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Abstract. We present an approach to integrate a preprocessing step of
the region of interest �ROI� localization into 3-D scanners �laser or ste-
reoscopic�. The definite objective is to make the 3-D scanner intelligent
enough to localize rapidly in the scene, during the preprocessing phase,
the regions with high surface curvature, so that precise scanning will be
done only in these regions instead of in the whole scene. In this way, the
scanning time can be largely reduced, and the results contain only per-
tinent data. To test its feasibility and efficiency, we simulated the prepro-
cessing process under an active stereoscopic system composed of two
cameras and a video projector. The ROI localization is done in an itera-
tive way. First, the video projector projects a regular point pattern in the
scene, and then the pattern is modified iteratively according to the local
surface curvature of each reconstructed 3-D point. Finally, the last pat-
tern is used to determine the ROI. Our experiments showed that with this
approach, the system is capable to localize all types of objects, including
small objects with small depth. © 2009 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.3156731�

Subject terms: intelligent 3-D scanner; region of interest �ROI� localization; sur-
face curvature; adaptive pattern.

Paper 090178R received Mar. 13, 2009; revised manuscript received Apr. 27,
2009; accepted for publication Apr. 28, 2009; published online Jun. 23, 2009.
rance
Introduction
oday, 3-D scanners are widely used for environment digi-

alization, such as the interior and exterior of buildings and
istorical heritage. To our knowledge, all of them scan the
hole scene with uniform resolution. In the case of interi-
rs of buildings, often the ceilings and the walls are rather
at, with occasionally some objects �such as lamps, picture
rames, electric switches, windows, pipes� on them. There-
ore, different approaches were proposed to simplify the

091-3286/2009/$25.00 © 2009 SPIE
ptical Engineering 067203-
representation of walls and roofs. Cruz et al.1 proposed
integrating semantic knowledge into a 3-D point cloud.
Johnston and Zakhor2 proposed scanning from the outside
of buildings to get a 3-D point cloud, and then applying
plan-fitting algorithms to estimate interior ceilings and
walls. In fact, all these approaches can be regarded as a
two-step 3-D reconstruction process: first, scan the building
with high and uniform resolution; second, simplify the 3-D
model.

We tried to solve the problem in another way—that is, to
make the scanner scan the whole scene with different res-
June 2009/Vol. 48�6�1
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lution for different parts. To achieve this purpose, we pro-
ose a preprocessing process of region of interest �ROI�
ocalization, which can return two types of information: a
oint cloud representing the whole scene with multiresolu-
ion, and the positions of the ROI in the scene. The latter
an then be used by the scanner so that the scanning would
e done only in these regions during the acquisition pro-
ess. By combining the point cloud issued from the prepro-
essing process and the one from the acquisition process, a
oint cloud with multiresolution can be obtained. Since
uring the acquisition process, the scanning is limited only
n the ROI, compared to the classical way, which consists
f scanning the entire scene, the whole scanning time
ould be largely reduced, and the obtained point cloud
ould contain much less data.
In this paper, we present an approach of integration of

egion of interest �ROI� localization into a 3-D scanner as
reprocessing phase. In the frame of our work, an ROI
tands for all the regions with high surface curvature, such
s the border of an object or nonflat part of an object. To
tudy the feasibility and efficiency of this approach, we
ested it under an active stereoscopic system composed of
wo cameras and a LCD projector. At first, a regular point
attern is projected on the scene to get a rough 3-D point
loud representing the scene. The local surface curvature
LSC� of each 3-D point is then analyzed, and a new pat-
ern is created automatically to project more points in the
egions with high surface curvature. In this way, more 3-D
oints are retrieved in these regions and are added into the
urrent 3-D point cloud. The iterative pattern adaptation
rocess continues until the pattern reveals the best the ROI.

The remainder of this paper is organized as follows:
ection 2 describes in detail the ROI localization process
ased on an iterative pattern adaptation process; the ROI
etermination method and results are presented in Sec. 3;
nd last, we draw conclusions in Sec. 4.

