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Abstract

The present paper deals with the force experienced by a wall overflowed by a granular avalanche.

First, we shortly report new laboratory tests on dry granular avalanches overflowing a wall down

a rough channel. In the first step, the thickness and velocity of the control flows without a wall

are measured. In the second step, a wall is mounted to obstruct the flow and the normal force

experienced by the wall is measured. Then, a set of equations based on depth-averaged momentum

conservation and making it possible to derive the time-varying force on the wall is described. The

model was proposed and calibrated on 2D discrete numerical simulations in an earlier work [B.

Chanut, T. Faug, and M. Naaim, Phys. Rev. E 82, 041302 (2010)]. This model takes into account

the fact that a quasi-static stagnant zone is established upstream of the wall and coexists with

an inertial flowing zone above. For a large range of slopes, the model’s prediction is successfully

compared to experimental data with a reasonable estimation of the incoming flow density and in

spite of some rough assumptions made to describe the dynamics of the dead zone. Finally, the

results are analysed with regards to previous 2D discrete numerical simulations and we discuss the

future work to be undertaken on the dynamics of the dead zone established upstream of the wall.

∗Electronic address: thierry.faug@cemagref.fr
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1. INTRODUCTION

Understanding granular flow dynamics around obstacles and the force exerted by the

flow on the obstacle is an important question in different fields such as storage and convey-

ing processes in industry [1] or defence structures against geophysical flows [2, 3]. Certain

studies have focused on the drag experienced by various objects inside granular flows. The

quasi-static regime, from the pioneering work of Wieghardt [4] to more recent studies [5–

9], has been investigated. The rapid-dilute regime has been also studied [10–16]. Besides

quasi-static (solid) and rapid-dilute (gazeous) regimes, granular flows can exhibit an inter-

mediate dense regime [17] referring to the so-called granular liquid regime [18]. However,

the theoretical description of dense-liquid granular flows remains an open question in spite

of recent progress [18, 19]. Little attention has been paid to granular force on objects in this

intermediate flow regime.

This paper focuses on channelized dense dry granular avalanches overflowing a flat ob-

stacle spanning the channel. The time-varying force on the wall exerted by the free-surface

gravity-driven flow is analysed by cross-comparing the new laboratory tests and the pre-

diction of an analytical model based on depth-averaged momentum conservation previously

developed for 2D granular flows and calibrated using discrete element method (DEM) nu-

merical simulations [20, 21]. In presence of a large obstacle: a wall spanning the flow, these

experiments show the formation of a quasi-static stagnant zone upstream of the wall which

co-exists with an inertial zone overflowing the wall: see Fig.1. Importantly is to notice that

this flow–obstacle interaction regime, obtained on a rough bed, does not refer to granu-

lar jumps outlined earlier for rapid flows on relatively smooth beds [22–25]. By successfully

cross-comparing the experimental force to the analytical prediction, this study demonstrates

the robustness of the proposed equation to link the growth of the dead zone to the mean

resulting force on the wall.

The experimental set-up and procedure to investigate granular avalanches impacting a

wall –normal to the incident flow and the bottom– are presented in Sec.2. Section 3 is

dedicated to a succinct description of the analytical model (previously reported in detail in

[20] for the steady regime and in [21] for the avalanche regime), which aims at predicting

the force from a granular avalanche on a wall in presence of a dead zone. Section 4 deals

with the cross-comparison between the laboratory data and the model’s prediction in term
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FIG. 1: Granular avalanche overflowing a wall of height H = 25d (example for laboratory tests

at θ = 31◦): co-existence of a quasi-static stagnant zone and a flowing inertial zone upstream of

the wall. The snapshot is the sum of 15 images in order to distinguish the flowing zone and the

stagnant zone. Inset: function hstop(θ).

of the time-varying force on the wall. Finally, the paper is concluded by a discussion on the

results and on the prospective work in link with the dead zone dynamics.

