N

HAL

open science

LU-factorization and probability

Vincent Vigon

» To cite this version:

‘ Vincent Vigon. LU-factorization and probability. 2011. hal-00637646

HAL Id: hal-00637646
https://hal.science/hal-00637646

Preprint submitted on 2 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00637646
https://hal.archives-ouvertes.fr

LU-factorization and probability

Vincent Vigon, IRMA, Université de Strashourg
September 23, 2011

Abstract

Our initial motivation was to understand links beetween WH-factorizations
for random walks and LU-factorizations for Markov chains has interpreated
by Grassman [Gra87]. Actually, first ones are particular cases of sec-
ond ones, up to Fourier transforms. We produce a new proof of LU-
factorizations which is valid for any Markov chain with a denumerable
state space equiped with a pre-order relation. Factors have nice inter-
pretations in term of subordinated Markov chains. In particular, the
LU-factorization of the potential Matrice determine the law of the global
minimum of the Markov chain.

For any matrice, there are two mains LU-factorizations according you
decide to entry 1 in the diagonal of the first or of the second factor. When
we factorize the generator of a general Markov chain, one factorization is
always valid while the other require some hypothesis on the graph of the
transition matrix. This disymetry come from the fact that the class of
sub-stochastic matrices is not stable under transposition. We generalize
our work to the class of matrices with spectral radius less that one; this
allow us to play with transposition and so with time reversal.

We study some particular cases as: skip-free Markov chains, random
walks (with gives the WH-factorization), reversible Markov chains (wich
gives the Cholesky factorization). We use the LU-factorization to compute
invariant measures. We exhibit some pathologies: non-associativity, non-
unicity which can be cured by smooth assumptions (as irreductibility).

1 Introduction

The generator of a Markov chain admits a LU-factorization which can be proved
and interpreted in virtues of probabilities. This was shown by Grassman [Gra87],
extended by [Hey95], and Zhao, Li, Braun [ZLB97]. In many special cases,
this factorization leads to interesting method to compute invariant measures
and more generally to study structured Markov chains as the one appearing in
queuing systems cf. Cao , Li, Zhao [LC04] [LZ02], [LZ04]. Recently, a book by
Li [Li10] was completely devoted to this subject.

In an other part of the mathematical world, the LU-factorization was exten-
sively studied for M-matrices (which includes generators of Markov chains) see
Fiedler, Ptatk [FP62], Kuo [Kuo77] , Funderlic, Plemmons [FP81], Varga, Cai



[VC82], McDonald, Schneider [MS98]. But these studies were concentrated on
finite matrices while probabilistic methods allow to work with infinite matrices
(e.g. matrices indexed by Z as we will see). Of course, probabilists are not
alone to do LU-factorization with infinite matrices c.f. Andrews, Smith , Ward
[AWS86], [ASW&6].

But before all these works was known the Wiener-Hopf factorization for ran-
dom walk see e.g. Feller [Fel66]. We will explain that, up to a Fourier Transform,
the LU-factorization is the natural generalization of the WH-factorization. But
be carefull, the WH-factorization was already generalized in an other direction
(less natural we think) by Barlow, Rogers & Willams [BRWS80], [Wil84], [Wil91],
[Wil0g].

We now produce a "mathematical" summary: Consider (P(z,y))s,ycr & sub-
stochastic matrix on a denumerable state space F equipped with a pre-order
relation < (e.g. £ =Z and = is <). We think P as the transition Matrix of an
eventually dying Markov chain which can goes up or goes down in E. Let I be
the identity matrix indexed by E. The matrix I — P is called the generator, its
"inverse" U = I + P + P? + ... is called the potential Matrix.

We can always give a sense to I — P = (I — L)(I — K) for some matrices
L > 0,K > 0 with "triangular shape" i.e. L(z,y) >0 < y = x and K(z,y) >
0 & y < z. Remark that our situation is very general: we can chose < to
be either a pre-order or an order relation, so L, K are either block-triangular or
triangular matrices. We didn’t need that < is a well-order: contrary to classical
methods, we will never make any recurrence on the states.

But more interesting : I — K is itself the generator of a decreasing Markov
chain n — X5 while I — L is, up to a Doob-transform, the generator of an
increasing Markov chain n — X< . Both X+ and X+ are some time-changes of
the initial Markov chain X driven by P. On the random walk case, the excessive
function involved in the Doob-transform of I — L is constant, so we find out the
classical WH-factorization.

To arrive to the factorization of I — P, we start to establish a general method
to factorize the potential matrix U = Y,y P". To go from U = VW to
(I —P)=(I—-L)(I—- K) simply use the fact that generators are the inverse of
potential matrices.

This simple program will be accomplish in few pages during sections 3 and
5. The remaining part of this article will be devoted to specifications and gen-
eralizations:

e Section 4: The factorization U = VW will be disintegrated by the formula
U(l‘, Z)PIDZ{X-If = y} = V(‘La y)W(y7 Z)

where P, is the "homogeneous bridge" while X+, is the final value of
X+ which is also the global minima of the trajectory. This formula shows
how the LU-factors give an expression for the law of the minimum.

e Section 6: In the factorization (I — P) = (I — L)(I — K) we have imposed
that the second factor has 1 on its diagonal. Surprisingly, the existence of



I-P=(I-L")I-K’) with 1 on the diagonal of the first factor, requires
an additional condition on P: it does not exist a recurrent state which is
reachable from above and not leavable to bellow. These limit was already
point out for M-matrices (see Varga, Cai [VC82]).

e Section 7: We derive other factorizations: the classical three terms LDU-
factorizations, and factorizations called mixed factorizations, which can
also have interesting trajectorial interpretations, as the "equation amicale
inversée" of 77.

e Section 8: We generalize our factorizations from the class of sub-stochastic
matrices to the class of non-negative matrices with spectral radius less that
one. The advantage of this larger class, is that it is stable by transposition.

e Section 9: We see how the factorization changes when we time reverse the
initial Markov chain.

e Section 10: We look at some special cases: In the skip-free Markov chain
we give a formula which gives the determinant of I — P. In the random
walk case we explain why the LU-factorization is the natural generalization
of the Wiener-Hopf-factorization. In the case where F is a part of Z we give
a special formula. In the case where P is reversible, we make the Cholesky
factorization.

e Section 11: We come back to the work of Grassmann and Heyman who
used the LU-factorization to compute the invariant measure of a positive
recurrent Markov chain.

e Section 12: On our very general case, the LU-factorization has not only
good properties. We give example of non-associativity and non-unicity.

e Section 13: We give an alternative proof of (I—P) = (I—L')(I—K’). This
new proof just use trajectorial considerations and the Markov property
(no algebraic inversion as in the previous one), but this new proof is quite
tricky.

2 Notations and setting

We consider: E a denumerable state space, a : F +— R a function which gives
the "altitude" of states. Letters z,y,z are always element of E. We write
z = y when a(z) < a(y), © ~ y when a(z) = a(y). The relation < (also
written =<, when necessary) is a pre-order relation on F (conversely, any pre-
order relation can be constructed with an altitudinal function). We write shortly
{-yt={zeE: x>y}

We consider (P(x, U))x yep & sub-stochastic matrix on E. We add a ceme-

tery point { to E and prolong P to Ey = EU{f} by P(z,1) =1-3_ . P(z,y),
P(t,1)=1.



We write U or Upp the potential matrix ), .y P". We write z ~» y to
indicates that x goes to y in the oriented graph of P. This is also equivalent to

U(z,y) > 0.
We consider N as the set of times. Letters s,t,n are always elements of N.
Intervals [s,t],]s,t] = [s + 1,t] are always discrete intervals.

Summations ) mean ) _,, summations ), mean ), y.

We denote by ) the set of trajectories from N to E;. We write X the
canonical process (the identity on ). We write P, or P the probability on
which makes X a Markov chain starting at = and with transition matrix P. In
particular we have Vx,y € E : P.{X; = y} = P(z,y). We write E, or El the
expectation under P,.

We consider a a o-finite measure on E and write P, = ) a(z)P, and
E, =), a(2)E,.

We write ¢ = min{t : X; = T} — 1 (the last time before the death) and
T, = min{t : Xy = z}. If § < T are random times, we write X[g 7 the
trajectory Xg, Xs41,..., X1, T, 1,.... we write X[ﬁ"] the reversed trajectory
X, Xgo1, oo Xy b b

By convention a(t) = +oo. We write shortly X7 > z to indicate that
Xsrmx, Xsp1 =z, ... X7 = .

When we have a function h : £ — R, we write Dy P the matrix defined by

DpP(z,y) = ZEZ;P(I,y)l{h(JDO} which is the Doob transformation. We write

PT the transposition of P. To avoid multiple parenthesis we use the following
priority rule:

DyPQ=(D,P)Q and  DyP" =D,(P")

We write I(z,y) = 1{;—,) the identity matrix on E. Let F' C E we write
Ir = 1o—yery, Pr(2,y) = lzer} P(7,y)1{yery (using Matrix multiplication,
we can write Pp = IpPIp).

