
HAL Id: hal-00637665
https://hal.science/hal-00637665v1

Submitted on 2 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Document classification: Combining structure and
content

Samaneh Chagheri, Sylvie Calabretto, Catherine Roussey, Cyril Dumoulin

To cite this version:
Samaneh Chagheri, Sylvie Calabretto, Catherine Roussey, Cyril Dumoulin. Document classification:
Combining structure and content. 13th International Conference on Entreprise Information Systems
(ICEIS), Jun 2011, Beijing, China. p. - p. �hal-00637665�

https://hal.science/hal-00637665v1
https://hal.archives-ouvertes.fr

DOCUMENT CLASSIFICATION
Combining Structure and Content

Samaneh Chagheri, Sylvie Calabretto
Univeriste de Lyon, CNRS, LIRIS UMR 5205, INSA de Lyon,7 avenue Jean Capelle, villeurbanne, France

Samaneh.chagheri@insa-lyon.fr,sylvie.calabretto@insa-lyon.fr

Catherine Roussey
Cemagref, Campus des Cézeaux, Clermont Ferrand, 24 avenue des Landais, Aubière, France

Catherine.roussey@liris.cnrs.fr

Cyril Dumoulin
27, rue Lucien Langénieux, Roanne, France

Cyril.dumoulin@continew.fr

Keywords: Document Classification, Document Structure, Technical Document, Support Vector Machine, Vector

Space Model.

Abstract: Technical documentation such as user manual and manufacturing document is now an important part of the

industrial production. Indeed, without such documents, the products can neither be manufactured nor used

according to their complexity. Therefore, the increasing volume of such documents stored in the electronic

format, needs an automatic classification system in order to categorize them in pre-defined classes and to

retrieve the information quickly. On the other hand, these documents are strongly structured and contain the

elements like tables and schemas. However, the traditional document classification typically classifies the

documents considering the document text and ignoring its structural elements. In this paper, we propose a

method which makes use of structural elements to create the document feature vector for classification. A

feature in this vector is a combination of the term and the structure. The document structure is represented

by the tags of the XML document. The SVM algorithm has been used as learning and classifying algorithm.

1 INTRODUCTION

The term “technical documentation” refers to

different product-related documents such as user

manuals and product specifications. The increasing

volume of these documents and their important role

in the product life cycle requires an automatic

classification system in order to categorize them in

the proper pre-defined classed and to facilitate the

information retrieval. The technical documents are

strongly structured and they have more tables and

schemas than the general document collections.

However, the traditional classification systems use

only the document content and ignore its structural

elements for classification. But the continuous

growth in the number of structured documents as

XML documents has increased the need for

developing the classification systems based on the

document structure. These systems extract the

available structural elements in the document, and

apply them for document representation in order to

improve the classification accuracy. The document

structure is represented as the tags of the XML

document. However, much of the information is

contained in the text fields not just in tag labels;

therefore, devising a method which exploits the

structure and the content of the document is

desirable.

In this article, we have proposed a document

representation method which is an extension of the

vector space model of Salton (Salton, 1968)

adjusting the calculation of the tf*idf by considering

the structural element instead of the entire

document. The document is represented as a tree in

which nodes are structural elements, and leaves are

the document textual parts. The rest of the article is

organized as follows. We present in section 2 the

Author- produced version of the paper presented at 3th International Conference on Entreprise Information Systems (ICEIS), 8-11 June 2011, Beijing, China

different approaches proposed in the literature to

XML document classification. Basic methods for

classification are described in section 3. Our

proposal on document representation and feature

vector construction is explained in section 4. Section

5 describes the experiments and results. And finally,

section 6 presents the conclusion and future works.

2 RELATED WORKS

The continuous growth in XML documents has

caused different efforts in developing classification

systems based on document structure. Document

representation has to be done before classification

process. The representation models can be divided

into three groups: the first group are the models

which do not consider the structure of document.

These works focus on representing the document

content as a bag of words to classify them. They are

the most studied classification methods. The second

group are the models which take into account only

the structure of a document in order to classify them

without considering the document content. For

example, (Wisniewski, Denoyer, & Gallinari, 2005)

use Bayesien model to generate the possible DTDs

of a documents collection. A class represents a

DTD. They are interested only on document

structure for classification. (Aïtelhadj, Mezghiche, &

Souam, 2009) and (Dalamagas, Cheng, Winkel, &

Sellis, 2005) have also classified the documents by

only document structure trees similarities. Finally,

the third group is composed of the models which

consider both structure and content of XML

documents in representation.