2. LABORATORY TESTS

The experimental set-up is a 1.3-m-long and 0.25-m-wide rough (sandpaper) channel

mounted on an incline whose slope angle θ can be varied. The channel is equipped with a

reservoir to store the granular material released by opening a gate at a constant height H0 =

3.5 cm. The granular material consists of glass beads (a constant mass, m=9.2 kg, is released

for each test) with a mean diameter d =1 mm and a particle density ρP =2450 kg m−3. A

sketch of the experimental set-up is depicted in Fig.2. The material was characterized by the

angles θmin=20◦, related to the effective friction associated with quasi-static deformation,

and the angle θmax=28◦ related to rapid collisional flows. These angles were derived from the

function hstop(θ), similarly to the procedure described in [19, 26] (see inset in Fig.1). Two

series of experiments were conducted within a large range of slopes, each degree, from 21◦

(just above θmin for which the avalanche release is prevented) to θc =33◦, relatively larger

than θmax.

Control avalanche flows –in absence of the wall– were first studied. The time-varying

flow thickness h(t) was measured at the distance x0/d=1300 from the gate (channel exit)

using a laser sheet deflected by the granular mass and a high-speed video camera recording
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FIG. 2: Sketch of the experimental set-up. A finite volume hatched area of an assembly of beads

(mean diameter d) is suddenly released from the reservoir by an aperture of height H0 = 35d, and

the grains flow down the inclined slope. In inset is shown the wall spanning the flow: only the ten

central centimeters, over the 25-cm width of the channel, were connected to the two force sensors

(the white arrow indicates the avalanche flow direction).

the images from 200 to 350 fps depending on the slope inclination. The surface velocity

us(t) was measured using the granular PIV method with the high-speed video camera fixed

normal to the flow surface. Figure 3 gives the change over time of the thickness h (thick

dashed lines) and the surface velocity us (solid lines) for three slope inclinations: θ =21◦,

27◦ and 33◦. The thickness and the velocity are normalized by the particle diameter d and

the typical velocity
√

gd (based on the particle diameter), respectively. Curves highlight

that the time ti to reach the location x0/d where the measurements are made decreases,

not surprisingly, when the slope angle is decreased. Three avalanche phases characterizing

the time-varying phenomenon are generally evidenced: (i) an increase in h and us, (ii) a

maximum or even a plateau, and (iii) a more or less rapid decrease of h and us. Both

the jamming transition at θ = θmin and the dense-to-dilute transition around θ = θmax were

evidenced from these measurements on control avalanche flows: see details in [27]. Analysing

in detail the experimental h and us data is beyond the scope of the present paper. These

data will be used as an input for the model’s equations presented in Sec.3.

In the second step, a wall of height H = 25d spanning the whole width of the channel

was placed at the channel exit. The time-varying normal force F (t) exerted on the wall

was measured with two XFTC300 piezoelectric sensors measuring the tension value at a
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FIG. 3: Laboratory tests. Normalized thickness h/d (thick dashed lines) and surface velocity

us/
√

gd (solid lines) of the granular avalanches versus time t for three slope inclinations: θ =21◦

(black color), 27◦ (gray) and 33◦ (light gray).

frequency of 1 kHz. A specific sensor calibration (tension-force relation) as well as validation

procedures (based on various known masses applied on different positions along the obstacle)

were designed to ensure the accuracy of the force measurement (see details in [27]). Note

that only the ten central centimeters, over the 25-cm width of the channel, were connected

to force sensors in order to avoid resonance phenomena, as is shown in inset of Fig.2. Figure

4 provides the measured force per unit width, F/ℓ, on the wall for three slope inclinations:

θ =21◦, 27◦ and 33◦. ℓ corresponds to the width of the part of the wall connected to the force

sensors (ℓ = 100d). Again, ones can observe that the time ti to reach the obstacle decreases

when the slope angle is decreased. Force signals also show the three avalanche phases

characterizing the time-varying phenomenon: (i) an increase in force, (ii) a maximum in

force or even a plateau, and (iii) a more or less rapid decrease of the force. More experimental

data about the force are presented elsewhere [27] and in Sec.4 when these data are compared

to the prediction of the analytical model described in Sec.3.