Quite all quantities we will use in this article depend on the main data
which is P. This dependance is not always explicitly written. E.g. U(z,y) =
Upi(z,y) = I + P 4+ P? 4 ... We will sometime change our data e.g. Uip,)] =
I+ Pp+PE+ .., oralso Ugp =1 +qP+¢*P?+ ...

All matrices Ajp) we will introduce (called Kp), Vip), Lip], Wipj, ..) will have
the shape Ajp|(z,y) = EL[ Y, (X(0.)1{x,=y}] for some positive functional f.
For ¢ €]0,1] we have:

Agr(@,9) = BF | 3 HX o) pximy| = 0 a0-0)"EL | 37 X1 x,=)

t<7q t<Ts

where 7, is an independent geometric time. Thus |0,1] 5 ¢ — Ap(z,y) is
increasing and continuous.



3 General factorization of the potential matrix

3.1 A time changed process

Let S be any stopping time taking values in [1,{] U {+oo}. We define a time-
change by "iterating" S as follows

To=0, =5 Te=T+50Xm,q - T1 =T +50Xpm,,q (1)

All 7, are stopping times and n +— T, is strictly increasing until it eventually
jumps to +oco. We write Ty the last finite 7, or, in other words, f = min{n :
T, < oo} — 1.

Example 3.1 :

e If we chose S =min{t € [1,(] : X; € F}, for F C E, then (7,) are all the
passage times in F.

e But the example which will interest us after is S = min{¢ : X; < Xo}. In
this case X+ is a decreasing process (which means X5, < X+ ., whenever
T < 00).

n+1

Proposition 3.2 Under P, the process n — X+, is a Markov chain.

Proof: Applying the strong Markov property at the stopping time T,, we get

Eo[f(X[0,7,1) 1{xa, =2} 8(X7,,0)] = Ealf(X(0,7,)) 1{x, =o}] Ez[8(X[0,¢))]

for all positive or bounded functionals f, g on the space of trajectories. Take any
f:Ef" = Rand g: E; — R. Put f = f(X+,,X7,,..., X7,), which satisfies

f(X[0,7,)) = f- Put g(Xjo,¢1) = g(Xn,) which satisfies g(X5, ) = 9(X=,,,)-
Applying the previous equality to these f, g, we get :

Eoz[f(X-|07 X-ilﬂ cey Xjn) 1{X-\n:r} g(X-ln+1])] =
Ea[.f(X-l(J7X-|17 "'aX-ln,) I{Xjn:l‘}} E?,[g(X-h )]

which clearly indicates the Markov property. O

Remark 3.3 the reader can verify that n — (X= ,™,) is also a Markov chain.

n?

3.2 factorization

Let us write

V('Tv 1/) =E, [Z 1{X-(n :y}]

W(z,y) =E, [Z Lix, =y}l
t<S

The first matrix is the potential matrix of the Markov chain X+.



Proposition 3.4 We have

U(l'v Z) = Z V(JE, y)W(y7 Z)
yeE

Proof: We can split [0, co[ into Up[Tp, Tny1] to obtain:

U(J?,Z) = Ew Z 1{Xt:Z}
t

ZZZEz{l{Xwn:y}( > 1{Xf,:z})°Xrln.,<]} (2)

tel0,771[

Applying the Markov property at each stopping time 7,, we get:

Ul,2) =Y V(z,y)W(y,2) (3)

: N )

D T T T3 s

Here is an illustration of the equation (2) on the special case where S =
min{t : X; < Xo}. This special case will occupy us during the sequel.

4 Disintegration of the general factorization

This section is independent to next ones.
In this section we suppose U < oo. We fix three states x,y, z and suppose
that U(z,z) > 0 (which means that = ~> z in the oriented graph of P).

4.1 Recall about bridges

Let us denote by P, the probability on Q which makes X a Markov chain
starting from = and with transition matrix Dy (. ) P. Under Py, the canonical
process dies at z with probability one. We also have the following interpretation:

Pu.. = P:IJ[X[O,TZ] S / Ty > _OO] (4)



where 7, = sup{t : X; = z}. To a complete study of this bridge we send to
Vigon [Vigl1]. On this article we will see the proof of the following proposition:

Proposition 4.1 For all functionals f,g : Q — R, we have the "past-future
extraction” under P, i.e.:

Ez[Zf(X[o,t]) 1{Xt:y}g(X[t,C])} = Euny [[(X)] Ex[Y 1(x,=y3] Byla(X)]
[ t
= Euy [[(X)] Ulz,y) Eya(X)]
and we have the "past-future extraction” under Py, i.e.:
E,.. [Zf(x[o,t]) l{Xt:y}g(X[t,C])] = Bauy [{(X)] Bas:[Y_ 1ix,=4}] Eyoz[a(X)]
t t

U(z,y)U(y, 2)

Eyp:[g(X)]

4.2 Let us disintegrate the factorization

Recall that we write 7Ty the last finite 7, or, in other words, f = min{n : 7,, <
oo} — 1. On the special case where S = min{t : X; < Xy}, then Ty is the first
global minimum of the trajectory.

Proposition 4.2 We have:
PmDZ{X-[f = y} U(Iv Z) = V(‘T7 y) W(y7 Z)

Remark 4.3 Summing over all y in the previous equation, we get U(z,z) =
VW ((x, z) which is proposition 3.4.

Proof: Firstly, by the past-future extraction (proposition 4.1) applied to P.:
P {Xq, =y} =) PuofXq, =y, Top1 = o0}
=N P =t X =yt + S(Xpq) = oo}
t n
=33 Po T (Xoy) =t Xs =y, S(Xr,q) = oo}
t n

(z,9)U(y, 2)

=Y Pe g} S P (S = b (9

Secondly, by the past extraction applied to P,:
V(a:,y) = ZPIE{X—[n = y} = Z ZPJ;{Tn(X[O,t]) =t,X¢ = y}
n t n

=3 Puy{Xq, =y} Uz,y) (6)



Thirdly, because S is a stopping time taking values in |0, {]U{+o0}, on {¢ < t}
we have 115~ = 1{g=o0} © X[o,- Then, by the past extraction applied to P:

W(y,2) =Ey[D 1ix,—)) =By > (I{s—ce} © Xjo,9) Lixi=2)
t<S t

To gather formulae (5), (6), (7) gives the result. O

Proposition 4.4 We have
P { X, = 2}U(z,2) = V(z,2)W(z,2)
Proof: Let 7, be the last passage at z. Using (4), we have:
P, { X+, =2} =P, {X+, 0 Xjo,r.) = 2,72 > —00}
=P, {Xq, 0 X[o,r,) = 2/72 > —00} P {T. < o0}
— Poo{Xn, = 2} 282

U(z,z)
v W
= W from prop. 4.2
In the particular case where S = min{t : X; < X}, the previous proposition
gives us a formula for the law of the global minimum under P,.

from (4)

5 LU-factorizations

5.1 Factorizations of U
From now on, we chose two stopping times :

S =min{t: X; < Xo}
S =min{t > 1: X; < Xo}

We keep all the notations from the previous section, the prime objects will be
relative to S’.

) T SR
! T T3 Ty

Here we compare 1and V. The state space is Z and the altitude is given
by a(z) =z so = is <.
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X

0

Here the state space is Z2 = {(x1,x2)} and the altitude is given

by a(z) = —z1 + z2.

In this situation

« The time 7y (resp. 7) is the first (resp. the last) time where the process X
reaches its global minimum. We write them shortly p (resp. p’).

« The process X+ (resp. X=/) is strictly (resp. largely) decreasing.

e V(z,y) =0 for y > x and moreover V(z,y) =1 for y ~ x.

o V'(z,y) =0for y > z.

« W(z,y)=0fory <.

o W(z,y) =0 for y < 2 and moreover W'(z,y) =1 for y ~ x.
The factorization given in proposition 3.4 admits two versions

U=VW
U=v'w

which are the two classical LU-factorizations of the matrix U.

5.2 New functions

We write K and K’ the transition matrices of Markov chains X+ and X=/.
We write

We recall the convention { > z for all z € E. In particular: X; =  implies
Xjo, =z}, X9, = 1 and X+, = 1. We deduce the following lemma which will
help us later:

Lemma 5.1 P(z,1) > 0 implies k(z) > 0 and k'(z) > 0.

The next lemma links k£ and k' to laws of X, and X,. We recall that
P{>_y}(a, b) = P(a, b)l{a>—y}1{b>—y} and U[P{>y}] =1+ P{>_y} -+ (P{>_y})2 -+ ...

