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Empirical Likelihood for Linear Models

in the Presence of Nuisance Parameters

Mi-Ok Kim∗and Mai Zhou

Center for Epidemiology and Biostatistics, Cincinnati Children’s Medical Center

Cincinnati, OH 45229-3039 and

Department of Statistics, University of Kentucky

Lexington, KY 40506

Abstract We propose a simple alternative empirical likelihood (EL) method in linear regression

which requires the same conditions of the ordinary profile EL but overcomes the challenge of

maximizing the likelihood in the presence of high dimensional nuisance parameters. We adapt

the idea of added variable plots. We regress the response and the independent variables of main

interest on the ancillary variables and construct the likelihood based on the residuals. The hence

constructed EL ratio has constraints only pertains to the parameters of interest and has a standard

χ2 limiting distribution. Numerical results are included.

Key words and phrases Profile empirical likelihood, Added variable plots

1 Introduction

Empirical likelihood (EL) method is a general and effective nonparametric inference method. It can

be seen as bootstrap that does not re-sample and assigns probability mass not necessarily evenly

yet to every sample points under linear constraints. It has been extensively studied in the literature

and has many application (see a monograph by Owen (2001) and reference therein for examples).

We focus on EL application for linear regression in the presence of ‘nuisance’ parameters in this

paper.

Inference in the presence of ‘nuisance’ parameters is an old problem where attention is often

∗Corresponding author email: miok.kim@cchmc.org
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focused on only one or two of the parameters, the other being considered ‘nuisance’ parameters nec-

essary to characterize scientific problems but of no intrinsic interest. With parametric approaches,

‘nuisance’ parameters are often scale parameters in a linear model setting. On the contrary, non-

parametric approaches do not usually necessitate scale ‘nuisance’ parameters unless prior informa-

tion suggests variance modelling. Hence in this paper we use ‘nuisance’ parameters to refer to a

part of regression coefficient vector that is not of an immediate interest.

Inference in linear regression is often concerned with the coefficient parameters individually

or a subset of a few. Inference for a part of the parameter vector is particularly important with

EL as it is not easy to characterize the confidence region for parameters of dimension > 2, since

EL produces irregularly shaped confidence regions that are known only convex. Hence ellipsoidal

properties cannot be used to characterize the EL confidence regions and a common practice is

instead give two dimensional confidence regions or confidence intervals for subsets of parameters.

In such cases a standard approach that is analogous to its parametric counterpart is profiling

the EL (e.g. Owen, 1991). Qin and Lawless (1994) demonstrated in a general estimating equation

(GEE) framework that the profiling method yields EL ratio statistic with a standard χ2 limiting

distribution. Chen (1994) investigated the profile EL for a linear regression where the intercept

and slope are scalar. In spite of its nice theoretical properties, however, profiling EL is problematic

in practice as its computational burden increases exponentially as the dimension of the nuisance

parameters grows. In particular, confidence regions/intervals estimation is problematic as the EL

ratio statistic is used inversely to decide whether a point under consideration to be included or not.

For example, when the regression involves five independent variables and confidence intervals are

to be estimated, the profiling method requires maximizing the likelihood over a five dimensional

nuisance parameter vector (including intercept) for each value under consideration.

To overcome the limitation placed by the nuisance parameters, some have proposed plug-in

method that replaces the nuisance parameters with their estimate. For example, recently Hjort,

McKeague and Van Keilegom (2006) showed that the basic theorem of EL can be generalized to

allow for plug-in estimates of nuisance parameters in the estimating equations. In linear regression

a natural candidate for the estimates is the least squares. However, plugging in the least squares
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yields EL ratio statistic whose limiting distribution is not a standard χ2 and has to be calibrated

via bootstrapping, which offsets the merit of the EL method. DiCiccio and Monti (2001) proposed

two approximations to the profile empirical likelihood function for a scalar parameter of interest

in the context of M -estimation using the third and fourth derivatives of the profile log empirical

likelihood function at its maximizing point. Their method can be seen corresponding with various

additive adjustments of the profile likelihood function in the parametric case, for example, as recent

as Stern (1997) and Ferrari, Lucambio and Cribari-Neto (2005). The EL inference based on the

approximation is no longer invariant under reparameterization.