The changes over time (i) in thickness and velocity for control flows and (ii) in force are

described and analysed in detail in [27]. The present paper focuses on the cross-comparison

between the laboratory data and the analytical model recently proposed to describe the

force from granular avalanches on the wall when a stagnant zone co-exists with a flowing

zone above [21]. The model’s equations to link the force to incoming flow depth and velocity

are presented in the following section.
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FIG. 4: Laboratory tests. Force per unit width, F/ℓ, measured on the wall versus time t for three

slope inclinations: θ =21◦ (black color), 27◦ (gray) and 33◦ (light gray).

3. THEORETICAL FRAMEWORK

3.1. Depth-averaged momentum conservation

The following is a succinct description of the theoretical framework. Further details can

be found in previous studies [20, 21]. Figure 1 gives a sketch of the flow geometry upstream

of the obstacle. We define V0 as the upstream volume disturbed by the obstacle. V0 includes

the volumes of the stagnant zone and of the flowing zone above (see hatched zone in Fig.1).

Depth-averaged momentum conservation applied to V0 leads to (see details in [20, 21]):

F = FN
u + Fh + FN

w − µ̄zm

[

F T
w + F T

u

]

+ Fmv, (1a)

FN
u /ℓc = βφ̄ρP ū2h[1 − δu cos α], (1b)

Fh/ℓc =
1

2
kφ̄ρP gh2 cos θ, (1c)

FN
w /ℓc = φ̄0ρP

V0

ℓc

g sin θ, (1d)

F T
w /ℓc = φ̄0ρP

V0

ℓc

g cos θ, (1e)

F T
u /ℓc = −βφ̄ρP ū2hδu sin α, (1f)

Fmv/ℓc = −
1

2

d

dt
[ρ̄ū(1 + δu)] , (1g)

where F is the total normal force on the wall and ℓc is the channel width, which has to be
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taken into account here contrary to two dimensional DEM simulations reported in [21]. h, ū

and φ̄ are, respectively, the flow thickness, the depth-averaged velocity and volume fraction

at section S (see Fig.1). Eq.(1b) defines FN
u which is the normal component of the force due

to momentum variation between sections S and S∗. In order to derive FN
u , we defined: the

Boussinesq coefficient β related to the velocity profile in depth, the deflection angle α with

respect to the flow bottom and the velocity ratio δu = ū∗/ū, where ū∗ is the depth-averaged

velocity at section S∗. Eq.(1c) gives Fh which is the pressure force of the incoming flow. k

is classically defined as the earth’s pressure coefficient [28]. FN
w is the normal component of

the weight of the control volume V0. φ̄0ρP V0, in Eq.(1d), is the mean mass of the control

volume assumed to be equal to:

φ̄ρP

(

V0 −
1

2
HLℓc

)

+
1

2
φmaxρP HLℓc, (2)

in order to consider the compaction of the stagnant zone with respect to the flowing

zone above. It is assumed that the dead zone has a triangular shape and L is its length

(see Fig.1). φmax is defined hereafter. The term µ̄zm

[

F T
w + F T

u

]

is the basal friction force

between the dead zone and the rough bottom of the channel. It takes into account one

contribution from the tangential component of the weight of the control volume (F T
w ) and

another contribution from the tangential component of the force due to momentum variation

between sections S and S∗ (F T
u ). µ̄zm is the space-averaged coefficient of effective friction

between the stagnant zone and the bottom (see detail in [20, 21] and in Sec.3.2). Fmv

is the force due to momentum variation over time inside the control volume (Fmv = 0 in

steady regime [20]). Detailed calculation to obtain Eq.(1g) is given in [21] based on the main

assumption that the mean density and velocity are equal to φ̄ρP and 1
2
(ū+ū∗), in the volume

V0− 1
2
HLℓc (control volume V0 minus the volume of the stagnant zone). The mass flux from

the inertial zone to the quasi-static zone is neglected: we assume φ̄∗ū∗h∗ ≃ φ̄ūh for any

time t, where φ̄∗ and h∗ are volume fraction and thickness at section S∗. This assumption is

reasonable except for times shorter than the characteristic time of the dead zone formation.