Lemma 5.2 We have:

Px{Xp = y} = U[P{>y}]($ay)k(y)
Pw{Xp’ = y} = U[P{L_y}](x7 y)k/(y)



Proof: First line:

P’Jf{XP = y} = E’Jf [Z 1{X[0,t[>y}1{Xt:y}1{x[t,c]ty}:|
t

=E; [Z 1{X[O,t[>y}1{xt:y}j| Py{X[U,C] = y}
t

= U[P{>y}] ((E, y)k(y)

The prime version is obtained replacing {Xo = y} by {Xjoy = y} and
X, = v} by {Xpeq = v} O

5.3 New matrices

In the new definition we define the "oplits" (a made up word) which will help
our intuition several times during the sequel.

Definition 5.3 A time ¢ such that X; = y > Xo and Xjo4 = y is called an
oplit on y. We write oplit, the set of oplits on y.

/\

1 ~
3 oplits on y

Then we denote by :

L(z,y) = E, [Z 1{X]0,t[>'th0}1{Xt=y}:| ®)
t

= Yo=yPo{Ty = 1} + La=yyPalTy € 2,00, Xjoz,—1) =y} (9)

L/($7 y) = EJL |:Z 1{X]U,t]ty>X0}1{Xt:y}:| (10)
t

= E,[foplit, | (11)

We remark immediately that L is always finite, but L’ can be eventually infinite.
We define:

px = po X the first minimum strictly after 0
P =p"0 X the last minimum strictly after 0

Proposition 5.4 We have

PL{Xp; = Z%X}o,g] - Z‘} =1L x,y)k’(y)

10



Remark 5.5 As a consequence we have Dy L(x,y) = P.{X,, = y/X[o = 2}
taking the natural convention that conditioning by a null event give 0.

Proof: First line: For x > y the equation is 0 = 0. Let us assume z < y. We
have :

P {X,. =y, X, =}

=P {T, =1, X1, =y} + Pa{T, € [2,00[ , Xjor,| = ¥ X1,.0) = ¥}

= Pa;{Ty = 1}Py{X[0,c] = y] + Pm{Ty € [27 OO[ ) X]O,Ty[ > y} Py{X[O,(] = y}
= L(z,y)k(y)

Second line: Having a look at the definition of an oplit we see that
Po[Xp =y, Xjo,q) = 2] = Eo [Z Liteoptit, } L {xi=y} 1{X]t,q>y}] = L'(z,y)K (y)
t

O

5.4 New processes

We define:
To = p, T =pao o, ;InJrl:;ln'i_p*oX[‘l ¢
ﬁé) :Pl, ;[/1 :p;oﬁé, ﬁiﬂrl = ﬁ;l'i‘P* OX[-V <]

Proposition 5.6 Under P, processes X+ and X<, are Markov chains whose
transitions matrices are Dy L and Dy L' and whose potential matrices are D, W

and Dy W'.

Proof: We write as usual X‘l[o o= (XA,5-, X9,,7,1...) and X‘l[o = (X=y5 0 Xap, 1, 1000)
We remark that

X‘[[O,n] = X"[O,n] © X[Oﬁnl = X“[O,f] © X[O,‘in]

and that
Les,—y = 1 =c3 © Xjog L {xp o= %1}

11



Take f a positive functional on Q and g a positive function on E;. We have

E. |:f(X‘I 0 7,]) 1{X=| =z} g(X‘[,,Hrl)
= Eq [Zf (X, )0 X0 19, = Hixi=a} 9(X) )OX[t,C]}
=E, {Zf Xa )0 X0, 1, =30 X0, Lxi=a}y 1ixpg ey 0 Xt g(Xp*)OX[t,C]}
-E, [Zf Xa, )X 1g3,2¢)° X0 1{Xt:x}} E, [1{)([0’4]?,;} 9(X,. )}
With g = 1g,, that gives:
E, |:f(X‘l[O,n]) 1{X‘{,,L=3f}}
= Ea[zf(Xﬁ[o,f])OX[oi] Lia,=¢yo X0, 1{Xt:x}] E, [I{X[oz]iw}}
t
and so
Eo[f(Xa,,) 1xa, =) 9(X1,,)]
=E, [T(Xﬁ[o,n]) 1{Xﬁn:z}} E; [Q(Xp*)/X[o,d = x}

=E, [T(X‘[[Om]) Lixg, =x}:| DyLg(x)

which indicate that X< is a Markov chain with transition matrix Dy L.
Let us compute the potential matrix of X«.

Ea |:1{X‘10:I} > Texs, :y}}
=E, []-{X,,:z} (Z l{Xﬁn:y}) °© X[Pv(]]
= Z E, [1{X[0,t[>7;}1{Xt:x}1{X[t,<]i$} (Z 1{X‘|n:y}> °© X[t,(]}
t n
- Z Eao [1{X[0,t[>w}1{xt:$}:| E, [I{X[va]tw} Z I{X;‘n:y}}
t n
= Z Eq [1{X[0,t[>m}1{xt:x}i| E, {1{X[U‘C]tm} Z 1{Xf:y}1{X["<]ty}}
t t
= ZEa _]—{X[O,t[>-x}1{Xf,:x}_ Ew _1{X[0,<]EI} Z 1{Xt:y}1{X[t,C]ty}i| (12)
t

t<S

= > Ea [l loxima ] B D Lixmn Lixig ] (13)
t t<S

=3 Ea[ Lt it o[ 3 Lo |PulXio =
t . Tt<S

12



SO
Ea|: Z 1{X‘|n:y}/X‘io = l’} = DkW(x,y)

Here is some details for the previous computation:
(12): Because on {Xjg ¢ = Xo} we have S = oo.
(13): Because on the complementary of { Xy = Xo}, we always have

Zt<s 1{Xt:y}1{X[u<]>y} =0.

The prime version is very similar: just replace Xjo = @ by X[g4 = = and
Xty =y by Xjeg) = - =

Proposition 5.7 We have:

W=>L"
W=y "r"

n

Proof: > First step. Suppose that P is strictly sub-stochastic i.e. Plgp < g < 1.
So, from lemma 5.1 we have k > 0. The transition matrix of X< is D, L while
its potential matrix is DyW. So we have D,W = Y (DyL)" = >, Di(L").

Simplifying the k& we deduce the proposition.
> Second step. Applying the first step to ¢P, with ¢ €]0, 1[, we get Wj,p] =
Yon Lﬁl Pl Then we make ¢ tends to 1. The prime version is proven identically.
O

5.5 Factorizations of the generator

When A, B are infinite matrices with signed coefficients, we say that the product
AB is absolutely convergent when the product |A||B| is finite (where |A|,|B]|
are matrices with coefficients |A(z,y)|,|B(z,y)| )-

Proposition 5.8 We have the following identity between posiltive matrices:

P+LK=K+1L (14)
P+ LK =K'+ 1L (15)

We have the following factorization, with an absolutely convergent product:
(I-P)=({I-L)(I-K)

When L' is finite, we have the following factorization, with a absolutely conver-
gent product:
(I-P)={I-L"YYI-K)

13



Proof: > First step : Assume P1 < ¢ < 1 (i.e. P is strictly sub-stochastic).
Consequently k& > 0 on E (lemma 5.1). Moreover Ul < 2. From their
definitions, we can see that matrices K,V, L, W are dominated by U. In this
situation, all our matrices can be seen as bounded operator on (*°(FE). Equations
U=, P, V=5 K'W=> L" (proposition 5.7) show that U, V,W
are the inverse operators of (I — P),(I — K),({ — L). Inverting U = VW
gives us (I — P) = (I — L)(I — K). We can develop this equation to obtain
P+ LK = L+ K. The prime version is the same.

> Step 2: Suppose P is just a sub-stochastic matrix. We can apply the
previous work to ¢P with ¢ €]0,1[. We obtain ¢P + Ki,p)Liup) = Kigp) +
Ligp;- When ¢ — 1, we have K|,p) T K[p] and Ligp) T Lip)- From monotone
convergence Ligp1Kqp) T Lip)K(p) s0 we get P+ KL = K + L. Prime version
is identical.

> Step 3: Suppose again that P is any sub-stochastic matrix. By its defini-
tion, we always have L < oco. From P+ KL = K + L we have LK < K+ L
and
- L||-K|<I+L+K+LK<I+2L+2K

From their definition K, L are finite so the product (I — L)(I — K) is absolutely
convergent. Finally (/ — L) (I — K)=1—- K- L+ KL =1 — P. The prime
version is the same, except that we have to suppose first of all that L’ < co.
O

6 About existence of the prime factorization

The theorem 5.8 indicates that L’ < oo is a sufficient condition to have the
prime factorization (I — P) = (I — L')(I — K') with an absolutely convergent
product. This condition is also sufficient because when L’ can take the value
+o0o0 the product (I —L")(I — K’) can not be absolutely convergent (except when
we accept the convention 00,0 = 0, in this case we have to think more).