We propose a simple alternative approach in case of linear regression that applies under the

same conditions of the ordinary profile EL, invariant to reparametrization, and overcomes the

computational challenges of the profiling method. As well known, added variable plots are devices

to represent the effect of an independent variable on the regression after accounting for the effects

of the other variables in the model. Two-dimensional plots are most common but the idea can

be generalized to a higher dimension to jointly represent the effects of more than one independent

variables on the regression after accounting for the effects of the other variables, although the

results may be hard to visualize. For example, Cook (1994) discusses three-dimensional added

variable plots. We adapt the idea to make the EL inference only pertain to the parameters of

an immediate interest. We regress the response and the independent variables of main interest

on the ancillary variables and construct the likelihood based on the residuals. The constraints of

the EL only pertain to the parameters of interest. The resulting EL inference inherits some of

the properties of ordinary EL: the likelihood is maximized at the same point where the ordinary

profile EL is maximized and invariant to reparametrization, and −2 log EL ratio is asymptotically

χ2 distributed.

The rest of paper is organized as follows. Section 2 introduces the proposed method and section

3 presents numerical results. Proofs of the main results are deferred to section 4.
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2 Partial Residuals and EL

For a vector ν, we use ν(k) to denote the kth element. Consider a linear model

yi = x⊤
i β0 + ei , 1 ≤ i ≤ n ,

where ei are mean zero independent random variables with finite variances σ2
i . Suppose that

the covariates and the regression coefficients are divided such that xi = (x⊤
1i, x

⊤
2i)

⊤ ∈ Rp and

β0 = (β⊤
10, β

⊤
20)

⊤ with x1i, β10 ∈ Rp1, x2i, β20 ∈ Rp2 and x1i(1) = 1. We are interested in a

hypothesis test of H0 : β2 = β20 versus H1 : β2 6= β20. The ordinary EL method defines the

likelihood as

EL(β1, β2) = max
wi

{
n∏

i=1

wi|
n∑

i=1

wizi(β1, β2) = 0,

n∑

i=1

wi = 1, wi ≥ 0} , (1)

where zi(β1, β2) = xi(yi − x⊤
1iβ1 − x⊤

2iβ2). Then the profile EL method defines the ratio function

for β2 as R(β2) = maxβ1∈Rp1 EL(β1, β2)/maxβ1∈Rp1 ,β2∈Rp2 EL(β1, β2). As shown in Owen (1991)

the denominator likelihood is maximized at
∏n

i=1 1/n. Hence the profile EL ratio becomes

R(β2) = max
β1∈Rp1

{
n∏

i=1

nwi|
n∑

i=1

wizi(β1, β2) = 0,

n∑

i=1

wi = 1, wi ≥ 0} . (2)

Its computation is usually done via iterative algorithms or a grid search algorithm. The computa-

tional challenges placed by the free parameter β1 is inhibiting even when p1 is as low as 3, while

quite commonly regression analysis involves more than three independent variables.

When the true value of β1 is known, we can avoid profiling using the following EL and EL ratio:

ẼL(β2) = max
wi

{
n∏

i=1

wi|
n∑

i=1

wiz̃i(β2) = 0,
n∑

i=1

wi = 1, wi ≥ 0} , (3)

where z̃i(β2) = x2i(yi − x⊤
1iβ10 − x⊤

2iβ2) and

R̃(β2) = max
wi

{
n∏

i=1

nwi|
n∑

i=1

wiz̃i(β2) = 0,
n∑

i=1

wi = 1, wi ≥ 0} . (4)
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However, β10 is not always known and we propose following alternative method based on the

idea of added variable plots. Define matrices X1n = (x11, · · · , x1n)⊤, X2n = (x21, · · · , x2n)⊤,

Hn = X1n(X⊤
1nX1n)−1X⊤

1n and Yn = (y1, · · · , yn)⊤. We regress x2i and yi on x1i and denote the

respective residuals by x∗
2i and y∗i . Specifically x∗

2i = x2i − X⊤
2nhi and y∗i = yi − Y ⊤

n hi, where hi

denote the ith column of Hn. With (x∗
2i, y

∗
i ), we have an induced linear model y∗i = x∗⊤

2i β2 + e∗i .