ROI Localization Process

.1 System Initialization
ince the preprocessing approach was validated under an
ctive stereoscopic system composed of two CCD cameras
nd one video projector, the cameras and the projector need
o be calibrated to estimate their intrinsic �focal length,
ixel size, etc.� and extrinsic parameters �the position and
rientation related to the scene�. These parameters are nec-
ssary to calculate the 3-D position of a point in the scene
rom images. For the calibration of the two cameras, we
sed self-calibration methods.3 As to the video projector,
e applied the method of Faugeras.4

The ROI localization begins by gathering sample points
n the scene. A simple way is to project a regular point
attern via the video projector. Several factors, such as the
ize of the object and the distance between the scene and
he projector, need to be taken into account to adjust the
ensity of the pattern points so that at least one point will
all on each object. Otherwise, it may be impossible to
ocalize the object. The two precalibrated cameras then take

pair of images of the scene; the 3-D coordinates of pro-
ected points in the scene can be calculated by using the
echnique of triangulation.5,6
ptical Engineering 067203-
2.2 Iterative Pattern Adaptation Process
The pattern adaptation is done iteratively. Its objective is to
finally achieve the one that indicates the best the positions
of all the ROI. At each iteration, a 3-D Delaunay triangular
mesh is built �or updated, after the first iteration�, and then
for each reconstructed 3-D point, we evaluate its LSC to
select candidate 3-D points for the design of the new pat-
tern. This iterative process keeps running until the stop con-
dition is satisfied. In the following sections, we describe
each step in detail.

2.2.1 Delaunay triangular mesh creation
To estimate the LSC of each 3-D point, it is necessary to
build a 3-D mesh from the obtained 3-D point cloud. The
Delaunay triangular mesh is one of the most used in the
literature. A 2-D Delaunay triangular mesh has the property
that the circumcircle �or circumsphere, in the 3-D case� of
every triangle does not contain any other point.7 In our
work, instead of directly building 3-D Delaunay triangular
mesh by using 3-D coordinates �x ,y ,z�, we create at first a
2-D Delaunay triangular mesh by using the coordinates
�x ,y� of all the 3-D points to get the neighborhood infor-
mation, and then we add the coordinates z to each 2-D
vertex to get a 3-D Delaunay triangular mesh. In this way,
it is ensured that all points situated near the object borders
have strong LSC.

2.2.2 LSC estimation
A normal curvature is the generalization of surface curva-
tures. Given a point P on the surface S and a direction ��
lying in the tangent plane of the surface S at P, the normal
curvature is calculated by intersecting S with the plane
spanned by P, the normal to S at P, and ��. The normal
curvature is the signed curvature of this curve at P. If we
compute the normal curvature for all values of �� in the
tangent plane at P, we will get a maximum value k1 and a
minimum value k2 in two orthogonal directions. k1 and k2
are called principal curvatures.

The Gaussian curvature K �also called total curvature�
and mean curvature H are the two most used LSCs based
on vertex; they are differential invariant properties that de-
pend only on the surface’s intrinsic geometry, and they play
a very important role in the theory of surfaces. They are
defined respectively as K=k1�k2 and H= �k1+k2� /2.

In our work, we chose the Gaussian curvature, because
for a minimal surface, the mean curvature is zero every-
where, whereas the Gaussian curvature may vary in differ-
ent areas. We also propose an edge-based LSC approach,
which is more adapted to our problem.

Discrete Gaussian curvature estimation. As we can
see, the Gaussian curvature is defined only for twice differ-
entiable �C2� surfaces. To get 3-D surface curvature infor-
mation, different approaches have been proposed or used to
estimate discrete Gaussian and mean curvature.8–10

Surazhsky et al. compared five curvature estimation algo-
rithms and drew the conclusion that the Gauss-Bonnet
scheme is the best algorithm for the estimation of discrete
Gaussian curvature.11
June 2009/Vol. 48�6�2
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Vertex Vi is considered as a neighbor of vertex V if the
dge VVi belongs to the mesh. Denote the set of neighbors
f V by �Vi � i=1,2 , . . . ,n�, the set of triangles containing V
y �Ti=��Vi ,V ,V�i+1�mod n� � i=1,2 , . . . ,n�, and the set of
ngles between V and its two successive neighbors by ��i

��Vi ,V ,V�i+1�mod n� � i=1,2 , . . . ,n� �see Fig. 1�.
The following Gauss-Bonnet–based formula is called

he classical formula for estimation of discrete Gaussian
urvature K at vertex V �Refs. 10–12� where Ai is the area
f triangle � �Vi ,V ,V�i+1�mod n�:

=
2� − �i=1

n �i

1

3�
i=1

n

Ai

. �1�

Instead of calculating the “real” area of each triangle,
eyer et al.9 consider that of the Voronoi region of each

riangle, denoted by AMixed:

=
2� − �i=1

n �i

�i=1
n Ai

Mixed . �2�

A simpler approach can be applied by ignoring the areas
f the triangles,8,13 which is also called angle deflection:

= 2� − �
i=1

n

�i. �3�

dge-based LSC estimation. For a smooth surface
atch, the Gaussian curvature provides reliable information
or our application. However, in the case of a folded paper
eighborhood, i.e., if a vertex has two neighbors on a same
dge and others on two planes, it has a value of zero �see
ig. 2�. In this case, the Gaussian curvature is not appro-
riate for our application. We therefore proposed an ap-
roach based on edges for the LSC analysis.

