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On Nonlinearized Wavefield Inversion Methods 
and the Identification of Buried Objects 

Dominique Lesselier and Bernard Duchene * 

Wavefield inversion is a subject that has been carefully studied by 
R.E. Kleinman. Some of his investigations have been carried out with 
the authors and their colleagues. In particular, two solution algorithms 
(complete family and binary-specialized modified gradient) for the re­
trieval of scatterers buried in a layered embedding will be examined here. 
But the main purpose of this contribution is to illustrate the lasting im­
pact of his work in this demanding field both at theoretical and numerical 
levels, and in so doing to sketch some challenging issues to be addressed 

in the spirit of Kleinman's work, which is to "accelerate the transition 
from mathematical model to practical numerical solution" [1]. 

1 Introduction 

The science of wavefield inversion includes nondestructive characterization of 
media and/or structures interrogated by a probing radiation (electromagnetic, 
acoustic or elastic). The signals contain encoded information about the object 
which is interacting with the probing wave. The inversion is but the procedure 
by which the signals are transformed into some intelligible form which provides 
us with some of this information. 

A general theme of investigation comes forth (which has been considered for 
a number of years and with considerable success by R.E. Kleinman): the iden­
tification (including location, shape, orientation, constitutive parameters) of an 
object from measured scattered (or anomalous) fields which result from its in­
teraction with known incident waves. For that purpose many solution methods 
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have been developed in the literature such as spectral methods, modified gradi­
ent and variants, complete families and equivalent sources, dual space methods, 
controlled level sets, stochastic techniques. In general they amount to finding a 
minimum of a cost functional which measures the conformity of the response of 
a test object to that of the original one. At best this functional reflects the fit 
between data and wavefield associated to the test object (observation or data 
equation), the satisfaction of the field equations (state or coupling equation), 
and the available knowledge of the user (imposition of constraints). 

Two examples of nonlinearized methods in aspect-limited data configura­
tions [12], [13], which we believe are illustrative of the complexity of an inversion 
machinery for ill-posed problems while exhibiting novelty and computational 
efficiency, are considered herein: the complete family (or distributed source) 
solution method, e.g., [3], [21], [5]; the binary-specialized version, e.g., [22], 
[9], [6], [17], [18], of the modified gradient method. (An insightful analysis of 
gradient-type methods is conducted in [8], whereas [11] describes a constrained 
modified gradient method for Maxwellian materials.) 

The first method, considered in section 2, is developed in the realm of shal­
low water acoustics and is applied to the shape reconstruction of a sound­
impenetrable cylindrical object of star-shaped, smooth cross-sectional contour 
which is immersed within a known, plane-layered water waveguide. One is 
dealing with a two-dimensional scalar case, the retrieval of the scatterer con­
tour being carried out from range-filtered (due to waveguiding), monochromatic 
data using the smoothness of the sought contour as key constraint, the acoustic 
wavefields being modeled in the inversion from a superposition of elementary 
waves (the Green's functions of the waveguide). 

The second method, considered in section 3, is developed in the realm of 
low-frequency electromagnetics (eddy currents) and is applied to the mapping 
of a void defect (which is identified with an unknown distribution of black voxels 
in an otherwise white search domain) affecting a conductive metal plate. One 
is now dealing with a three-dimensional vector case, the mapping of the defect 
being carried out from aspect-limited, frequency-diverse data using the binary 
aspect of the probed region as key constraint, the purely diffusive electromag­
netic wavefields being modeled in the inversion from a contrast-source domain 
integral formulation (deduced from a dyadic Green's theorem). 

In each of these two sections only one typical result of inversion is given. 
The analysis itself is each time mostly descriptive, mathematical derivations 
and numerical details being left for the referenced contributions. Notice that 
there purposely is no attempt to review the vast literature on each topic, but 
quite a large number of pertinent references are given in these contributions. 
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Figure 1: An impenetrable acoustical scatterer of unknown cross-sectional con­
tour immersed in shallow water. Displayed parameters are those of a realistic 
(though simplified) configuration.