The control volume V0 is derived from geometry:

V0

ℓc

=
hL

2

[

2 +

(

L

h
− δh sin α

)

tan γ +
δh

L
(H − h) sin α

]

, (3)

where γ = 2α − arctan H
L

and δh = h∗/h. The dead zone length is simply derived from
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the triangular shape of the stagnant zone (see Fig.1):

L =
H

tan(αzm)
, (4)

where αzm is the dead zone angle (see Fig.1) and is defined in the next section. The jet

angle with the channel bottom, or deflection angle, α is equal to the mean resulting value

between the dead zone angle αzm and the free-surface angle αsl (see Fig.1):

α =
αzm + αsl

2
. (5)

3.2. Closure equations

The free-surface (αsl) and dead zone (αzm) angles are assumed to increase exponentially

with time before reaching the asymptotic values α0
sl and α0

sm corresponding to the stationary

state [20], as is proposed in [21]:

αzm = α0
zm +

(π

2
− α0

zm

)

e(ti−t)/τ , (6)

αsl = α0
sl +

(π

2
− α0

sl

)

e(ti−t)/τ . (7)

τ is the characteristic time of the stagnant zone formation and ti depicts the measured

time between the avalanche release and its first impact with the wall (see Figs.3 and 4). As

we did not measure the growth of the dead zone in the laboratory experiments presented

in this paper, we assume exponential variations similarly to what was observed for previous

2D DEM simulations (see figure 5 in [21]). Eqs.(6) and (7) are valid if t > ti otherwise

αzm = αsl = π/2 when t 6 ti. The asymptotic values α0
zm and α0

sl corresponding to a

stationary state are derived using the results from previous 2D DEM simulations in steady

regime (see detail in [20]):

α0
zm = θ − θmin, (8)

α0
sl =

θmin

θmax − θmin

(θ − θmin), (9)

In [20] where steady flows were studied thanks to discrete numerical simulations, it is

shown that the angle of the dead zone with respect to the horizontal, equal to θ−α0
zm, does

8



not depend on the slope angle and is equal to the constant value θmin, which leads to Eq.(8).

Equation 9 is derived from the fact that the free-surface angle in steady regime, α0
sl, is a

simple affine function of the slope angle θ: α0
sl = aθ + b, where a and b are calculated with

the following physical arguments: (i) α0
sl tends towards zero when θ = θmin (the dead zone

propagates increasingly upstream of the wall), which gives α0
sl = a(θ − θmin) and (ii) α0

sl

tends towards θmin when θ = θmax (the free-surface and the frontier between the stagnant

zone and the flowing zone above are parallel), which gives a = θmin/(θmax−θmin) . Here, for

a sake of simplicity, we do not distinguish slopes below and above θmax as it was proposed

in [20, 21] where different values of a and b were given when θ > θmax. We verified that this

choice had very little effect on the model’s prediction displayed in Sec.4.

Two other closure equations are needed to derive the velocity reduction δu and the basal

friction coefficient µ̄zm. The velocity reduction is calculated using the empirical relation

proposed in [20] assuming that the relative velocity reduction is proportional to the deflecting

–or jet– angle (the larger the deflecting angle α, the higher the expected velocity decrease

is): (ū − ū∗)/ū = κα, which leads to

δu = 1 − (1 − e)
α

π/2
=

1

δh

, (10)

where e is the restitution coefficient of particles (e ≈ 0.9 for glass beads) stemming from

the limit condition corresponding to a purely collisional regime at high slope (jet angle

equal to α = π/2) for which δu ≃ e = 1 − κπ/2. The depth variation δh = h∗/h is simply

derived from mass conservation by assuming that the volume fraction is relatively unchanged

between sections S and S∗. Finally, the basal friction coefficient is also derived from the

results from previous discrete numerical simulations with the following relation compatible

with the dead zone angle (see [20, 21]):

µ̄zm = tan(θ − αzm). (11)

Equations (1–11) can be used to predict the force on the wall if the time signals h(t),

ū(t) and φ̄(t) are known. The entire calculation to derive Eqs.(1–11) is detailed in [20] for

the steady regime and in [21] for the time-varying avalanche regime. The following section

deals with the cross-comparison between the laboratory data and the prediction from the

set of Eqs.(1–11).
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4. FORCE ON THE WALL: MODEL VERSUS LABORATORY TESTS