Mostly the classification systems use vector

space model for document representation, the

difference is based on selecting vector features and

their weight computation. In (Doucet & Ahonen--

Myka, 2002) each vector feature can be a word or a

tag of XML document. The tf*ief (Term Frequency

* Inverse Element Frequency) is used for calculating

the weight of the words or the tags in documents. In

(Vercoustre, Fegas, Lechevallier, & Despeyroux,

2006) a feature can be a path of the XML tree or a

path following by a text leaf. The term weight is

based on tf*idf. This allows taking into account

either the structure itself or the structure and content

of these documents. (Yi & Sundaresan, 2000) have

also used a vector model containing terms or XML

tree paths as the vector elements. Ghosh (Ghosh &

Mitra, 2008) has proposed a composite kernel for

fusion of content and structure information. The

paths from root to leaves are used as indexing

elements in structure kernel weighted by tf*idf. The

content and structure similarities are measured

independently. A linear combination of these kernels

is used finally for a content-structure classification

by SVM. (Wu & Tang, 2008) propose a bottom up

approach in which the structural elements are

document tree nodes and the leaves are textual

section of each element. First the terms in leaf nodes

are identified, and their occurrences are extracted

and normalized. Then the key terms are

substantiated with the structural information

included in the tags by the notion of key path. A key

path ends at a leaf node that contains at least one key

term for a class. By using the key terms set and key

path the similarity is computed between new

documents and class models. (Yan, Jin, Li, Liu, &

Hao, 2008) propose a document representation by

the vectors of weighted words, a vector for each

structural element in a document. In this method a

weight is associated to each structural element

according to its level in the document tree. Then the

weight of words is calculated based on its frequency

inside the element and the importance of this

element. (Yang & Wang, 2010) (Yang & Zhang,

2008) have proposed an extension of the vector

model called the Structured Link Vector Model

(SLVM). In their model a document is represented

by a set of term vectors, a vector for each structural

element. The term weight is calculated by term

frequency in each document element and the inverse

document frequency of term.

The model that we propose belongs to the third

group, constructing the document feature vector by

structure and content.

3 DOCUMENT CLASSIFICATION

Classification can be divided in two principal

phases. The first phase is document representation,

and the second phase is classification. The standard

document representation used in text classification is

the vector space model. The difference of

classification systems is in document representation

models. The more relevant the representation is, the

more relevant the classification will be. The second

phase includes learning from training corpus,

making a model for classes and classifying the new

documents according to the model. In this section

we are going to explain the vector space model

followed by a presentation of the SVM classification

algorithm which is used in our approach.

3.1 Vector Space Model

The Vector Space Model (VSM) proposed by Salton

(Salton, 1968) is a common technique for document

representation in classification. In this model each

document is represented as a vector of features. Each

feature is associated with a weight. Usually these

features are simple words. The feature weight can be

simply a Boolean indicating the presence or absence

of the word in document, its occurrence number in

document or it can be calculated by a formula like

the well known tf*idf method.

So, the feature vector of document d of

collection D with n distinct terms is represented as

follows:

dd= [w1,d, w2,d, …, wn,d] (1)

wi,d= tfi,d* idfi (2)

wi,d is the weight of term i of document d, where

tf is the frequency of term i in document d and idfi =

log (|D|/|Di|) is inverse document frequency, |D| is

the total number of the documents in collection D,

and |Di| is the number of documents in collection

containing the term i.

Figure 1: A document feature vector

But in classical vector space model, document

structure is not considered. For taking into account

the notion of structure in document representation an

extension of VSM seems promising.

3.2 Support Vector Machine

The Support Vector Machine (SVM) proposed by

Vapnik (Cortes & Vapnik, 1995), is a supervised

learning algorithm that can be applied to

classification. It is a binary linear classifier which

separates the positives and negatives examples in a

training set. The method looks for the hyperplane

that separates positive examples from negative

examples, ensuring that the margin between the

nearest positives and negatives is maximal. The

effectiveness of SVM is superior to other methods of

text classification. SVM makes a model representing

the training examples as the points in a dimensional

space separated by the hyperplane, and it uses this

model to predict a new example belongs to which

side of this hyperplane. The examples used in

searching the hyperplane are no longer used and

only these support vectors are used to classify new

case. This makes a very fast method.

Figure 2: Maximum-margin hyperplane

4 GENERAL OVERVIEW OF

OUR APPROCH

In this article we propose a combination of content

and structure of XML document in the vector model

for document representation. In our vector, each

feature is a couple of (tag: term). Tag corresponds to

a structural element in XML document. XML

document is represented as a tree in which the nodes

are the XML tags and the leaves are the textual part

in each document element. To construct our features

we apply two processes. First, a process is done on

the logical structure document in order to construct

the aggregated tree of XML document. Secondly, a

lexical process is done on document content to select

the most informative terms. These processes aim to

reduce the computational complexity and improve

system performance. Then the weight of features is

computed. Finally, the document vectors are used as

the inputs of classification system.