2 A distributed source approach in shallow wa­

ter acoustics 

The characterization of an obstacle immersed in shallow sea water or buried in 
the sea bottom from a partial observation of the pressure field which is resulting 
from its interaction with a given source in water is of much concern in the field 
of underwater acoustics, e.g., [7] and references therein.

Here (Fig. 1) we examine the prototype problem of a sound-impenetrable
(hard or soft) cylindrical obstacle with star-like, smooth cross-sectional con­
tour which is immersed in a homogeneous water column of known acoustical 
parameters and of finite depth. This obstacle is illuminated by at least one 
time-harmonic monochromatic line source also in water at some distance from 
it. The pressure field p typically is collected by two vertical sensor arrays which
span the water column on both sides of the obstacle (long enough horizontal ar­
rays, or other sensors arrangements, could be considered likewise ). The flat sea
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surface satisfies the usual pressure release condition while the boundary condi­
tion on the flat seafloor may be arbitrary; indeed, only its reflection coefficient 
as a function of the horizontal wavenumber plays a role in the mathematical 
modeling. Most of our studies were conducted for a sound-hard seafloor. We 
are presently investigating the case where the seafloor is modeled as a homoge­
neous fluid bottom half-space, though a more complicated solid elastic layering 
may be considered in the same way. 

This nonlinear shape reconstruction in a semi- or fully-confined environ­
ment (the plate-parallel water waveguide ) from data sets strongly affected by
the waveguiding phenomenon, and acquired at a single frequency, is rather de­
manding. The analysis so far has been following two paths. 

First, the unique solvability of the scattering problem has been considered 
from a new global radiation condition (which is an alternative to a radiation
condition for each propagating mode of the waveguide), and the completeness of
a family of Green's functions in the waveguide has been subsequently examined. 
Unique solvability is established in [ 4] for a sound-soft (Dirichlet ) obstacle in free
space or in an acoustic waveguide the walls of which satisfy Dirichlet conditions; 
the same was performed earlier in [3] for a Neumann condition imposed on the 
bottom wall, and completeness proved in this case. 

However, no results have been obtained yet for the sound-hard (Neumann) 
obstacle; the same goes for the case of penetrable bottom (e.g., a fluid half­
space ). Indeed the results needed still appear out of theoretical reach. Also, it
is our understanding that the demonstration of the unique solvability from the 
alternate radiation condition is still questioned (but how uniqueness is proved
does not matter for the demonstration of the completeness ). In any case certain
restrictions on the obstacle contour are or should be needed (convex or at best
mildly concave contour, as exhibited in the Dirichlet case) in particular in order
to avoid the trapping of modes in the obstacle near field. 

Second, numerical algorithms implementing the contour inversion from dis­
crete data in various configurations have been developed. Initially the effort 
was directed towards sound-soft obstacles as is detailed in [21] and sound-hard
ones have been considered next as is sketched in [5], with in both cases the
assumption of a sound-hard seafloor. Presently, attention is on the influence of 
a homogeneous fluid sea bottom modeling a thick sediment layer of moderate 
contrast with respect to the water. 

In practice one always works within an appropriate discrete setting in L2, 
and iteratively solves a penalized optimization problem whose cost functional 
F = Ji + <J h ( <J being a penalty parameter ) is a weighted sum of two residuals
at the operation frequency. 
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The observation cost Ji is the mean square norm of the discrepancy between 
the data prr"" (N R ) collected along the measurement arrays R and the pressure
p(f, N R ) which would be due (at same location N R ) to a given contour r, 
normalized with respect to the data norm. It reads: 

(1) 

The boundary cost h is the mean square norm of the error in the satisfaction 
of the prescribed boundary condition along r (Dirichlet: the total pressure
should be zero; Neumann: the normal derivative of the total pressure should be 
zero), the normalization being accordingly performed with respect to the norm 
of the incident pressure p0 at the same location or of its normal derivative.
Upon introduction of polar coordinates r = (r, B), letting r = 'Y(B) be the radial
coordinate characteristic of r, one has in the Dirichlet case

fr�" IP(r, B)l2 Jr(B)de ( ) h = 2 2 ' Jr e = 
f0" IPo(f,B)I Jr(B)dB

2 (dr ) 2 
r + -dB (2) 

In the above, p(f, B) (respectively, p0 (f, B)) is the total (respectively, incident)
pressure field at point (r, B), r = 'Y(B), and J is the corresponding Jacobian; the
Jacobian transformation enables us not to calculate the boundary cost on the 
evolved contour but to do so on the fixed unit circle [2]. As for the Neumann 
case, it readily follows by using OnP instead of p. 