4.1. Model’s parameters

Contrary to DEM simulations for which h(t), ū(t) and φ̄(t) signals could be simultaneously

measured for control flows [21], we only measured h(t) and us(t) here. We assume us(t) ≈

ū(t) and we estimate φ̄ with (see [18]):

φ̄(Ī) = φmax + (φmin − φmax)Ī , (12)

where φmin=0.4 and φmax=0.64 are typical minimum and maximum values of the volume

fraction for relatively dense granular flows. Ī is the macroscopic inertial number [19]: Ī =

5ūd/2h
√

gh cos θ. Eq.(12) is strictly valid for slopes in the range [θmin,θmax]. For θ ≥ θmax,

it gives unreasonable values. We found very low φ̄-values that were not compatible with the

experimental observations, or even negative unphysical values, resulting from large Ī values

(rapid and thin flows). This point is discussed below when cross-comparing the predicted

force and the experimental data.

The following parameters are needed to derive the force from the model’s equations

presented in Sec.3: θmin, θmax, e, k, β, ti and τ . The friction angles θmin = 20◦ and

θmax = 28◦ were experimentally determined from the function hstop(θ). The restitution

coefficient of particles e was estimated to 0.9 for the glass beads used in the experiments.

The model’s sensitivity to the earth pressure coefficient k and to the Boussinesq coefficient β

was found to be insignificant, as also reported in [21]: k = 1 and β = 1 were therefore chosen.

ti corresponds to the initial impact of the avalanche front with the wall. It was estimated

from the measurements of thickness and velocity combined with force: see examples in Figs.3

and 4. As we did not measure the growth of the dead zone, the characteristic time related to

the dead zone formation was firstly fixed at τ = 0.4s for any slope on the basis of the DEM

simulations reported in [21] for which the growth of the dead zone was analysed (see figure 5

in [21]). We are aware that the creation of the dead zone is a key point here. The dynamics

of the dead zone should be studied in detail in the future in order to investigate the possible

influence of parameters such as the obstacle and channel sizes on the characteristic time τ .
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4.2. Model’s prediction

Without any other fitting procedure, except the choice to discriminate between slopes

above and below θmax to calculate φ̄ [see discussion hereafter and Figs.6(a) and 6(b)], the

model’s prediction is found to be in quantitative agreement with the experimental data for

a large range of slopes, as displayed in Fig.5(a). For slopes close to θmin (θ ≤ 24◦), it was

necessary to increase τ above the initial value of 0.4s mentioned in previous section [see also

discussion hereafter and Fig.5(b)]. The analytical model is able to reproduce the different

phases of the avalanche for a certain range of slope angles: (i) the increase in force, (ii) the

maximum in force, or even the plateau, and (iii) the force decrease. For θ ≥ 27◦ (close to

θmax), preliminary tests showed that the model’s prediction could give good results if the

volume fraction was corrected with φ̄(t) = φmin for any time instead of the time-varying

values derived from Ī. For θ ≥ 27◦, the results can be improved using the volume fraction

as a fitting parameter: the final results are illustrated in Fig.5(a).

Interestingly is the comparison of the obtained φ̄-values to previous existing experimental

measures of volume fraction inside granular avalanches. Figure 6(a) gives the maximum

value φM reached by the volume fraction [derived from Ī with the help of Eq.(12)] versus

the slope as well as the fitted values φfit (constant value for any time) when θ ≥ 27◦. The

data are displayed in terms of φ̄/φmax as a function of tan θ/ tan θmin so that they can be

compared to previous experimental data from figure 15 in [29]. The fitted values φfit (for

