the
conditions of propagation and for implementing photonic structures onto the ridges, especially for the
development of photonic sensors relying on functionalized photonic crystal (PhC) cavities [23]: the
ridge structure is indeed mandatory for achieving the coupling between the PhC cavity and the input
light. The ridge waveguides also help enhancing electro-optical interactions: the way is thus open
toward the development of compact and sensitive electric field sensors.
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