To proceed with the optimization, r is described via a 2N sine-cosine ex­
pansion of 'Y( B): 

N N-1 
'Y(B) = ao +Lan cos(nB) + L aN+n sin(nB).

n=l n=l 
(3) 

The scattered pressure field p5 = p - p0, considered at r anywhere on, and
exterior to, r, is equated to a weighted sum of M exact Green's functions of
the waveguide G(r, rf,,); their source locations rf,,, m = 1, ···,M are located on
a closed curve r which is kept inside the domain encircled by r and homothetic
with it, via the imposition of I rfn ( B) I= cq( B), a a constant real multiplicative
factor less than 1. One has 

M 
Ps(r, r) = L cmG(r, r;,,J (4) 

rn=l 
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The complex-valued coefficients of the two finite expansions, {a,,} and {cm}, 
are determined by means of a Levenberg-Marquardt technique, usually starting 
from an initial circular contour inside the presumed obstacle domain and away 
from the sources. 

For simplicity, the boundary cost h is calculated by means of a trapezoidal 
integration rule from the discrete values of the pressure or of its normal deriva­
tive at Q = M nodal points having the same regularly spaced polar angles as
the M source points. Similarly, the observation cost Ji is calculated from sums
of the squared amplitudes of the field discrepancy and of the incident field at 
regularly spaced points of the R array(s). 

Described as such, the solution method is strikingly simple. However, in the 
absence of a final answer yet to a number of theoretical questions, as indicated 
in the above, and having emphasized that the first limitation of the method is 
that the contour must be star-like with respect to an inner point which should 
be known beforehand, one is left to essentially rely on comprehensive numerical 
experimentation to appraise its efficiency. 

Then, it is, potentially at least, applicable to many configurations once there 
is available an effective calculation tool of the Green's functions for source points 
(on the homothetic contour r) and/or observation points (on the contour r 
itself) moved at each iteration in a priori arbitrary fashion. For the sound­
hard seafioor, Green's functions are estimated by means of a hybrid ray-mode 
technique (refer to [21]) and for a penetrable bottom they are computed at the 
nodes of a regular mesh from their spectral expansion along the real wavenumber 
axis by appropriate fast Fourier transforms, their values at intermediate space 
locations being interpolated. 

Nevertheless, key cases remain to be completely investigated. For example, 
a penetrable fluid obstacle in water will involve the critical management of 
sources distributed both inside the obstacle domain (to model the outer field) 
and outside it (to model the inner one); a solid elastic obstacle (and a fortiori 

an elastic shell) in addition to being very computer-intensive will necessarily 
require further theoretical examination first. The same kind of theoretical task 
is faced when the obstacle is partially buried in the sea bottom, whereas the 
case of an obstacle completely buried in a superficial layer of the sea bottom is 
expected to be of lesser complexity. 

As for generalization to three-dimensional bodies in the water waveguide or 
in the bottom (with as a first step a body of revolution with axis perpendicular 
to the waveguide walls), which is a prerequisite to practical use, we note that the 
case of free space scattering configuration has been tackled with a fair success 
already [2]. 
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Figure 2: True(-), initial (- -) and retrieved (sound-hard: +, sound-soft: •) 
contours of an impenetrable cylindrical elliptic obstacle (vertical and horizontal 
semi-axes 15 m and 7.5 m) immersed in a Pekeris-type horizontal sea channel 
(refer to Fig. 1). The trigonometric expansion is of order N = 4, the number of 
Green's functions and of nodal points on the contour is M = Q = 18 at 30 Hz
and 64 at 100 Hz. 