For each triangle, we calculate its normal vector �often
imply called normal, and commonly denoted N�. A plane
assing through three points ��xi ,yi ,zi� � i=1,2 ,3� can be
efined by the following equation, where N= �a b c�T is the
ormal vector:

V

V1

V2

V3

V4

V5

α3

ig. 1 Vertex V and its neighborhood in 3-D Delaunay triangular
esh.
ptical Engineering 067203-
�a b c�	x1 x2 x3

y1 y2 y3

z1 z2 z3

 = �1 1 1� . �4�

The angle � between two intersecting planes is known as
the dihedral angle. If we define respectively the two planes
by a1x+b1y+c1z=1 and a2x+b2y+c2z=1, their normal
vectors are respectively N1= �a1 b1 c1�T and N2

= �a2 b2 c2�T. The dihedral angle � is given as follows:

cos � =
N1 . N2

�N1� � �N2�
=

a1a2 + b1b2 + c1c2

�a1
2 + b1

2 + c1
2�1/2�a2

2 + b2
2 + c2

2�1/2 . �5�

We simply define the LSC of an edge E by K=�. Thus,
the vertices on the border of an object will always have
strong surface curvature, even in the case shown in Fig. 2,
so that more points will be projected progressively around
them, which will lead to the final ROI localization.

2.2.3 Selection of candidate vertices

A vertex V of the current 3-D triangular mesh is selected as
a candidate vertex for the design of a new pattern if the
following two conditions are both satisfied:

1. K��.
2. Ai�Amin �i=1,2 , . . . ,n�.

� and Amin are predefined thresholds. The use of high LSC
threshold � is essential, since it is necessary to project more
points around a vertex only if it has strong surface curva-
ture; in other words, if it is situated either at the border of
an object, or on the high surface curvature part of the ob-
ject. In addition, it is necessary to define another threshold
Amin, the minimal area of triangle, because if a vertex V is
situated at the border of an object, it may always have
strong surface curvature; therefore, it is necessary to deter-
mine at which moment the vertex V should be ignored for
new pattern design.

11
22

33

4455

66

77

Fig. 2 The type of surface patch for which the Gauss-Bonnet
scheme does not work.
June 2009/Vol. 48�6�3
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.2.4 Design of new pattern
he new pattern designed for the next iteration is at first

nitialized as an image with black background, and then
ertain white pattern points are added in the image at spe-
ific positions.

In the case of the discrete Gaussian curvature estimation
pproach, for each candidate vertex V obtained previously,
ts corresponding pattern point P and those of all its neigh-
ors are found by using the calibration parameters of the
ideo projector; four white points are then added in the new
attern around the position of P at distance d �see Fig. 3�.
o ensure that the pattern points fall closer and closer to the
OI, the current neighborhood information of the point P
ust be taken into account to determine the value of d. We

herefore set d=D /3, where D is the average distance be-
ween the pattern point P and all its neighbors based on the
urrent 3-D mesh.

In the case of the edge-based LSC estimation approach,
or each candidate edge E, as shown in Fig. 4, the corre-
ponding pattern points of the four vertices of the two ad-
acent triangles can be determined by using the calibration
arameters of the projector; the positions of the two new
attern points are given by each triangle centroid �in black�.

.2.5 Stop condition
n some cases, by analyzing the distribution of pattern
oints, it is possible to localize the ROI at the second itera-
ion. However, several more iterations are often necessary.

3D triangular mesh

V

V1

V2

V3

V4

V5

Fig. 3 Four pattern points are added in a new

V1

V2
V3

V4

3D triangular mesh

E

Fig. 4 Determination of positions of new pat
curvature.
ptical Engineering 067203-
Our new pattern design method ensures that the pattern
points fall closer and closer to the ROI after each iteration;
therefore, the triangles around these regions in the obtained
3-D triangular mesh become smaller and smaller. When the
area of the smallest triangle is smaller than the predefined
threshold Amin, even if the vertex V still has strong surface
curvature, it will not be selected as a candidate vertex for
the new pattern design. In this way, for whichever LSC
estimation approach, from the second iteration of the pat-
tern adaptation process, the number of pattern points keeps
increasing for several iterations, until it reaches to a maxi-
mum. The iterative process stops then, and this last pattern
is selected for ROI localization.