In this section, we study the finiteness of L’. We recall that L'(z,y) is the
mean number of oplits on y starting from z (see definition 5.3).

6.1 Reformulation of L' < oo

Recall that we write x ~» y to indicate that = goes to y in the oriented graph of
P.

Proposition 6.1 L' < oo if and only if it does not exist a state y which is in
the same time :

1/ Recurrent i.e. Uly,y) = oo.
2/ Not leavable to below ie. Vz<y: y~pbz.
3/ Reachable from below fe. dJx <y: T~ y.

14



Proof: Suppose that it exists a state y which satisfy 1, 2 ,3. Let x be a state
such that x < y. We have

L/(m, y) = Pw{Ty < OO}Ey [Z 1{Xt:y~,X]0,t]ty}:|
t

=P, {T, < oo}lE, {Z 1{Xt:y}} = +00
t

Conversely. Suppose that either
e y is transient. So, for any x, we have L(z,y) < U(z,y) < U(y,y) < oc.
e y is not reachable from below, so L'(z,y) = 0 for any «.

e y is leavable to below. So there exists z < y such that P,{T, < co} > 0.
Once the process pass under y, there are not possibility of oplit. So the
number of oplits at y is stochastically inferior to a geometric times with
parameter P, {T, < co}. So the expectation of this number is finite.

O

F C FE is called a "recurrent class" when F' is irreducible and when that all
states in F' are recurrent. We write z < F to indicate that Vy € F': z < y. We
write  ~» F' to indicate that Jy € F': x ~» F.

Corollary 6.2 Suppose that E C Z and that < is <. Then L' < co iff it does
not exist a recurrent class F' and a state x such that x < F and x ~ F.

Proof: Suppose that L’ is not finite. So there exists a recurrent point y which
is reachable from a state x < y and not leavable to bellow. Because y is not
leavable to bellow, we have y ~f x, so that x is transient. Let us write F' the
recurrent class containing y. We have x < F and x ~ F.

Reciprocally. Suppose that exists a recurrent class F and a state x such
that © < F and « ~» F. So F is bounded from bellow and it admits a smallest
element y. This state y is recurrent, not leavable to bellow and reachable from
bellow (from z). So L' is not finite. O

6.2 Prime factorization for a chosen altitudinal function

On the beginning of this article, we fix an altitudinal function a which allows us
to define our pre-order relation <. To change a to an other altitudinal function
b is equivalent to permute simultaneously some rows and columns of (I — P).
Such permutation can help to perform the LU-factorization. Matrices K, V...
computed with this new altitudinal function will be denoted by K}, Vjg). .-

Proposition 6.3 There always ezists an altitudinal function b on E such that
L’M < 00. This function b can even be taken injective (so the relative pre-order

=p is an order).
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Proof: Let E,. C E be the set of recurrent states and F; = E \ E, the set
of transient states. Let b be any function from E to R which maps FE, into
[0,00[ and E; into | — 0o, 0[ (such a function can easily been taken injective).
Let us reason by contradiction: Suppose that it exists (z,y) such that y is
recurrent, <y y, * ~ y and y ~ x. This implies that x is transient which
is absurd because, by construction of b, transient states are situated below
recurrent states. 0

6.3 Prime factorization for all altitudinal functions
Proposition 6.4 The following points are equivalent:

1. For any altitudinal function b, we have th] < 00.

2. It does not exist a couple of states (x,y) such that x is transient, y recur-
rent and x ~> y.

3. There exists a measure (1 B — R such that pP < pu.

© @

1T 1 1

1 ® | ©

@ ®

On the left we give situation where qu] < oo.
But where we have a transient point which
communicates to a recurrent point. On the
right we changed the altitude so that Lib] is
not finite.
When P is irreducible, then either all states are recurrent, or all states are
transient. From point 2 of the previous proposition we deduce:

Corollary 6.5 When P is irreducible then for any altitudinael function b we
have th] < 0.

Proof of the proposition 6.4 is cut in lemmas.

Lemma 6.6 First and second points of the proposition 6.4 are equivalent.

Proof: Suppose that the first point is false. So it exists an altitudinal function
b such that there exist states x,y checking: = <y y, = ~» y, y is recurrent
and not leavable to below. In particular, that implies that z is transient which
contradicts the second point.

16



Suppose the second point is false: there exist states x,y such that = ~ y,
x is transient and y is recurrent. Take the altitudinal function b which maps x
into 0, y into 1, and E \ {z,y} into |1, co[. Clearly, for this altitudinal function
we have Ly, (z,y) = +oc. O

Lemma 6.7 If all points are transient or if all points are recurrent then it exists
a measure (11— R such that uP < p.

Proof: 1If all points are transient then pick any probability a whose support is
the whole F and define p := «U. If all points are recurrent, then theorem 6-9
p.135 of [KSK66| insures us the existence of a measure y : E +— R such that
uP = p. d

Lemma 6.8 Point two and point three of the proposition 6.4 are equivalent.

Proof: Suppose that point two is true: Denote by E; the set of transient points
and by E, the set of recurrent points. The previous lemma, applied to Pg,
and Pg,, gives us two measures u; : By — R} and p, : E. — R% such that
wePe, < pelp, and p,Pg, < pu,lg.. Now, because E; and E, are disconnected,
we have P = Pp, + Pg, and thus the measure p = p; + p, checks pP < p.
Conversely, suppose point two is false and point three is true: So there
exists p : B+ RY such that pP = p and there exists a state x transient
which communicates to a state y recurrent. We consider the measure U(z,-)
which is finite at = and infinite at y. Put k = U(z,z). We construct an other
measure: v(y) = ﬁu(y) The measure v also checks vP < v and moreover v
is greater that U(z,-) at = (both has the same value at this point). Because of
the maximum principle, v is greater that U(z, ) everywhere, in particular at y.
This implies v(y) = p(y) = oo which contradicts our hypothesis on p. O

6.4 Link with the existing criterion for M-matrix

A M-matrix is a finite matrix A of the shape A = c.:(I — Q) where @ is a matrix
with non-negative entries such that the spectral radius of @ is less or equal that
1.

When F is finite, Markov chain generators I — P are peculiar cases of M-
matrix.

For a M-matrix A, the LU-factorization is possible for any ordering of indices
(i.e. for any injective altitudinal function)

o if A is invertible (Fiedler and Ptak, 1962, [FP62] )
o if A is irreducible (Kuo, 1977, [Kuo77])

o if there exists p : E'+— R such that pA >0 (i.e. p@ < p) (Funderlic and
Plemmons, 1981, [FP81]).
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e If and only if it exists 4 : £ +— R such that pA > 0 (Varga and Cai, 1981,
[VC82]).

Finaly, Varga and Cai [VC82] gave necessary and sufficient conditions for a
M-matrix to admit a LU-factorization for a fixed ordering of indices. Applying
theorem 1 of [VC82] to the matrix A = I — P, and we find our corollary 6.2.
Applying theorem 5 of [VC82] to the matrix A = I — P, and using the fact
that recurrent states are absorbing, we see that I — P always admits a LU-
factorization; which we saw by I — P = (I — L)( — K). To help the translation
between the present article and article of Varga and Cai, remark that: Firstly
up and down are inverted. Secondly: to say that F' is a recurrent class for P is
equivalent to say that (Ir — Pp) is a singular irreducible matrix.

7 More factorizations

7.1 The three terms LDU-factorization

We denote by S = min{t > 1 : X; ~ Xo, Xjou = Xo}. We write T the
corresponding time-change. Proposition 3.2 shows that n — X5 is a Markov

chain. We write K its transition matrix, V its potential matrix.

If A, B, C are infinite matrices with signed coefficients, we say that the three
terms product ABC is absolutely convergent when we have |A||B||C| < oc.
From Fubini theorem, such a product is associative.

Proposition 7.1 We have the following identity between positive matrices
V' =VV
U=vvw’
We have the following factorization with an absolutely convergent product:
(I-K)=(I-K)(I-K)

Moreover, when L' < oo we have the following factorization with an absolutely
convergent three terms product:

(I-P)=I-L)I-K)I-K)

Proof: All the proof is based on the application of the two factorizations U =
VW and (I — P) = (I — L)(I — K) but starting from the process X- instead
of X. We note the following trajectorial fact:

Xqo0Xvy =X5

(Z 1{X,=y}) o X7 =) 1ixs =)

t<S
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So Vigny = Vip) and Wign = f/[p] and we get
Vib = Uiy = Virey Wi = Vip Vi

Now we have U = VW’ = (VV)W' = VVW’' (the associativity is immediate
because all terms are positive).
Similarly

= L=y} Pu[Xy =yl + Lia<yy Po{Ty 0 X+ € [2,00[, Xjo.1, © X = y}
= Loy PalXg, = 9] +0 = K(z,y)

So we have (I — K') = (I — K)(I — K).
Now we assume that L' < co. We have:

I-L||I-K||I-K|<I+K+K+KK+L'+L'K+LK+LKK

the only terms that are not obviously finite are L'K, 'K and L' K K. We have:

L'K(z,y) =) E, [Z Lixp0.0zab L {xi=a} L{xm, =0
t

ary

=D P{Xyo0Xjor,)=a} <1

ay

We also have L'K < L', so that L'KK < L'K < .