4.1 Document Tree Construction

We consider the XML document as a tree in which

the nodes are tagged by structural labels like title,

chapter, etc. The arcs of this tree represent the

inclusion relation between nodes, and the leaf nodes

contain the document text. The depths of nodes in

document tree are important. Thus we consider that

two nodes with the same label localized at different

depths are two different structural elements. The

structural element represents a node type.

Figure 3: XML document tree

We modify document tree organization by

aggregating the nodes with the same label and

localized at the same depth. For example, all

paragraphs in a section are aggregated to a single

node “paragraph” which contains all terms of these

paragraphs. We take into account only the leaf nodes

which contain text. We assume that all documents of

collection satisfy the same logical structure. So, a

label becomes an adequate identifier of the structural

element. Also, we filter some tags which are not

representative for document semantic based on a tag

list made manually.

Figure 4: XML Document aggregated tree

4.2 Feature Extraction

After constructing the aggregated tree, we extract

the terms in each node. We apply a series of

linguistic analysis. First we extract the terms lemma

and their part of speech using TreeTagger. Secondly

we filter the words, just nouns and verbs are kept

and the other words are removed. Then the words

are replaced by their lemma. The result of such

analysis is called term. Therefore, each feature is

made by combining the node label and the term, for

example (title: technical) or (p: cleaning). This

feature represents the document structure and

content. Our hypothesis is that a term which appears

in two different structural elements should be

considered as two different features. Also, its weight

is different. Moving down in document tree, form

root to leaf, decreases the elements importance. For

example the word “classification” appears in the

document title and in one paragraph composes two

different features: (title: classification) and

(paragraph: classification). The weight of the first

feature is more important than the second.

4.3 Weight Computation

We assume that terms occurring in different

structural elements have different importance. For

calculating the weight of features we use an

extension of traditional tf*idf on structural element

level instead of document level. We also take into

account the importance of the structural element in

which the term has appeared. We assume that the

deeper a node is in the document tree, the less it will

be important. Therefore, the weight of feature will

be calculated as below:

 (3)

 (4)

 (5)

Where i, e, and d represent respectively the term

i, the structural element e, like “paragraph” and the

document d in the collection.

The Term Frequency TFi,e,d is the number of

occurrences of the term i in structural element type e

inside the document d. IDEFd,e is the Inverse

Document Element Frequency with |De| as the

number of documents in the collection having a

node of type e, and |De,i| as the number of documents

having node e containing the term i. IEDe is the

Inverse Element Depth that represents the

importance of the structural element e in the

document. Where Ld is the depth of the document

tree, and ld,e is the depth of the node e in this

document.

After extracting all features in documents and

calculating their weight, document vector is

constructed and SVM is used for learning and

classifying.

5 EXPERIMENTATION AND

RESULTS

We have developed a prototype for the document

classification system by implementing the algorithm

described in the previous section. The

implementation is on java with some functionality

like extracting the document schema and structure,

extracting the words and generating the combined

feature, calculating the feature weight and

constructing the document feature vector. The

TreeTagger and GATE Tokeniser have been used

for word processing. The SVM
light

(Joachims, 1999)

has been used for learning and classifying the

documents. It is an implementation of SVM

algorithm. This algorithm has scalable memory

requirements and can handle problems with many

thousands of support vectors efficiently.

5.1 Test Collection

Experiments were performed on the Reuters Corpus

Volume 1 (RCV1) which includes over 800,000

English language news stories. Reuters is a leading

global provider of financial information, news and

technology to financial institutions, the media,

businesses and individuals. The stories in this

collection are formatted using a consistent XML

schema. Reuters collection has been used by many

researchers in the field of information retrieval and

machine learning. All the stories in RCV1 have been

coded for topic, region (geography) and industry

sector and they are multiclass. Another test

collection is selected from INEX XML document

mining collection.

In order to do a mono classification we have

used the first topic code in documents as the class of

documents. Also the unclassified documents are

removed from collection. We have used 800

documents of Reuters collection by considering 400

positive and 400 negative examples for a topic class

called “GCAT”. After analyzing the structural

elements in documents, we have selected the header

and paragraphs tags in stories. These tags seem more

representative for document topic. Other tags are

removed from document tree. TreeTagger and

Tokeniser of platform GATE has been used to

extract the terms. In INEX collection the documents

are single label for mono classification and the

selected structural elements are name, figure

caption, table, section and paragraph.