θ ≥ 27◦) are compatible with the laboratory data from [29], whereas the values derived from

the φ̄(Ī) relation [Eq.(12)] are systematically lower when θ ≥ 27◦. This result confirms that

the φ̄(Ī)-relation is no longer valid above a critical angle close to θmax. Fig.6(b) shows the

increase of the difference φfit − φM with slope (we consider that φfit = φM for θ ≤ 27◦ in

absence of fitting procedure), which can be seen as the trace of the dense-to-dilute transition

in gravity-driven granular flows at slope angle θ close to θmax [18]. As we did not measure

the volume fraction in the presented laboratory tests, we are not able to conclude whether

such a transition in volume fraction really occurs in the experiments or not. It may be only

an artefact of the fitting procedure on φ̄. Future experiments including measurements of

the volume fraction, based on indirect and cost-effective methods applied to gravity-driven

granular flows [29, 30] (compared to the existing sophisticated magnetic resonance imaging

or the radioactive positron emission particle tracking methods), would be of great interest

11



[a]

[b]

FIG. 5: Normal force per unit of width F/ℓ (N m−1) versus time t (s): cross-comparison between

the model’s prediction from Eqs. (1–11) (lines) and the experimental data (circles). (a) Model

predictions are shown with φ̄ = φfit [see Fig.6(b)]. (b) Model predictions are shown with a fitted

value of τ [see Fig.6(c)] for θ ≤ 24◦.

to verify this point.

It is worth mentioning that for the lowest θ (nearby θmin) the model failed: it overesti-

mated strongly the force F (t) with τ = 0.4 s. The gap between the model and experimental

data could be reduced by using τ as a fitting parameter for slopes smaller than θ = 24◦.

Fig.6(c) displays the characteristic time τ stemming from this fitting procedure. τ increases

when approaching θmin, which is compatible with the expectation that the dead zone would

indefinitely propagate upstream of the wall for θ = θmin. In Fig.5(b) are shown the results

with the fitted values of τ for θ ≤ 24◦. The agreement is still not perfect contrary to 2D

DEM simulations [21]. This can be explained by the possible effects related to the jamming
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[a]

[b]

[c]

FIG. 6: (a) Normalized volume fraction φ̄/φmax versus tan θ/ tan θmin: maximum values φM de-

rived from Ī, via Eq.(12) (cross symbols) and fitted values φfit with φfit = φM for θ ≤ 27◦ (circles);

the values measured in [29] are also given for comparison (gray symbols). (b) Difference φfit −φM

versus tan θ/ tan θmin (we consider that φfit −φM = 0 for θ < 27◦ in absence of fitting procedure).

(c) Characteristic time τ versus tan θ/ tan θmin (τ = 0.4s for θ ≥ 25◦). The vertical dashed lines

in graphs (b) and (c) correspond to θ = θmax.
13



transition that are not considered in the proposed model (forces per unit of width), which

can increase the friction term (resulting in F decrease): (i) wall effects related to the for-

mation of a network of strong force chains and (ii) the fact that the flow started to come

to a standstill before reaching the wall with no –or slight– overflow. By construction, the

first effect does not exist in the 2D DEM simulations reported in [21]. The second effect is

enhanced in the laboratory tests for which the wall was placed at a distance x0/d =1300,

much greater than x0/d=500 for the 2D DEM simulations in [21]. Investigating the influence

of the channel and the obstacle sizes on these effects –in link with a kind of dynamic Janssen

effect– is beyond the scope of this paper but would be of crucial interest in the future.

The results for θ = 29◦, 32◦ and 33◦, not shown here, are fully compatible with the results

illustrated in Fig.5(a). The results are presented with Fmv = 0 in Fig.5 because this term

was shown to have a negligible influence on the model’s prediction, as also found for DEM

simulations in [21].

Beyond its ability to predict the measured time-varying force on the wall, the analytical

model gives the various contributions to the total force F , which provides a better under-

standing of the avalanche–wall interaction over time. Figure 7 gives an example for θ = 31◦.

The inertial force FN
u related to the square of the incoming velocity and taking into account

the velocity reduction [Eq.(1b)], decreases substantially from t = 1.25s to t = 3s (dark gray

line in Fig.7), whereas the apparent weight, FN
w − µ̄zm(F T

w + F T
u ), of the upstream volume

disturbed by the wall becomes equal to FN
u at t = 1.25s and increases to reach a maximum

at around t = 2.5s. Note that the pressure force Fh from the incoming flow remains negligi-

ble at any time of the flow-obstacle interaction here. Fig.7 generally emphasizes the strong

contribution stemming from the dead zone process occurring upstream of the wall.