To conclude this section, we consider (Fig. 1) a sound-soft and a sound­
hard elliptic obstacle in a 100 m deep acoustic channel with a sediment-like 
sea bottom (refer to [20]). This obstacle is illuminated from the left side (the 
source is at 100 m from its center) and is simultaneously viewed in the near 
field (at 40 m) by means of two sensor arrays, one placed on each side, so 
as to counterbalance the effects of the unobserved transfer of energy into the 
sea bottom. This is done within a frequency-hopping scheme: the obstacle is 
illuminated at a 30 Hz frequency first and then at a 100 Hz frequency, using the 
just retrieved contour as the initial contour of the new search. Notice that the 
wavelength in water is 50 m and 15 m, respectively, and that 4 and 13 modes 
are correspondingly propagated if one neglects the bottom attenuation. 

The synthetic data used in the inversion, in the absence of satisfactory ex­
perimental data, have been independently calculated from a discrete version of 
an exact boundary integral formulation (see [21]). The contour reconstructions 
are displayed in Fig. 2 (courtesy of M. Lambert). 
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Figure 3: A metal plate probed by a double-D coil mounted below a SQUID 
device. Displayed parameters are typical of the experiments carried out at 
INFM (Napoli). 

3 A binary modified gradient approach in eddy 
current NdE 

Electromagnetic (eddy current) nondestructive evaluation of highly conductive 
structures is of critical concern in many applications such as in the nuclear 
or aircraft industry. In particular a large amount of effort is presently being 
devoted to the modeling of metal tubes and plates and the detection, classi­
fication, characterization and/ or mapping of cracks, voids, inclusions or other 
damages which may affect them. 

Here (Fig. 3) we examine the prototype problem of a three-dimensional 
bounded void defect (bulky, which is not reducible to an infinitely thin crack) 
found within an isotropic, nonmagnetic (µ = µ0), horizontal metal plate of
known conductivity o-0 and illuminated by a given current source at fixed low
frequency in air. We emphasize that the electromagnetic phenomenon is in 
practice purely diffusive. 

More specifically, we are interested in inferring from a partial observation of 
the magnetic field in air (at best at points regularly distributed on a scanning 
surface parallel to the metal plate) the conductivity map of a prescribed volume 
D of the plate in which a defect is thought to be located, while enforcing the 
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hypothesis that this defect is of known constant conductivity (O for a void defect,
some other value for an inclusion of an other material). As a consequence the 
characteristic function of the support of the defect is the only unknown now, 
and the defect can be seen as a distribution of black voxels in an otherwise 
white domain, once a specific discretization in space has been set. No other 
hypotheses, such as there may be several disjoint defects, or they may not be 
of regular boundaries, etc. need to be assumed. 

In order to do so (refer to [18]), a rigorous contrast-source vector domain 
integral formulation of the wavefield is developed. A standard pulse-basis, 
point-matching Method of Moments then yields the discrete counterparts of 
the formulation, whereas other variants may be used. 

Several dyadic electric-electric and electric-magnetic (or vice versa) Green's 
functions appear in so doing. Their closed forms (refer to [18] for detailed 
expressions) are obtained within the two-dimensional spectral wavenumber do­
main, the Fourier transforms being taken with respect to the transverse (i.e., 
horizontal) variables, by application of a vector wave expansion method which is 
breaking down the dyads into independent Transverse Electric and Transverse 
Magnetic components. 

The state equation governs the distribution of fictitious Huygens sources 
induced in the defect volume in the plate (region 2): at any given point r,
such sources J 2 ( r) are proportional to the total electric field E2 ( r) times the
contrast function x(r) = o-(r)/o-0 - 1, where o-(r) is the conductivity at r, and 
they obviously cancel outside the defect volume where o-(r) is reduced to the 
embedding value o-o. 

Assuming a time-harmonic excitation exp(-jwt), one has

E�nc(r) = E2(r) - jwµo l G��(r, r') J2(r')dr' (5) 

where G�� is the appropriate electric-electric dyadic Green's function (source 
and observation in region 2). As for the incident electric field E�nc(r), it is
obtained by applying the dyadic Green's function G�� (source in the air region 
1 and observation in region 2) to the current density J source carried by the
source: 

Einc() . 1 G
ee

( ')J (') d' 2 r = JWµo 21 r, r source r r . 
source 

(6)

The anomalous magnetic field follows by direct integration of the Huygens 
sources over the defect volume through the observation equation: 

(7) 
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where G�e is electric-magnetic dyadic Green's function (source in region 2
and observation in region 1). As for the incident magnetic field Hfnc(r), it
is obtained now by applying the dyadic Green's function G�e (source and
observation in region 1) to the source current density.