5.2 Experimentation

We have performed two experiments on test

collections by using SVM. The first one called

“content and structure” is an implementation of our

proposed method in which the document vector is

made by tag and term, and where the feature weight

is also calculated using our proposed formula. The

second one called “content only” uses a vector of

simple terms weighted by standard tf*idf. The

application has been implemented in java except

SVM
light

algorithm which is on C. K-fold Cross

validation has been used as the method for

evaluating the system performance.

The results of the classifications are shown in

table 1. Precision and recall as the most widely used

metrics for evaluating the correctness of

classification have been used. Another used metric is

F-Measure that combines precision and recall. The

results demonstrate that including structure has

improved the classification accuracy in Reuters

collection which is a homogenous collection by a

limited and homogenous structural elements set. But

in INEX Collection with heterogeneous structural

elements the results shows a worse recall. Some

modification is performing in order to manage the

heterogeneous collections with different XML

schemas.

Table 1: classification results

Vector

features

collection Precision Recall F-measure

Content &

structure
Reuters

0.96 0.92 0.94

Content

only

0.93 0.85 0.89

Content &

structure
Inex

0.98 0.48 0.65

Content

only

0.98 0.60 0.75

6 CONCLUSIONS AND FUTURE

WORKS

In this article we have proposed a model for the

XML document representation in order to classify

them in the pre-defined classes. We proposed a

combination of the structure and the content in

document representation by the vector model. The

features are the couples of (tag: term), all weighted

by an extension of tf*idf taking into account the

terms position in the documents tree. The document

tree is constructed by filtering non relevant structural

elements and aggregating the nodes having the same

label and the same path in tree.

We have done the experiments on Reuters XML

news collection and INEX XML mining collection.

In Reuters collection all documents share the same

logical structure. In future works we intent to

improve our proposition in order to achieve a better

performance on the heterogeneous technical

document collection of Continew. Continew is a

company that ensures the storage and security of the

critical data and the technical documentation. The

documents in this collection have been created by

different authors using different styles to present

their logical layout. So, we have to first detect the

logical structure of the document, reconstruct the

document structure and then use this structure for

classification.

REFERENCES

Aïtelhadj, A., Mezghiche, M., & Souam, F. (2009).

Classification de Structures Arborescentes: Cas de

Documents XML. CORIA 2009, 301-317.

Cortes, C., & Vapnik, V. (1995). Support-vector networks.

Machine learning , 273-297.

Dalamagas, T., Cheng, T., Winkel, K.-J., & Sellis, T.

(2005). Clustering XML Documents Using Structural

Summaries. EDBT , 547-556.

Doucet, A., & Ahonen-Myka, H. (2002). Naive Clustering

of a Large XML Document Collection. INEX

Workshop 2002 , 81-87.

Ghosh, S., & Mitra, P. (2008). Combining Content and

Structure Similarity for XML Document. ICPR , 1-4.

Joachims, T. (1999). Making large-Scale SVM Learning

Practical. Advances in Kernel Methods - Support

Vector Learning, B. Schölkopf and C. Burges and A.

Smola (ed.), MIT-Press , 169-184.

Joachims, T. (1999). Making large-Scale SVM Learning

Practical. Advances in Kernel Methods - Support

Vector Learning, B. Schölkopf and C. Burges and A.

Smola (ed.), MIT-Press , 169-184.

Salton, G. (1968). Search and retrieval experiments in

real-time information retrieval. (C. University, Ed.)

1082-1093.

Vercoustre, A.-M., Fegas, M., Lechevallier, Y., &

Despeyroux, T. (2006). Classification de documents

XML à partir d’une représentation linéaire des arbres

de ces documents. EGC 2006 .

Wisniewski, G., Denoyer, L., & Gallinari, P. (2005).

Classification automatique de documents structurés.

Application au corpus d’arbres étiquetés de type

XML. CORIA 2005 Grenoble , 52-66.

Wu, J., & Tang, J. (2008). A bottom-up approach for

XML documents classification. (ACM, Ed.) ACM

International Conference Proceeding Series; Vol. 299

, 131-137.

Yan, H., Jin, D., Li, L., Liu, B., & Hao, Y. (2008). Feature

Matrix Extraction and Classification of XML Pages.

APWeb 2008 Workshops , 210-219.

Yang, J., & Wang, S. (2010). Extended VSM for XML

Document Classification Using Frequent Subtrees.

INEX 2009 , 441-448.

Yang, J., & Zhang, F. (2008). XML Document

Classification Using Extended VSM. INEX 2007 ,

234–244.

Yi, J., & Sundaresan, N. (2000). A classifier for semi-

structured documents. KDD '00 , 340-344.