Consequently, the three term product (I — L')(I — K)(I — K) is absolutely
convergent, and so associative and we get (I — P) = (I - L)[I - K'| = (I —
LI = R)(I - K)] = (- L)(I - K)(I - K). O

7.2 Mixed factorization

Proposition 7.2 We have

V4+L=I1I+PV
W+K=I4+WP
U=V +UL
U=W+KU

These equalities stay true adding prime on K,V L,/ W.

Proof: Suppose firstly that P is strictly sub-stochastic, so all the involved ma-
trices can be seen as bounded operators of {*°(E).

Let us considerate (I — P) = (I — L)(I — K). Multiplying it on the right by
V' we get the first equality. Multiplying it on the left by W we get the second
equality.
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Let us considerate U = VIW. Multiplying it on the right by (I — L) we
get the third equality. Multiplying it on the left by (I — K) we get the fourth
equality.

To generalize this to any sub-stochastic P, we apply the proven equality to
qP with ¢ €]0,1[ and make ¢ tends to 1. O

Here is a probabilistic proof and interpretation of the second factorization
in the proposition 7.2.
> Fix « = y. So W(x,y) = 0. We have

Vae E Py {Xs.1i=a,Xs=y}=E, [Z 1(X,—aXesrmy} | = W(x,a)P(a,y)
t<S
(16)
Summing over all a we get K(x,y) = WP(x,y).
> Fix z < y. So K(z,y) = 0. Let us write 77,15, ... the successive passages at y.
So { X1, = y} means that the process visits at least ¢ times the state y. Using
the Markov property, we have

VaceE  E, [Z 1{XTi71=a}1{XTi:y}1{n<S}] =E,; [Z Lix,=ay (X, 1=0)
7 t<S

= W('T’ CL)P(CL, y)

With the convention that X_; = 7. Summing over all a, with a particular care
to the case x =y, we get W(x,y) — lip—y = WP(z,y).

Remark 7.3 The quantity Xg — Xg_1 appearing in (16) is the equivalent of
the famous "under-shoot" in the fluctuation theory of Levy processes. The
equation K(z,y) = WP(z,y) is the equivalent of which we called «amicale
équation inversée» in [Vig02], see also [Don01], chap. 5.

8 Matrices with spectral radius less that one

Nota Bene: Exceptionally during this section, our main data P is any matrix
with non-negative entries.

In this section, we generalize our factorizations from the class of sub-stochastic
matrices to the class of non-negative matrices with spectral radius less that one.
The advantage of this larger class, is that it is stable by transposition, which
will help us to understand some time-reversal symmetries (see the next section).

The generalization will be straightforward, but before we need to redefine
Kip), Vip), Lip), Wip) (and prime versions) for any matrix P with non-negative
entries. We also give a quick recall about the definition of the spectral radius
for infinite matrices.
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8.1 Unormalized bridge and occupation matrices

We define the o-finite measure FL

e 00 {¢ < oo} C Q as follows: Yw =
(WO, W1y ooy Wiy Ty Ty -0

wbz{w} = 1{go= z}P(WO>Wl)P(WhW?)-up(wn—hwn)l{wn:z}

For f Q- RJr we write Frbz[ ] = Zw f( ) xbz{w}l{C(w)<Oo}
In the particular case where P is sub-stochastic we have

EP[Zf ) Lixi=y| = EL.[1 U (2, 2)

The last equality justifies the fact that FI__ is called the "unormalized bridge"
(from z to z). For more details about normalized and unormalized bridges, see
[Vigll].

We will write shortly h > 0 to indicate that h is a function from E to R?.
Here is some easily checkable properties of unormalized bridge:

. n(DnP) h(z) P
FLL I = FLLIH(X )] (18)
(19)

Let us call "occupation matrix" (relative to P) any matrix A such that its
exists f : Q — Ry satisfying A(z,y) = FL, [f]. The reader can play to check
that the product of two occupation matrices is still an occupation matrix.

Our triangular matrices can be redefined as occupation matrices relative to
P:

Definition 8.1 We write:

Kipj(2,y) = Fpy[11s=c]

Vip)(z,y) = FL syll{cergm] where RgT={t:3In: T =n}

Lipy(w.y) = Fopy [0, - X2 X0}

Wipy(@,y) = Fiy [Lces)]

K{py(2,y) = Fip, [1{s=¢)]

Vip(2,y) = FL., icergry] where Rg1 = {t: 3n: 7T, = n}
py(z,y) = Fl, oy L{X 0.2 X = X0}

W[IP] (z,y) = F [ (c<s1y]
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Of course, when P is sub-stochastic, this new definition coincide with the
old one, e.g.

Kip)(z,y) = EL [I{xs—y] = E [Z Lis=cy © X0, 1{Xt=y}] (20)
t

= Fopy[l{s=c] (21)

Lipy(,y) = BE | D" 100 xex01) © Xioa Lxea) (22)
t

= Fsz[]‘{X]o,g]ng>-Xo}} (23)

8.2 Definition of the spectral radius

We recall some facts about the spectral radius. For details see [Vigll]. See also
Woess [Woe00] chap.2 or Seneta [Sen73] chap. 6. Let us write:

it is clearly an interval of type |R, oo or [R, 0o[ for some R € Ry U{+o0}. This R,
also noted Rypj, is called the spectral radius of P. We are tempted to compare
A[p] with:
Alp:={A=0:3h>0 : Ph<Ah)
We have AEP] = A[p] or AEP] = A[p] U {R[p]}.
We always have Ajp) = Ajpr), but A’[P] and AEPT] can differ at their extrem-
ity, as shown by the example

1 0
P=
e o]

On the special case where P is irreducible and R{p; < oo, we have
Atp; = Ajpr) = [Rip}, o[-

When F is finite and P irreducible, from Perron-Frobenius theorem, the
definition of Rip) coincide with the classical definition of spectral radius (the
largest eigen values).

Finite matrices of type c:«(/ — P) with Rjp; < 1 are usually called M-matrices
(but some authors require Rjp < 1).

The three important facts to memorize about the spectral radius are:

° R[p] = R[PT].
e If Rpj < 1 then there exists h > 0 such that Dj, P is sub-stochastic.

® Rjgp] = qR(p]
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8.3 Generalized factorizations

Proposition 8.2 Let P be such that Rp <1 then we have:

U=VW

U=v'w
P+LK=K+L
P+LK =K +1L

When L < oo and K < oo then we have the following factorization with an
absolute convergent product:

(I-P)=(I-L)I-K)

When L' < 0o and K' < oo then we have the following factorization with an
absolute convergent product:

I-P)=(I-L)I-K')

Proof: Factorization between non-negative matrices: First, suppose that Rjp) <
1. So there exists h > 0 such that Dy, P is sub-stochastic. Then we can apply
our known identities to Dy P e.g. Up,p) = Vip,riW|p,p); but all the Doob
transforms can be simplified and we get the 4 first equality. Now suppose
Rip] = 1, we can apply the previous work to ¢P with ¢ €]0,1[ and make tends
q to 1.

Factorization between signed matrices: Using the same technique, we firstly
establish that P+ LK = K + L, which implies LK < K + L. Then, assuming
L <occand K < oo, wehave |[—L||[-K| < I+ K+L+LK < I+2K+2L < 0.
Then we finish the proof easily as in proposition 5.8. 0

Remark 8.3 From their new definition, L, K, V, W and prime versions are oc-
cupations matrices of type F..[f] with f bounded by 1g. As a consequence,
they are dominated by U = Fase[lg]. So the transience of P (i.e. Upp) < o0)
implies that Rip) < 1 (from the definition of the spectral radius) but implies also
the finiteness of all our matrices.

8.4 Other expressions for our matrices

Actually all our block-triangular matrices can be express by multiplying matrices
Upp)s P, Ir with F' = {= x},{= y},{> z},{> y}. We give here only two
examples which are useful for the sequel.

Proposition 8.4 Suppose that Rip) < 1. We have:

K(z,y) = 1iaryy Uip 1 P)(@y) = L=y Urpy 1 P)(2,9)
L'(z,y) = Yoy} (PUp 1) (2, y) = (I<yy PUp 1) (2,Y)
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Proof: > Step 1. Suppose that P is sub-stochastic, then
K(z,y) =P {Xq, =y} = Ef[z 1{X[0,ﬂtz}1{xt:y}} Liy<ey
t

= 1{ZI'<W}U[P{§I}]P(fCay)
L/(x’ y) = Ef [Z l{X]O,t]ty}l{Xt:y}} Liysa}
t

= 1{ZI>‘33}PU[P{>;y}] (LC, y)

> Step 2. Suppose that Rjp; < 1. Then we apply the step 1 to Dj, P with
h > 0 chosen such that D, P is sub-stochastic.