We emphasize that the case of a multi-layered plate can be considered sim­
ilarly, at the price of more complicated calculations of the dyadic Green's func­
tions. A similar problem occurs in a tube (i.e., a circularly stratified cylindrical 
structure) which we focused upon earlier (notably from the observation of the 
variations of impedance of a differential air-cored probe displaced along the axis 
of the tube) [17]. 

Approximations can been devised. The quasi-static assumption leads to 
the cancellation of the vertical component of the Huygens sources, only their 
in-plane components being of importance. And from this starting point, the 
Localized Nonlinear approximation (LN) [17] offers both accurate results and
low computational costs. 

The in-plane components of the electric field inside the defect volume indeed 
directly result from the application of a known diagonal dyadic operator onto 
the in-plane components of the incident field; and the Huygens sources follow 
by multiplication with the contrast function: 

- . -ee(diag) 1 1 · [ ]- 1 
J2(r) = I - JWµo l G22 (r, r') x(r ) dr J�nc(r) (8) 

where a;;(diag) consists of the diagonal components of the dyadic Green's func­
tion. Integration, led as previously, then yields the LN approximated magnetic 
field in air. 

The inverse problem at hand can be attacked by means of modified gradi­
ent iterative schemes which retrieve both the contrast function x(r) and the 
electric field E(r) at any r in D (subscript 2 is henceforth implied) by simul­
taneously minimizing the residual errors in satisfying the observation equation 

(normalized residual Ji) and the state equation (normalized residual f2). 
Such schemes are specialized to binary objects of prescribed conductivity a 

and contrast XD = a/a0 -1 by assuming that x(r) is equated to xv<l>o(r(r)).
<P11(r) is a continuously differentiable function which increases monotonically
between 0 and 1 when the real-valued argument r is varied between -oo and
oo. The smaller(), the closer it is to a step function (or the steeper the transition 

between 0 and 1). A good example is <!>11(r) = [1 + e- r/lir 1• 
In so doing, and after proper initialization, one is left with adjusting itera-
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tively E(r) and the new unknown T(r) along conjugate-gradient-type directions
(which are calculated by maintaining either function constant), say, until the 
cost functional does not decrease anymore (plateau) and correspondingly, a sta­
ble gray-level map is reached. Then, decreasing B tends to increase the contrast
of this map by pushing the shade of gray of each voxel towards black or white 
(the shade is associated to the value of T retrieved for this voxel via the function
c'J>0 ). Correspondingly, this provides us with a new initial point of the iterative
scheme. This cooling operation can be repeated a number of times till a map 
which is both satisfactorily contrasted and suitably associated to a low cost 
functional F = Ji +  f2, is reached.

The above strategy has been illustrated by several examples. The main 
difficulty here is mostly computational and it arises from the handling of three­
component fields in a three-dimensional space, as investigated already in [17]. 

In view of the good performance of the LN approximation, an inversion 
algorithm based on this approximation has been developed from the binary­
version of the modified gradient method described above. The cost functional 
now is reduced to a single term (the observation cost Ji) which is a nonlinear 
function of T only, and which is minimized along successive conjugate-gradient
directions, the binary aspect still being enforced. The iterative procedure can 
be sketched as follows. 