2.3 ROI Localization
In the context of image processing, morphology stands for a
set of operations that process shape-based images. Morpho-
logical operations apply a structuring element Se to an input
image, with its center over each pixel, and create an output
image of the same size. The value of each pixel in the
output image is determined by both the corresponding pixel
in the input image and its neighbors defined by Se. By
choosing the size and shape of the neighborhood, it is pos-
sible to construct a morphological operation that is sensi-
tive to specific shapes �such as line, disk, rectangle, and
square� in the input image.14

Dilation and erosion are two fundamental morphological
operations. Dilation adds pixels to the boundaries of objects

2D pattern

P

P2

P1

P4

P3

P5

d

d

around the position of the old pattern point P.

p1

p3p2

p4

2D Pattern

ints from a 3-D edge that has high surface
pattern
tern po
June 2009/Vol. 48�6�4
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n the output image, while erosion removes pixels on object
oundaries. The number and positions of pixels added or
emoved from the objects in an image depends on the size
nd shape of the applied structuring element Se.

Results
t is well known that the smaller an object is, the harder it
s to localize it. We therefore built a synthetic scene �see
ig. 5�a�� for the efficiency evaluation of our approach. In

his scene, three small objects of different forms and sizes
re situated at different positions and orientations. Object A

(a)

A

B

C

Fig. 5 Two scenes: �a� synthetic scene with d
handle and two pipes of different orientation.

(a) (b)

Fig. 6 Images of the synthetic scene acquired
�a� with the classical formula, �=3�10−4; �b�
deflection formula, �=0.35; �d� with the dihedra
ptical Engineering 067203-
is a piece of coin �diameter: 21 mm, depth: 2 mm�; object
B is a small box �length: 51 mm, width: 22 mm, depth:
10 mm�; and object C is a 5-in battery �length: 47 mm,
diameter/depth: 14 mm�.

We also tested our approach on a real scene—part of a
wall in our office. The objective is to localize the two pipes
whose diameter is respectively 16 mm and 9 mm and the
handle of a curtain �see Fig. 5�b��.

For the synthetic scene, with the same initial pattern, we
applied respectively in the pattern adaptation process the
four preceding formulas: classical, Meyer’s, angle deflec-
tion, and dihedral angle. Figure 6 shows the scene at the

(b)

types of objects; �b� real scene with a curtain

(c) (d)

left camera, at the 2nd, 3rd, and 4th iterations:
eyer’s formula, �=3�10−4; �c� with the angle
formula, �=20 deg.
ifferent
by the
with M
l angle
June 2009/Vol. 48�6�5
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econd to fourth/fifth iterations, by applying each formula
espectively.

It is easy to notice that with the classical formula and
eyer’s formula, there is no difficulty recognizing the bor-

ers of objects. However, it is hard to recognize the flat part
f objects. Actually, more and more points are projected on
he objects, despite the geometric characteristics of the ob-
ect surface. This is caused by the fact that the classical
ormula and that of Meyer take into account the areas of the
urrounding triangles. Therefore, for a given vertex with
eak LSC, if at the next iteration its neighborhood changes
ecause of other vertices, its estimated LSC may become
igher since the areas of its surrounding triangles decrease.
s a result, these two approaches are considered inappro-
riate for our application.

Starting from the same initial pattern, by applying the
ngle deflection formula and dihedral angle formula, better

Table 1 Number of points projected at each ite

Iteration 1st 2nd

Classical 484 180

Meyer’s 484 184

Angle deflection 484 115

Dihedral angle 484 92

(a) (b)

ig. 7 Images of the real scene with two pipes and a curtain handle,
cquired by the left camera, at the 2nd, 3rd, and 4th iterations: �a�
ith the angle deflection formula, �=0.35; �b� with dihedral angle

ormula, �=20 deg.
ptical Engineering 067203-
results are obtained. However, compared to the angle de-
flection formula, the dihedral angle formula presents more
advantages: the pattern adaptation is more precise, and
much fewer points were projected �see Table 1�. This can
be explained by our new pattern design strategy: for the
Gauss-Bonnet–based LSC estimation approaches, since the
estimation is based on vertices, in order to catch the ROI, it
is necessary to add at least four points around each candi-
date vertex, whereas for the edge-based approach, only two
points need to be added, since the two adjacent triangles
associated to the candidate edge reflect the local ROI.
Therefore, compared to the Gauss-Bonnet–based LSC esti-
mation approaches, the dihedral angle formula leads to less
pattern points.