> Step 3. Suppose that Rjp; < 1. Then we apply step 2 to ¢P with ¢ €]0,1]
and make ¢ tends to 1. O

9 Time reversal

9.1 The proposition and its short proof
Proposition 9.1 Suppose that Rip) < 1. We have:
Lip) = Kip1)
Lip) = Kfpr)
Proof: From proposition 8.4:
Lip)(y, ) = 1iy<ay (PUip, 1) (Y, @)
— 1{y<x}(U[—;,{tw}]PT)(m7y)
= 1{y<x}(U[P{TtI}]PT)(%y)
= K[PT](% )

The second line is similar. O

Remark 9.2 Even if we start with P sub-stochastic, the matrix PT is not
necessary sub-stochastic. A purely sub-stochastic statement of the previous
proposition 9.1 can be : DWL’[TP] = K|p, pr) where m > 0 is an excessive measure
(when its exists).

9.2 Probabilistic proof and interpretation of proposition
9.1

Nota bene: Our main data P is now again a sub-stochastic matrix.

During the previous sub-section, we have not really seen the link between
proposition 9.1 and the title of this section. Of course, the two transpositions
appearing in this proposition might be interpreted as two time reversal. Let us
see this.
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Proposition 9.3 On {{ < oo} we have

(Xﬁ/f’Xﬁ/ffl’ .7X=l/17X‘i6) = ()(‘[07)(‘[17 ceey X-‘f—l7X-[f) o X[Erc]

This trajectorial fact comes readily from the definition of 1 in sub-section
5.4. See also the following drawing.

'Y

R TR I e

The next general proposition is the discrete equivalent to the Tanaka time-
reversal description. See [Vigll] for a proof.

Proposition 9.4 Let Z = Zy,Z1,...,2Z5,1,1.. be a dying Markov chain un-
der a probability Q , with transition kernel QQ and occupation measure n(y) =
>, Q{Z, = y}. Then the reversed Markov chain Z¢, Zy_1,..., 21, Zo, 1,1, ... is
also a Markov chain with transition kernel D, (Q") i.e.

Q[fol = y/Zf = SL'] = %Q(yv‘m)l{n(m)>0} (24)

New proof of proposition 9.1: Firstly assume that P is strictly sub-stochastic.
In particular, the Markov chain driven by P is dying. We write aU(y) =
E.[>", 1{x,=y}] the occupation measure of X under Py, so the matrix Doy (PT) :

P is the transition matrix of X[(fc]' So we have ES[f(X[&])] = Eg[f(X[O,C])]

where ((z) = Po{X¢ = z}. From proposition 9.3, we have
Ef[f(Xﬁ}, e Xy )] = BL [H(X g, X)) © Xz
= Eg[f(onv (X2} X-lfﬂ
So

Pl[Xq  =y/Xq =a]=Pf[X—y/ Xqp=s] = K py(z,y)  (25)

Otherwise, the occupation measure of the Markov chain X<, under EZ is given
by

ny) =BL [ 1 =y | = BE[ D 1ixemny Lix o | = aUWK () (26)
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And if we apply the formula (24) we get

PLXy, =/ X, =l = SO D) (0
UKW K@),
= U)o (z) #(g) - O
_aU(y) .,

Gathering (26) and (27) we get K(p_,, (p7) = D[QU]L[TP], then we simplify Doob
transformations.

Secondly, if P is just sub-stochastic, we apply the previous result to ¢P and
make ¢ tends to 1. The proof of the second line of the proposition is similar.
O

Remark 9.5 With the two previous propositions 9.3 and 9.4, we can obtain
a short second proof of the Markovianity or n — X< (proposition 5.6) in the
particular case where P,{( < oo} = 1. Here are arguments: Under P, X[ ¢ is

a Markov chain, so X[(‘)_g] is a Markov chain, so (X, ..., X_‘f)OX[oT] is a Markov

chain, so (X« , ..., Xﬁ,') is a Markov chain, so (X<, , ..., X5, ) is a Markov chain.
s 0 0 s

10 Particular cases

10.1 Skip free

We say that we work on the "skip free situation" when E = [a,b] is an finite
interval of Z, when < is < and when P(z,y) >0 < y > 2z — 1. So in this
situation, our Markov chain can not make negative jumps strictly greater that
1.

We say that we work on the "conservative skip free situation" when we work
on the skip free situation and when moreover P(x, E) =1 for all « € E, except
eventually at z = a.

On the "conservative skip free situation", we can give without computation
an expression for K, K’ for all z,y € E:

K(l‘, y) = 1{y:x71}
K/($7y) = 1{y:m}P(xa {t 1‘}) + 1{y:z—1}P(xvx - 1) (28)

where we recall that {> 2z} = {y:y = 2} ={y:y > a2} so P(z,{= a}) =
> ysx P(z,y). Here is a consequence involving the determinant.

Proposition 10.1 Suppose that we work on the conservative skip free situation.

Then we have
det(I — P) = H [1—P(z,{= «})]
x€EFE
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Proof: We have (I — P) = (I — L')(I — K'). L’ is triangular with entries 1 in
its diagonal, so det(I — P) is equal to the product of the diagonal terms of K’
which is given by (28). O

We can slightly generalize the previous proposition as follows:

Proposition 10.2 Suppose that we work on the skip free situation. Suppose
moreover that P is irreducible and transient. Recall that a = min E. Then we
have

det(I — P) = [ 1 = Dy(.a)P(x, {= 2})]

el

Proof: From our hypothesis U(-,a) € R%. The Markov chain driven by Dy (. 4y P
can only die at a, so this Doob transform carries us to the conservative skip free
situation. Applying the previous proposition we get:

det (I — DU(.’G)P) = H [1-— DU(.’G)P(.I, {= a})]
FASYD)

But det(I — Dy(..a)P) = det(I — P). 0

10.2 Random walk case.
In this sub-section we place ourselves in the "random walk situation" i.e.
e The state space is F = Z<.

o Our transition matrix is translation invariant: P(z +a,y + a) = P(z,y).
So, writing P(a) = P(0,a), we have P(z,y) = P(y — x).

e QOur pre-order relation is translation invariant: z+a <y4+a & z <y
(which is the case when the altitudinal function a is a linear form).

From their definition it is not hard to see that matrices U, K, V, L, W and their
prime versions are also translation invariant. So K(x,y) = K(y — z), V(z,y) =
V(y —z), L(z,y) = L(y — z), W(z,y) = W(y — z)... and our factorizations
become

U=V+W =V«
6—P)=(—L)%(6—K) =0 —L) (6K

where * is the convolution product (which is commutative) and 6(z) = 11,—0;.

Functions k, k' are constant so we have DL = L, Dy L' so L, L' are sub-
stochastic, which is not obvious from their definition. The sequel will allow
us to interpret L, L’ as the K’, K matrices but relative to the opposite of our
altitudinal function. So now we will write K|pq), L(p,q),..- to precise our two
data.
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Proposition 10.3 In the random walk situation we have:

(o] = Kip—a)
L[P,u] = K[,P,—a]

Proof: Remark first of all that X9 o0 (=X, —a) = — X+ 0 (X, a). Using this and
the fact that P", K " are the transition matrices of —X, —X= we get K(p7 _ =
K[;a]. Applying this with P := PT we get Kjp_q = K[IDT, . Finally, we use
the proposition 9.1 to see that this last matrix is also LEP al"

The second line is similar. O

a]

10.3 LU becomes WH (Wiener-Hopf).

We stay on the hypothesis on the previous sub-section but, to simplify the
presentation, we add the hypothesis that F = Z' and a is the identity function
(so %is <).

Let G be any function from E to R. We define its Fourier/Laplace transform
with the following convention:

5G(z) = Zg(x)efm for all z € C such that Z G| (z)e” )7 < o

In particular, because functions K, £ are summable, their Fourier /Laplace trans-
forms are well defined at least for z such that ®z = 0. But it is usual that ran-
dom walks have bounded jumps, to that K, £ have bounded support and their
Fourier /Laplace transform are defined in the whole C. The Fourier/Laplace
transform turns convolution into product, so the LU-factorization becomes:

(1-3P)(z) = (1 -FL)(2)(1 - FK)(z) at least for Rz =0 (29)

This factorization is called the Wiener-Hopf factorization (see remark below).
When P is strictly sub-stochastic (i.e. Y~ P(a) < 1) then U is also summable,
and the LU-decomposition of U can be transform into:

SU(z) =FV(z) §W(z) at least for ftz =0 (30)

But this equation is exactly the preceding one (29), where you inverse each
terms (which cannot cancel when P is strictly sub-stochastic).