Let us consider that one is able to collect only a certain number of samples 
of the vertical component of the magnetic field in air above the search domain 
D. At iteration n ,  the corresponding complex-valued scalar component of the 
residual of the vector observation equation (7) reads symbolically as 

P(n) = Hobs _ iJ (c'J>(n) E(n))q q q IJ q (9) 
where operator iJ is defined implicitly by (7) and (8) and acts upon the two
in-plane electric field components in one of Q prescribed testing configurations; 
each such configuration (indexed by q, q = 1, · · · , Q) is in effect characterized
by a specific set of known electric and geometrical parameters: the operation 
frequency, the location of the induction probe generating the eddy currents, 
and the location of the magnetic field sensor. In a similar symbolic fashion, at 
any space point inside D one may rewrite (8) as 

E(n) = [i - A (c'J>(n))] - 1 Einc q q IJ q . ( 10) 
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The normalized cost function F = Ji correspondingly becomes 

The only unknown space function T(nl(r) is sought as

7(n) = 7(n - 1) + j](n) �(n) 

(11) 

(12)

where j](n) is position-independent. The search direction �(n) is taken of the
Polak-Ribiere type: 

(h(n) h(n) _ h(n - 1) ) �(n) = h(n) + ' D �(n - 1) 
llh(n - l) II� 

(13) 

where ( , ) D denotes the L2 scalar product on D and II II D the corresponding
norm. h(n) is the gradient of the cost functional with respect to T(n) (assuming
other variables fixed) and it is expressed in closed form in terms of the adjoint 
operators of {)q and Aq. As for the displacement step j](n), it is numerically
determined each time by minimizing the cost functional, a procedure which 
benefits from the fact that the gradient with respect to j](n) can also be written
in closed form. 

The whole solution procedure is started from a set of initial values T{l), for
example a constant value corresponding to a contrast function of 0.5, whereas 
the gradient direction is chosen for the first iterate. This goes on until the cost 
is considered as small enough, mostly from past numerical experimentation. 
Cooling (the reduction of B by a given factor) and also refreshment of the
search direction into the gradient direction are performed whenever the cost 
stagnates as again understood from numerical experimentation. 

Due to the skin effect, the shallower the defect the more it affects the data 
at a given operation frequency, whereas the lower this frequency the deeper the 
exploration depth, and as a trade-off the poorer the resolution. Though the 
type of source and sensor used, and the defect geometry, imply that this rule 

of thumb must be taken with caution, frequencies of the probing signals as well 
as the discrete spatial representation of the zone under investigation should be 
tailored to the expected support of the defect. This simple conclusion has been 
validated in the Born framework by [15]. However it remains to apply such a 
strategy to nonlinearized situations as underlined in [19]. 

Worthwhile of investigation is also the case of anisotropic layerings (such as 
a N-ply carbon fiber composite). Far more involved dyadic Green's functions 
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Figure 4: Gray-level cross-sectional maps of a void opening in air and machined 
into an aluminum plate (refer to Fig. 3 for details). These maps are retrieved 
within the framework of the LN approximation from a single line scan (sampling 
step about 1 mm) of the vertical magnetic field component observed by means 
of the SQUID-based measurement tool. The defect is described by 1 mm-sided 
cubic voxels and the search domain D comprises 16x16x4 such voxels. About 
60 iterations (with several cooling episodes) are needed to get to a distribution 
of voxels mostly black or white and fitting the data. 

are needed, and independent TE and TM modes cannot be used any longer. 
Getting to validated and numerically stable expressions is not expected to be 
easy, particularly if one thinks of dealing with a large number of layers. Also, 
there is no immediate answer to whether or not approximations (such as the LN  
one) may be successfully devised in this context. The type of defect itself should 
also be considered carefully; bulky voids or inclusions, layer delamination, multi­
branched thin cracks, and anisotropic defects due to fiber compression may each 
require a dedicated inversion tool. 

To conclude this section, gray-level maps of a circular cylindrical void defect 
affecting an aluminum plate and opening in air are shown in Fig. 4 (courtesy 
of V. Monebhurrun). 

Data (courtesy of A. Ruosi and M. Valentino) consist in discrete values of 
the vertical component of the magnetic field at a single frequency in air which is 
observed just above the center of a double-D-shaped current coil; this is a pitch­
point or monostatic configuration, since coil and magnetometer are maintained 
at fixed elevations just above one another and displaced simultaneously. 
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The (newly developed) magnetometer is based on High Critical Tempera­
ture Superconductive Quantum Interference Devices (HTc SQUID), and with 
respect to traditional eddy current probes it has been demonstrated [23] that 
it offers a higher spatial resolution and greater sensitivity at very low frequen­
cies (which enables the detection of deep subsurface defects) and at quite high 
liftoffs, whereas the vector domain integral formulation proved to be a suitable 
modeling tool of the electromagnetic interaction between the double-D coil and 
a number of artificial defects [18]. The inversion itself is carried out from the 
LN approximation. 