5. DISCUSSION AND CONCLUSION

Importantly is the maximum pressure experienced by the wall that can be compared to

typical pressures related to the control flow without any obstacle. Fig.8(a) reports the maxi-

mum pressures Pmax = Fmax/(ℓH) scaled by the typical pressures P0 = F0/(ℓchm) of the inci-

dent control flows versus the scaled slope tan θ/ tan θmax, with F0 = F 0
h = 1/2φ̄ρP hm

2ℓc cos θ

(pressure force) or F0 = F 0
u = 1/2φ̄ρP um

2hmℓc (kinetic force). hm is the maximum thickness

of the control flows and um the related velocity. At high values for θ, Fig.8(a) shows that
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FIG. 7: Normal force per unit of width versus time (example for θ = 31◦). The various contributions

[Eq.(1a)] to the total force (black line) are shown: normal inertial force FN
u (dark gray line), pressure

force Fh (dark gray dashed line) and apparent weight FN
w − µ̄zm(F T

w + F T
u ) (light gray line). The

force due to momentum variation over time, Fmv, is not shown (this is negligible for any slope, as

found in [21]).

the maximum force is driven by inertia: Pmax/P
0
u is relatively constant. At low slopes, the

ratio Pmax/P
0
h ranges from 10 (around θmax) to 3 (close to θmin). This result is caused by

the additional and dominant contribution of the apparent weight of the upstream volume

disturbed by the wall. These curves are fully compatible with the laboratory results from 2D

DEM simulations reported ealier in [20, 21] and drawn in Fig.8(b). It can be concluded that

the maximum pressures from both the DEM simulations (purely 2D) and the laboratory

tests (channelized flows) are well reproduced by the analytical model, which is able to catch

the transition in force at the slope angle θ close to θmax.

In conclusion, we have carried out laboratory tests on confined granular avalanche over-

flowing a wall. 2D DEM numerical simulations were previously reported in [21], which

allowed to develop and calibrate an equation to predict the avalanche force in similar flow–

obstacle configuration. Up to now, no experimental verification of the model has been

available. Except for low slopes, the equation was successfully compared to the laboratory

data, which demonstrates the robustness of the force model. Morever, it confirms that

the force experienced by the wall overflowed by a granular avalanche is the sum of (i) the

pressure force of the incoming undisturbed flow, (ii) the inertial force related to velocity

reduction and (iii) the apparent weight of the upstream volume –the quasistatic zone sur-
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[a]

[b]

FIG. 8: Maximum pressure Pmax = Fmax/(ℓH) scaled by pressures P0 = F0/(ℓchm) with F0 =

1/2φ̄ρP hm
2ℓc cos θ (pressure force, circles and lines in gray) or F0 = 1/2φ̄ρP um

2hmℓc (kinetic

force, squares and lines in black) versus the scaled slope tan θ/ tan θmax: (a) model’s prediction

(lines) compared to experimental data (symbols); (b) model’s prediction (lines) compared to DEM

simulations in steady (plain symbols and solid lines, [20]) and avalanche (empty symbols and dotted

lines, [21]) regimes.

mounted by the inertial zone– disturbed by the obstacle. The proposed equations based on

depth-averaged momentum equations are sufficient to link the growth of the dead zone to the

mean force. However, it is worthy of pointing at that the granular temperature goes to zero

in the quasi-static stagnant zone and the related dissipation must be very important. Hence,

this description may fail to describe the creation of the dead zone and the force fluctuations

on the wall. Investigating the physical process at a microscopic (grain) scale is a futur chal-

lenge. Finally, quantifying the gap between the laboratory data and the equation at the
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lowest slopes, attributed to wall effects occurring near the jamming transition, remains an

important challenge. Laboratory tests and/or 3D DEM simulations with various channel

width and obstacle height should be undertaken in the future to verify these assumptions in

link with a Janssen effect. It will also provide crucial information on the characteristic time

defining the growth of the dead zone when the obstacle and the channel sizes are varied.
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