Remark 10.4 K is supported by Z_ so FK(z) is defined and analytic at least
for Rz < 0. While £ is supported by Z so FL(z) is defined and analytic at least
for Rz > 0. In mathematical analysis, the decomposition of a function defined
on band of type Rz € [a,b] into the product or into the sum of a first analytic
function defined on Rz € [a,00[ and a second one defined on Rz €] — o0, a]
is called Wiener-Hopf decomposition (see [Wid97]). For this reason, the LU-
factorization of random walk is called the Wiener-Hopf factorization.
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10.4 Cholesky decomposition for the reversible case

Theorem 10.5 Suppose that the altitudinal function a is injective. Suppose
that there exists a measure m > 0 such that D.(P") = P. Then there exists a
sub-stochastic matriz Q such that Q(z,y) >0 < z >y and such that we have
the following factorization with an absolutely convergent product:

[-P=D(I-Q)" (I-Q).

Proof: Because a is injective, the matrix K is diagonal (ie. K(z,y) >0 <
z = y) and its entries belong to [0,1]. The matrix I — K has same properties.
Let us define Z the diagonal matrix whose entries are square roots of those of
I - Kip.

The existence of an excessive measure m > 0 ensure us that LEP] < 00, SO
proposition 7.1 gives us:

(I = P)= (I = Lip)(I = Kipp)(I = K{p)

By proposition 9.1 we also have
Lipy = (Kipr)" = (D1 Kip,pr)) " = (D3 Kip)'
So that:
I—P:(I—D%K)T (I-K)(I-K)

=(I-DiK)" 7' Z (I - K)

= [Z2(I - D1 K)]" [Z(I - K)]

=[[ - (ZD1K+1-2)]" [ - (ZK+1-Z)]

= Dol ~(ZK+1-2)]" [I - (ZK +1 - Z)]

Now it remains to verify that Q := (ZK +1— Z) checks the announced property.
Clearly @ has positive entries and Q(x,y) > 0 < z > y. Moreover we have:

Ql(z) = ZZ(w,m)K(x,y) +1—-Z(z,2) <Z(z,z)+1—-Z(z,x) <1
Yy
So @ is sub-stochastic. O

Remark 10.6 :

o After this proposition a natural question arises: What is the probabilistic
interpretation of Q7 Actually @ is the transition Matrix of the Markov
chain X+ that we speed down. Let us explain this fact in its whole gen-
erality: Consider any sub-stochastic matrix P and a diagonal matrix Z
with entries in [0,1]. Let us consider X the Markov chain driven by P.
We construct the slowed-down Markov chain X’ by: Each time X/ is in a
state x, we play to dice, with probability 1 — Z(x), X/, stays at x, with
probability Z(z), X/, jumps as the initial process X to a state y with
probability P(x,y). Clearly, the transition matrix of X’ is ZP + (I — Z).
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e Even in the non-reversible case, the technic we used in the previous propo-
sition can be used to define other LU-factorizations, where we do not im-
pose to the first nor the to second factors to have 1 on their diagonal.

10.5 A special formula when E C Z.

In this subsection, we suppose that £ C Z and < is <. We suppose also that
U, (P] < 00.
From proposition 4.1 we deduce that

Upg)(@,2) = E; {Z Lix,erylix,=2}
t
= PmDZ{X[O,C] C F} U(.’E,Z)
In particular, with F' = {> y} we get
Ui

P{ty}}(xa Z) = PJCDZ{X[O,C] = y}U(Ta Z) = P.’EDZ{X/J = y}U(l", Z)

so that
PJ;DZ{Xp = y} U(l‘, Z) = U[sz](m7 Z) - U[Pty,l](xa Z)

Coupling this with proposition 4.2 we get a nice formula:
V(z,y)W(y,2) =Up,,(x,2) = Up._,_,(z,2)

10.6 Factorization with the reduce operator

Let us take F' C F and write D = F°. So F is partitioned into D (the domain)
and F' (the frontier). We write Tp = min{t > 0: X; € F'} and

Rp(v,y) = Pw{XTF = y}
Let us define the altitudinal function a by a(z) =1 on D and a(x) = 0 on
F, then we see that IpK = IpRr and IpL = Pp. So the LU-factorization of
(I — P), restricted to D gives:
Ip(I—P)=(Ip—Pp)(Ip— Rp)
But this identity can also be proven directly using the expression:

RF(xay) = 1{m:y€F} + 1{I€D}ECE [Z 1{X[O,t]CD}1{Xt+1:y€F}
t

= Ir(z,y) + IpUip, PIr(x,y)
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11 To compute the invariant measure

The LU-factorization is used in numerical analysis to solve linear equations.
Using this idea, Grassmann [Gra87]|, working with P finite irreducible and re-
current give a method to compute the invariant measure. Heyman [Hey95]
generalize this to £ = N and P irreducible and positive recurrent. Both au-
thors work with the prime factorization: (I — P) = (I — L')(I — K’) (always
valid in the irreducible case).

In this section we explain Grassmann and Heyman technique and also trans-
pose this technique with the factorization (I — P) = (I — L)({ — K).

We suppose that £ = {1,2,....,n} or E = {1,2,...,n,...}, that <is <, and
that P is irreducible. In this situation L’ < oo and the prime factorization is
absolutely convergent (corollary 6.5).

Recall that a three terms product of infinite matrices A.B.C is "absolutely
convergent" when |A||B||C| < oo. In this case, from Fubini theorem, this
product is associative.

Lemma 11.1 Let 7 be any finite measure. Three term products w(I—L)(I—K)
and 7(I — L)(I — K') are absolutely convergent.

Proof: From (14) we have LK < K + L so
mlI-—LI|I-K|<w+7nL+nK+aLK <w+2rL+27K.

Because K is sub-stochastic we have 7K < oo. Then we have wL(y) =
> . T(x)L(2,y)1 <,y which is finite because we sum is taken on a finite number
of indices ( because E = N*). The prime version is identical. O

Proposition 11.2 Suppose that P is positive recurrent (it is the case when E
is finite and P is stochastic). Then the invariant measures can be determined
recursively by one or the other following expressions:

w1 is arbitrary and for n > 2: w(n) = (i) L' (i,n)

1
71 is arbitrary and for n > 2: w(n) = =L E (1) L(i,n)
— L(n,n
T =1

Proof: From the associativity (lemma 11.1), to compute all measures 7 satisfying
7(I—P)=n(I—-L")(I—-K') =0 is equivalent to compute all measures § such
that S(I — K') = 0 and then all measures 7 such that 7(I — L') = .

From the recurrence hypothesis, we see that K’(1,1) = 1. Looking at the
triangular linear system G(I — K') = 0 we see that all solutions are given by
m = (01,0,0,...) where 3; is arbitrary. Looking at the triangular linear system
w(I — L') = B we find the first recursive expression.

Now let us look the equation (I —P) = w(I—L)(I— K) = 0. Looking at the
triangular linear system (I — K) = 0, we see that the only solution is § = 0.
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Then, from the very definition of L (see equation (9)) we have L(1,1) = 1 and
looking at the triangular linear system 7(I — L) = 0 we find the second recursive
expression. O

Remark 11.3 The reader can wonder what become these calculus when P is
transient.

This implies that K'(1,1) < 1. So the only solution of (I — K') = 0 is
6 =0. And then, the only solution of 7(I — L") =0is w = 0.

This implies that L(1,1) < 1. So the only solution of #(I — L) =0is 7 = 0.

Remark 11.4 Remark that things are far much complicated with £ = Z.

12 Pathologies

12.1 Lack of associativity

In proposition 11.2, we saw a situation where a three time product .(I — K)(I —
L) is absolutely convergent, and thus associative. In this sub-section, we see a
simple situation where the three time product (I—K)(I—L)1g is not associative,
and we quantify the lack of associativity.

Let us consider the following events:

Rejection = {X1 # 1, X[o,¢) = Xo, px = +00}
Rejection’ = {X1 # 1, Xj0,¢) = Xo, pl, = 400}

Space
Space

Time Time

Rejection’ but not Rejection Rejection’ and Rejection

The previous drawing on the left suggests a situation where we have Rejection’,
Rejection®, but also an infinity of oplits (so prime factorization does not ex-
ist). In the next drawing we suggest a situation where we have Rejection’,
Rejection®, and where the process is transient. The state space is Z2 and we
do not write the time axis.
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Proposition 12.1 We have:

k(x) = Lk(x) + P,{X1 = 1} + P.{Rejection}
K(z) = L'K' (z) + P.{X1 = 1} + P,{Rejection’}
Proof: Summing over all y € E in the first equation of proposition 5.4 we find
Lk(x) = P {Xp,c) = ,px < 00} So
k(z) = Po{ X[, = «}
=P {X1 =1} + Po{X1 # T, Xjo,¢] = 7, p« < 00} +Pou{X1 # 1, Xjo,¢ = 2, px < 00}
=P, {X; =t} + Lk(z) + P, {Rejection}

Prime version is similar. O

Finally, when the rejection occurs with positive probability, we have a lack
of associativity:

(I - L)(I = K)[1g(z) = (I - P)lp(z) = Po{X) = 1}
while
(I-L)[(I-K)lg)(z)=({I—L)k(z) =P,{X1 =1} + P.{Rejection}
The same phenomena occurs with the prime factorization when it exists.