We define the likelihood based on (x∗
2i, y

∗
i ) as

EL
∗(β2) = max

wi

{
n∏

i=1

wi|
n∑

i=1

wiz
∗
i (β2) = 0,

n∑

i=1

wi = 1, wi ≥ 0} , (5)

where z∗i (β2) = x∗
2i(y

∗
i − x∗⊤

2i β2). Accordingly we define the EL ratio as

R∗(β2) = max
wi

{
n∏

i=1

nwi|
n∑

i=1

wiz
∗
i (β2) = 0,

n∑

i=1

wi = 1, wi ≥ 0} . (6)

We note that the optimization problem in (6) is free of the nuisance parameter β1. We have the

following results.

Some notation is needed. Let mineig(V ) denote the minimum eigenvalue of the symmetric

matrix V and ||ν|| denote the L2 norm of a vector ν. Let ch(A) denote the convex hull of the set

A ⊆ Rp.

Theorem 1 Let n0 ≥ p, γ ≥ 0, a, b > 0, and let N = {xi|yi −x⊤
i β0 < 0} and P = {xi|yi −x⊤

i β0 >

0}. Assume that ch(N) ∩ ch(P ) 6= ∅ with probability tending to 1 as n → ∞. Also assume

that 1
n2

∑n
i=1 ||xi||4E (e4

i ) → 0. Suppose a < σi < b||xi||γ for all i and that for all n ≥ n0,

a < mineig(X⊤
n Xn/n) and (1/n)

∑n
i=1 ||xi||2+γ < b. Then, −2 logR∗(β20) → χ2

p2
in distribution

as n → ∞.

Note that the conditions of the above theorem is same as those of corollary 2 of Owen (1991).

Hence this alternative EL method works under the same requirements of the profile EL method.

It follows from the theorem that for any 0 < α < 1 an EL confidence region for β20 with an

asymptotic coverage probability 1−α is given by {β2|−2 logR∗(β2) < c1−α} where c1−α is defined

5
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such that P (χ2
p2

> c1−α) = α. Also it can be shown trivially that β̂∗
2 = β̂2 as NPMLEs (non-

parametric maximum likelihood estimate) in linear regression are ordinary least squares estimates,

where β̂2 and β̂∗
2 denote an NPMLE of β2 with respect to the EL defined in (1) and (5). This implies

that while the proposed EL is different from the one by the profile EL, they provide the same point

estimate and the confidence intervals are centered at the same value in the sense that the p-values

are 1 at the same point. Moreover, the confidence regions and intervals are almost identical as

examples show later. An asymptotic level α test can be specified by using the complement of the

confidence region as a rejection region.

3 Simulation Results

3.1 Simulation study 1

We present results that empirically verify the results of Theorem 1. We use following simulation

setup where M1 and M2 represent homoscedastic and heteroscedastic errors model:

M1 : yi = 3 + 2z1i + z2i + z3i + z4i + z5i + ei

M2 : yi = 3 + 2z1i + z2i + z3i + z4i + z5i + 0.3(s1i + s2i + s3i + s4i + s5i)ei

where z1i ∼ χ2
1, z2i ∼ N(−1, 1), z3i ∼ exp(1), z4i ∼ N(1, 1), z5i ∼ χ2

3 and zji, j = 1, · · · , 5

are independent of one another, and sji are truncated zji so that |sji| ≤ 5. Two distributions,

N(0, 1) and exp(1) − 1 are considered for ei. In each of 5000 simulated samples we considered

two hypotheses: β20 = 2 and β20 = (2, 1)⊤ where the covariate(s) of main interest is/are z1i and

(z1i, z2i) and in the notation of the previous section x2i = z1i and x2i = (z1i, z2i)
⊤ respectively. We

calculated −2 logR∗(β20) for each β20.