Another advantage presented by the dihedral angle for-
mula is that it works for all types of neighborhood, whereas
the angle deflection formula does not work for a folded
paper neighborhood. This was proven by some experiments
on the real scene presented previously. We can see from
Fig. 7�b� that with the dihedral angle formula, we encoun-
tered no difficulty localizing the handle and the two pipes,
whereas with the angle deflection formula, the vertical pipe
is ignored �see Fig. 7�a��.

The reason is illustrated in Fig. 8. Actually, in the initial
3-D triangular mesh, the vertices representing the small
pipe have the folded paper neighborhoods. By using the
angle deflection formula, they all have zero LSC; therefore,
no point was added around them during the rest of the
iterative pattern adaptation process.

Figure 9 shows respectively, for the synthetic and real
scene, how the number of pattern points evolves during the
pattern adaptation process by using the four LSC estimation
approaches. We finally abandoned the classical formula and

by using the four LSC estimation approaches.

3rd 4th 5th Total

501 1,986 — 3,151

616 2,602 — 3,886

225 496 976 2,296

178 317 447 1,518

Fig. 8 The initial 3-D triangular mesh of the scene, with the vertical
pipe in big zoom.
ration
June 2009/Vol. 48�6�6
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eyer’s formula at the end of the third iteration for the
ynthetic scene, because the number of pattern points in-
reases too much, and they do not reveal pertinently the
OI. Therefore, they were not tested for the real scene. By

(a)

Fig. 9 The curve of the pattern point number d
scene; �b� the real scene.

(a)

Fig. 10 Projected patterns for the synthetic sc
iterations; �b� 5th to 7th iterations.
ptical Engineering 067203-
using the angle deflection formula and dihedral angle for-
mula, however, for both the synthetic and the real scene, we
can see that the number of pattern points increases from the
second iteration, until a maximum value is reached at the

(b)

e pattern adaptation process: �a� the synthetic

(b)

ith the dihedral angle formula: �a� 2nd to 4th
uring th
ene w
June 2009/Vol. 48�6�7
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fth iteration, and then the number drops down. Therefore,
or both the synthetic and the real scene, it was the pattern
mage at the fifth iteration that was selected for the ROI
ocalization.

This decision is supported by comparing visually all the
attern images projected during the iterative process. As an
xample, Fig. 10 lists the patterns projected from the sec-
nd to the seventh iteration for the localization of the ROI
f the synthetic scene, by using the dihedral angle formula.
t is obvious that at the fifth iteration, when the pattern
oints’ number reaches to the maximum value, that the dis-
ribution of pattern points best reveals the ROI: both bor-
ers and nonflat parts of objects are indicated. The same
henomenon was observed by using the angle deflection
ormula. We therefore always select the pattern with the
aximum number of points. By applying several morphol-

gy operations, the ROI can be marked out.
Figure 11 shows the results of ROI localization for both

ynthetic and real scenes, by applying a structuring disk
espectively on four selected pattern images. Obviously, by
pplying the dihedral angle formula, the ROI was better
ocalized.

Conclusions
e presented a concept of integrating a preprocess of ROI

ocalization into a 3-D scanner, and we studied its feasibil-
ty and efficiency under an active stereoscopic system.

The core of the ROI localization is the iterative pattern
daptation process. The local surface curvature estimation
lays a very important role during the whole process. We

(a)

Fig. 11 ROI localization for both synthetic and
with the dihedral angle method.
ptical Engineering 067203-
have tested three Gauss-Bonnet–based Gaussian curvature
estimation approaches, among which the angle deflection
formula led to the best results. However, in the case of a
folded paper neighborhood, it does not work well. We
therefore proposed an edge-based LSC estimation ap-
proach: the dihedral angle formula. Our experiments
showed that this method works well for all types of 3-D
triangular mesh. Compared to the angle deflection formula,
the dihedral angle formula presents other advantages: dur-
ing the iterative pattern adaptation process, fewer points are
projected, so less time is needed; and the pattern-based ROI
localization is much precise.

This concept is especially useful for the scanning of
building interiors, because the ceilings and the walls are
often flat, and it is therefore a waste of time to scan them
with high precision. However, if there are some objects on
the wall, it may be necessary to scan the objects precisely.
Our solution consists in integrating the ROI localization
approach into a 3–D scanner as preprocessing process,
which would help the scanner to localize rapidly the ob-
jects, so that precise scanning would be done only in these
regions instead of in the entire scene. Thus, the obtained
3-D point cloud would be multiresolution, which represents
pertinently the scene.
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