Remark 12.2 Let @ be a non-negative matrix. Let h be a Q)-excessive function
(ie. h > 0and Qh < h). The classical Riez decomposition of h is h = Ujg[(I —

Q)h] + Q%h.

Using the previous proposition 12.1 we can compute the first term of the
Riez decomposition of k& as a L-excessive function. The second term can be
written using the fact that DyL is the transition matrix of the Markov chain
X

(I — L)k(z) = P.{X1 =t} + P,{Rejection}
L™k = P,{X[o, = =, Xq never dies}

33



12.2 Example of non-unicity: finite case

Our factorizations was performed by some triangular matrices K, K, V, VY
etc. which are defined "automatically" from P. But, it is sometime possible to
factorize I — P by triangular matrices which are not our matrices.

Let E = {a,b,c,d} with a < b < ¢ < d. P is given by the graph or by the
array below. For any parameter ¢, co (in R, C or anything which cancels itself
when you multiply it by zero), the matrix I — P can be factorized as following:

12
I-P| d c b a
112 112 d | 12 -1/2 0 0
c | -1/2 12 0 0 =
1 b 0 0 1/2 -1/2
a 0 0 —1/2 1/2
Q 12
1 0 o0\ /1/2 -1/2 0 0
112 12 -1 1 0 0 0 0 0 0
0 a 1 0]|lo0 0o 172 -1/2
0 c -1 1 0 0 0 0
@172
The choice ¢; = ¢2 = 0 corresponds to our factorization (I — P) = (I —

LI - K').

If we apply transposition to both sides of this equation, we obtain a second
LU-factorization of (I—P) with 1 on the diagonal of the second term. In this case,
the choice ¢; = ¢o = 0 corresponds to our factorization (I—P) = (I - L)(I - K).

0> with p €]0, 1]. We have

An other interesting example is P = (]19 0

* ok
0 =
1 0 0 0 . . )
( « 1) <—p 1) impossible for any choices of *

(6 )

(_Op 2) (_Op (1)) possible for any a,b such that —ap+b=1

But

Remark 12.3 Let us suppose that E is finite and P is irreducible. Let take
F C E. The Markov chain driven by the restricted matrix Pr dies, so the
matrix I — Pr is invertible (its inverse is Ir + Pr + P2+ ...). In other word, all
the main minor of the matrix P does not vanish which is the classical criterion
for existence and unicity of the LU-factorization. Of course, in example given
above, P is not irreducible.
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12.3 Non-unicity with an infinite state space

By opposition to the finite case, when FE is infinite, the non-unicity can occur
even when P is irreducible. Let £ = N and < is <.

Firstly imagine a situation where the Markov chain converges to +oo, so the
process n +— X< does not die, so Dy L' is stochastic and so (I — L)k’ = 0.
Now we construct the matrix IV (z,y) = E'(x)1{y—oy. For all r € R, we have
K'(z,y) +rI"(z,y) >0 < x =y, so this matrix is triangular and we have

(I-LYI-K +T)=(I-L)I-K')=(-P)

which gives us an example of non-unicity of the LU-factorization.

13 A trajectorial alternative proof

Actually, all identities we met between matrices P,U, K,V, L, W and prime
versions, can been proven and interpreted by trajectorial observations, using
mainly the markov property. Some of this proof as quite simple as the proof
of U =VW = V'W’ (proposition 3.4) or the proof of the mixed factorization
W + K = I + WP that we made in sub-section 7.2.

But some trajectorial proofs are quite tricky as the proof of

P+L'K =L+K'

that we produce now.
Recall that, by definition, an oplit on z is a time ¢ such that X; = z = X
and such that X|; ;; = 2. We write oplit, the set of oplits on 2.

> Step one: We fix x and z such that x < z.
Applying the Markov property at each oplit on z, we have

L'(z,2)K'(z, z) = E,[((number of oplits on z) — 1)V 0] (31)
The —1 is corresponding to the first oplit on z which is skipped. And so

L'(z,2)K'(2,2) = Ez[l{ophtz#@} (toplit, — 1)]
= E,[toplit,] — P, {oplit, # 0} (32)

If we apply the Markov property at each oplit on y we obtain:

Vy=z:  L(x,y)K'(y,2) = P{T: € [2,00[, X0 X1 =y}
=P {oplit, #0, 1 ¢ oplit, , X, o X 1=y}
Thus
> L(x,y)K'(y,z) = Po{oplit, #0 , 1 ¢ oplit, } (33)

Y-z
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Summing (32) and (33) we get:

L'K'(x,2) =Y L'(x,y)K'(y, 2)

yrz
= E,[toplit,] — P,{1 € oplit, }
We we remark that P,{1 € oplit,} = P(z, z). Add to the fact that K'(z,2) =0
we get P(x,z) + L'K'(z,2) = L'(z,2) + K'(z, 2).
> Step two. We fix x, z such that x = z. Applying the Markov property at
each oplit on y > x, we get, as previously:

Yy - x: L'(z,y)K'(y,z) = P {T,€[2,00, Xyo0 X1 =y} (34)

~\
AN

Thus

LK'(w,2) =Y L'(2,y)K'(y,2) = Po{ Xy = 2, Ty 2 1] = K'(2,2) - P(x,2)

yrx

Adding to the fact that L'(z,2) = 0 we get: P(z,2) + L'K'(z,2) = K'(z,2) +
L'(z,z) O

14 General comments

About calculation of LU-factors: To have expressions of L, K, V, W... allows us to
have informations about our Markov chain. Example: it allows to compute the
law of the minimum (proposition 4.4), or to have expressions for the invariant
measure (proposition 11.2 ). But how can we compute these matrices? When E
is finite, the classical algorithm of Gauss-elimination (see e.g. [Cia82]) permits
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to compute the factors. This algorithm can be immediately "extended" to the
case where ' = —N and < is < ; but it cannot be extended when E = N and <
is < because it require to start to the upper level. In any cases, this algorithm
is recursive, and does not furnish us closed formulae.

On the random walks case, the Wiener-Hopf technique allows to transform
our problem into a problem of complex analysis: we have to find functions §£
and §K such that (29) holds. This can be done with some contour integral
technique (see [Wid97]). But once again, such expression are not always useful.

When we work with structured Markov chain, many techniques have been
invented to access these factors. Most of them are developed in the Li’s Book
[Li10]. Some of this technique appeal the Wiener-Hopf technique.

About Generalization to the continuous time: Continuous time equivalent to
Random walks are Lévy processes. For such processes, the Wiener-Hopf tech-
nique was exploited efficiently to compute law linked to min/max, but also to
have information about the some infinitesimal behavior of trajectories. ( see e.g.
Bertoin [Ber96] , Doney [Don01], Kyprianou [Kyp06], Vigon [Vig02],[Vig03]).
In continuous time, to find good expressions for factors is really difficult.

About space-time problem: An even harder problem is to obtain expressions
for ¢ — Kj4p) and q — L, pj, which also give some expressions for the law of the
time where the global minimum is reached. In continuous times, to compute the
space/time Wiener-Hopf factorization is somewhere the Grail of the fluctuation
theory for Lévy processes. The main advance in this direction was made by
Fourati [Foul0] who shows how to obtain these bivariate factors as solutions of
a Riemann-Hilbert problem.

Other Generalization: A Wiener-Hopf factorization have been developed by
Williams for Symmetric Markov processes, but, as we said in introduction, this is
an alternative generalization which does not correspond to our LU-factorization.

Does LU-factorization is generalizable for any Markov process? Yes we think.
For right Markov process, the process t — X, can be defined as the past-
minima process i.e inf{ X, : s < ¢}, that we time-change to suppress the horizon-
tal plateau. It is not so hard to see that this process is Markovian. The process
t — X<, can be defined as the post-minima process i.e. inf{X; : s € [t,(]},
that we time-change to suppress horizontal plateau (see Fourati [Fou98] for the
precise construction). But even on the Lévy case, this process is not always
strongly Markov (see [Fou98]). In this article, Fourati explains how this process
is anyway a good Markov process (i.e. Markovian on its natural past o-field).
But the difficulty is to understand how domains of generators of X, X4 and X+
are linked in order to define properly a LU-factorization.
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