We note that the simulation setup reflects quite a common situation in regression that analysis

concerning even mildly sophisticated problems would involve four or five independent variables,

while only one or two of them are of main interest. Even with the nuisance parameters of a

moderate dimension as low as three or four, computing (2) is challenging and the usual profile EL

6
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method may be deemed impractical. The proposed alternative method comes to its rescue. As

the computational burden of the usual profile EL is inhibiting, we instead compare the proposed

alternative EL with R̃(β2). All the computations were conducted using emplik package in R.2.0.1.

Q-Q plots in figure 1 and 2 empirically validate the results of Theorem 1 for homoscedastic and

heteroscedastic errors model. As the errors in the heteroscedastic model are functions of all the five

independent variables, the heteroscedasticity in the model (M2) is strong. Therefore the empirical

distributions of R∗(β20) show a rather weak agreement with the respective χ2 asymptotic reference

distributions in figure 2. This also explains less than desirable performance of the proposed method

for the heteroscedasticity model reported in table 1. The performance can be improved certainly

with increasing sample size.

Table 1 show that the proposed EL method performs comparably to a method with the EL in

(3) and that the asymptotic results in Theorem 1 can be used to construct level appropriate tests

or confidence intervals. Note that the EL method with the EL in (3) should be best as true values

are plugged in for β1 in the EL (3). Hence the comparable performance of the proposed method is

all that can be desired.

3.2 Simulation study 2

This study empirically examines the properties of the proposed likelihood and confidence intervals

constructed. We simulate one sample of n = 100 from the following setup and construct a 95%

confidence interval for the slope coefficient: yi = 3 + 2z1i + ei, where z1 ∼ χ2
1 and ei ∼ N(0, 1).

Figure 3 presents two −2 log EL ratio functions. We note that −2 logR∗(β20) (solid line) and

−2 logR(β2) (dashed line) are almost identical and both reach the minimum 0 at the same value.

This empirically verifies that their NPMLEs for the slope coefficient are same.

4 Appendix

Proof of Theorem 1 As we have β̂∗
2 = β̂2, β̂∗

2 is a consistent estimator of β2.

7
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Let ẽn = (e1, · · · , en)⊤ and Σn = Ee(ẽnẽ⊤n ) = diag(σ2
i ) where Ee denotes the conditional

expectation given (x1i, x2i). There exists a positive definite matrix S under the conditions of the

theorem such that S = limn→∞
1
n
X⊤

2n(In − Hn)Σn(In − Hn)X2n. Define Z̄∗ = 1
n

∑n
i=1 z∗i (β20) and

Sn = 1
n

∑n
i=1 z∗i (β20)z

∗⊤
i (β20).

Let an ≈ bn mean that there are constants 0 < A < B < ∞ such that A ≤ an/bn ≤ B for all n

and let limn→∞ n−1X⊤
1nX1n = I without loss of generality. Then, ||x∗

2i|| ≈ ||x2i − (n−1X⊤
2nX1n)x1i||

except on the events whose probability tends to 0 with increasing n. Note that

||x2i − (n−1X⊤
2nX1n)x1i|| ≤ ||x2i|| + max

j
||(n−1X⊤

2nX1n)(j)|| ||x1i|| ≈ ||x2i|| + ||x1i|| ,

where (n−1X⊤
2nX1n)(j) denotes the jth row of (n−1X⊤

2nX1n). Also for all 1 ≤ i, j ≤ n, Hn(i,j) ≈

n−1x⊤
1ix1j = o(1), where Hn(i,j) denote the i, jth element of Hn. Hence mineig(X⊤

2n(I−Hn)Xn/n) ≈

mineig(X⊤
2nX2n/n). It follows that under the conditions of the theorem, 1

n2

∑n
i=1 ||x∗

2i||4E (e4
i ) → 0

and there exist positive constants a∗ and b∗ such that a∗ < mineig(X⊤
2n(I−Hn)Xn/n) for all n ≥ n0,

and (1/n)
∑n

i=1 ||x∗
2i||2+γ < b∗. Therefore, x∗

2iei, 1 ≤ i ≤ n, satisfy the Lindberg’s condition under

the conditions of the theorem as well as xiei of the original model do. As

√
nZ̄∗ =

1√
n

X⊤
2n(In − Hn)(In − Hn)⊤ẽn =

1√
n

∑
x∗

2iei ,

√
nZ̄∗ is asymptotically normally distributed with mean 0 and variance S by the multivariate

central limit theorem.