The results of the inversion presented here are fairly good, even though the 
lack of information is obvious (one line scan only has been input, the measuring 
set-up being set to pass just above the defect mouth). Pending further investi­
gation, this leaves hope that using data on samples from industrial origin should 
be fruitful. 

4 Conclusion 

The above analysis exemplifies that in somewhat ideal but still demanding 
conditions it may be possible to retrieve, with a fair accuracy, scattering objects 
that are at least partially unknown (in practice the constitutive material is 
prescribed either via a binary constraint or via a contour boundary condition) 
from a strongly limited observation of the results of their interaction with a 
known probing signal. 

A key question remains [14]: is an exact description of the object required 
(say, in an engineering perspective)? 

Indeed, one imagines how complex is the retrieval of objects in natural me­
dia (induction geophysics, shallow water acoustics, ultrasonic medical imaging, 
ground probing radar), or in man-made media (eddy current non-destructive 
evaluation, elastic characterization, microwave imaging) from experimental data 
which may be limited in space (vs. position of sources and/or sensors), in fre­
quency (due to environment and/or technology), in accuracy (from unavoidable 
noise and other errors), or which simply may lack key elements (absence of 
phase due to the type of sensor, vector fields observed via one component only 
or through secondary quantities like a variation of impedance of a coil); and 
last but not least, the models on which the inversion algorithms rely are always 
approximated to a sometimes critical extent. 

Therefore, as often emphasized by R.E. Kleinman, the algorithms must take 
cognizance of the shape and limitations of the data. But more modest goals 
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might also be aimed at, i.e., a good accomplishment may simply be the retrieval 
of a few distinguishing features of the sought object. 

In that frame of thought, the idea of a Simplified Object (SO), which is for 
example prevailing in the many references on the Intersecting Canonical Body 
Approximation (e.g., [7]) and is sketched in [10], may be pertinent.

Three conditions however must be fulfilled simultaneously: a simple model­
ing of the SO behavior should be available (a handy recipe), a limited number of 
features should characterize the SO (clearly a lesser number of attributes than 
the exact one), and SO features retrieved via an inversion algorithm in accord 
with the recipe, should contain relevant information (a fuzzy image, certain 
discrepancy being accepted with the exact object). 

Still, intricate nonlinearized inversion algorithms may be of good use. For 
example, the controlled evolution of a level set applied to the retrieval of a 
binary object whose contrast with respect to the environment is prescribed, 
and which is an alliance of the level-set description of a moving boundary and 
of the speed method of shape optimal design, appeared fairly immune to the 
lack of topological information [16]. 

Smoothness, single-connexity, star-shapedness, knowledge of an interior point 
are not imposed, only a search domain which is containing the object is re­
quired, while its extension from two-dimensional scalar cases in free space to 
three-dimensional vector ones in a layered embedding, may be envisaged, pro­
vided that both theoretical questions (so-called topological identification [24]) 
and numerical ones (parameter tuning) are addressed. 

To conclude, and taking now a more personal tone, the authors would like 
to quote R.E. Kleinman again, from a letter he sent us in November 1997: 
"To analyze the past is possible, to assess the present is dangerous and to 
predict the future is foolhardy. Dangerous because our assessment of the current 
state of inverse scattering is subjective and will inevitably have unforgivable 
omissions thus antagonizing those omitted, and foolhardy for the obvious reason 
that tomorrow's advances will most probably be based on techniques not yet 
developed and lead in unexpected directions." 

In sharp contrast with his own words, it is the belief of the authors that late 
Unidel Professor R.E. Kleinman was a very clever analyst of the past research, 
enriched by a personal experience of more than forty years, that he was fully 
aware of the state-of-the-art though always very kind with the solution methods 
of his struggling colleagues and very honest with respect to the pros and cons of 
his own solutions, and that he contributed to a great extent and with a lasting 
impact to often unexpected and always promising approaches. 
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