On the other hand, Sn = 1
n

∑
x∗

2ix
∗⊤
2i (e2

i −2eiẽ
⊤
n hi+(ẽ⊤n hi)

2), where eiẽ
⊤
n hi ≈ 1

n

∑n
k=1 eiekx

⊤
1kx1i

and (ẽ⊤n hi)
2 ≈ ( 1

n

∑n
k=1 ekx

⊤
1kx1i)

2 except on the events whose probability tends to 0 with increasing

8
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n. For all i,

Ee(
1

n

n∑

k=1

eiekx
⊤
1kx1i) =

1

n
σ2

i ‖x1i||2 = o(1)

Ee

(
1

n

n∑

k=1

eiekx
⊤
1kx1i

)2

=
1

n2
{Ee(e

4
i )||x1i||4 +

∑

k 6=i

σ2
i σ

2
k(x

⊤
1kx1i)

2} = o(1)

Ee

(
1

n

n∑

k=1

ekx
⊤
1kx1i

)2

=
1

n2

n∑

k=1

σ2
k(x

⊤
1kx1i)

2 = o(1) .

We have |eiẽ
⊤
n hi| = op(1) and (ẽ⊤n hi)

2 = op(1) by the Chebychev’s and Markov’s inequality re-

spectively. Also 1
n

∑
x∗

2ix
∗⊤
2i e2

i → S by the Chebychev’s inequality and it follows that Sn → S in

probability. The rest of the proof follows similar arguments in the proof of theorem 2 of Owen

(1991).
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Figure 1: Q-Q plots of −2 logR∗(β20) and quantiles of respective χ2 reference distributions for homoscedastic errors
model (M1) based on 5000 simulations with n = 400.
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Figure 2: Q-Q plots of −2 logR∗(β20) and quantiles of respective χ2 reference distributions for heteroscedastic
errors model (M2) based on 5000 simulations with n = 400.

Table 1: Observed Type I Error Rates for Homoscedastic (M1) and Heteroscedastic Errors Model (M2): R∗ indicates
the results by the proposed method and R̃ by the method with true values plugged in for the nuisance parameters.

M1 H0 β20 = 2 β20 = (2, 1)

R
∗ eR R

∗ eR
ei n α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

75 0.1478 0.0840 0.1338 0.0776 0.1792 0.1064 0.1612 0.1010
N(0, 1) 100 0.1424 0.0802 0.1284 0.0710 0.1576 0.0962 0.1464 0.0808

200 0.1320 0.0742 0.1164 0.0588 0.1414 0.0806 0.1302 0.0730

75 0.1660 0.0966 0.1474 0.0842 0.1892 0.1154 0.1806 0.1132
exp(1) − 1 100 0.1466 0.0836 0.1334 0.0736 0.1752 0.1060 0.1686 0.1002

200 0.1250 0.0676 0.1094 0.0566 0.1452 0.0876 0.1368 0.0776

M2 H0 β20 = 2 β20 = (2, 1)

R
∗ eR R

∗ eR
ei n α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

75 0.1922 0.1246 0.1664 0.1044 0.1950 0.1312 0.1704 0.1094
N(0, 1) 100 0.1716 0.1076 0.1498 0.0892 0.1848 0.1144 0.1668 0.1002

200 0.1328 0.0746 0.1156 0.0606 0.1482 0.0848 0.1342 0.0768

75 0.2128 0.1394 0.1800 0.1164 0.2352 0.1588 0.2054 0.1370
exp(1) − 1 100 0.1890 0.1180 0.1560 0.0930 0.2148 0.1342 0.1910 0.1230

200 0.1442 0.0858 0.1214 0.0648 0.1628 0.0984 0.1470 0.0870
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Figure 3: Plots of empirical likelihood ratio functions: solid line for −2 logR∗(β20) and dashed line for −2 logR(β2)
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