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We propose a simple alternative empirical likelihood (EL) method in linear regression which requires the same conditions of the ordinary profile EL but overcomes the challenge of maximizing the likelihood in the presence of high dimensional nuisance parameters. We adapt the idea of added variable plots. We regress the response and the independent variables of main interest on the ancillary variables and construct the likelihood based on the residuals. The hence constructed EL ratio has constraints only pertains to the parameters of interest and has a standard χ 2 limiting distribution. Numerical results are included.

Introduction

Empirical likelihood (EL) method is a general and effective nonparametric inference method. It can be seen as bootstrap that does not re-sample and assigns probability mass not necessarily evenly yet to every sample points under linear constraints. It has been extensively studied in the literature and has many application (see a monograph by [START_REF] Owen | Empirical likelihood[END_REF] and reference therein for examples).

We focus on EL application for linear regression in the presence of 'nuisance' parameters in this paper.

Inference in the presence of 'nuisance' parameters is an old problem where attention is often focused on only one or two of the parameters, the other being considered 'nuisance' parameters necessary to characterize scientific problems but of no intrinsic interest. With parametric approaches, 'nuisance' parameters are often scale parameters in a linear model setting. On the contrary, nonparametric approaches do not usually necessitate scale 'nuisance' parameters unless prior information suggests variance modelling. Hence in this paper we use 'nuisance' parameters to refer to a part of regression coefficient vector that is not of an immediate interest.

Inference in linear regression is often concerned with the coefficient parameters individually or a subset of a few. Inference for a part of the parameter vector is particularly important with EL as it is not easy to characterize the confidence region for parameters of dimension > 2, since EL produces irregularly shaped confidence regions that are known only convex. Hence ellipsoidal properties cannot be used to characterize the EL confidence regions and a common practice is instead give two dimensional confidence regions or confidence intervals for subsets of parameters.

In such cases a standard approach that is analogous to its parametric counterpart is profiling the EL (e.g. [START_REF] Owen | Empirical likelihood for linear model[END_REF]. [START_REF] Qin | Empirical likelihood and general estimating equations[END_REF] demonstrated in a general estimating equation (GEE) framework that the profiling method yields EL ratio statistic with a standard χ 2 limiting distribution. [START_REF] Chen | Empirical likelihood confidence intervals for linear regression coefficients[END_REF] investigated the profile EL for a linear regression where the intercept and slope are scalar. In spite of its nice theoretical properties, however, profiling EL is problematic in practice as its computational burden increases exponentially as the dimension of the nuisance parameters grows. In particular, confidence regions/intervals estimation is problematic as the EL ratio statistic is used inversely to decide whether a point under consideration to be included or not.

For example, when the regression involves five independent variables and confidence intervals are to be estimated, the profiling method requires maximizing the likelihood over a five dimensional nuisance parameter vector (including intercept) for each value under consideration.

To overcome the limitation placed by the nuisance parameters, some have proposed plug-in method that replaces the nuisance parameters with their estimate. For example, recently [START_REF] Hjort | Extending the scope of empirical likelihood[END_REF] showed that the basic theorem of EL can be generalized to allow for plug-in estimates of nuisance parameters in the estimating equations. In linear regression a natural candidate for the estimates is the least squares. However, plugging in the least squares yields EL ratio statistic whose limiting distribution is not a standard χ 2 and has to be calibrated via bootstrapping, which offsets the merit of the EL method. [START_REF] Diciccio | Approximations to the profile empirical likelihood function for a scalar parameter in the context of M -estimation[END_REF] proposed two approximations to the profile empirical likelihood function for a scalar parameter of interest in the context of M -estimation using the third and fourth derivatives of the profile log empirical likelihood function at its maximizing point. Their method can be seen corresponding with various additive adjustments of the profile likelihood function in the parametric case, for example, as recent as [START_REF] Stern | A second-order adjustment to the profile likelihood in the case of a multidimensional parameter of interest[END_REF] and Ferrari, Lucambio and Cribari-Neto (2005). The EL inference based on the approximation is no longer invariant under reparameterization.

We propose a simple alternative approach in case of linear regression that applies under the same conditions of the ordinary profile EL, invariant to reparametrization, and overcomes the computational challenges of the profiling method. As well known, added variable plots are devices to represent the effect of an independent variable on the regression after accounting for the effects of the other variables in the model. Two-dimensional plots are most common but the idea can be generalized to a higher dimension to jointly represent the effects of more than one independent variables on the regression after accounting for the effects of the other variables, although the results may be hard to visualize. For example, [START_REF] Cook | An introduction to regression graphics[END_REF] discusses three-dimensional added variable plots. We adapt the idea to make the EL inference only pertain to the parameters of an immediate interest. We regress the response and the independent variables of main interest on the ancillary variables and construct the likelihood based on the residuals. The constraints of the EL only pertain to the parameters of interest. The resulting EL inference inherits some of the properties of ordinary EL: the likelihood is maximized at the same point where the ordinary profile EL is maximized and invariant to reparametrization, and -2 log EL ratio is asymptotically

χ 2 distributed.
The rest of paper is organized as follows. Section 2 introduces the proposed method and section 3 presents numerical results. Proofs of the main results are deferred to section 4.

For a vector ν, we use ν (k) to denote the kth element. Consider a linear model

y i = x ⊤ i β 0 + e i , 1 ≤ i ≤ n ,
where e i are mean zero independent random variables with finite variances σ 2 i . Suppose that the covariates and the regression coefficients are divided such that

x i = (x ⊤ 1i , x ⊤ 2i ) ⊤ ∈ R p and β 0 = (β ⊤ 10 , β ⊤ 20 ) ⊤ with x 1i , β 10 ∈ R p 1 , x 2i , β 20 ∈ R p 2 and x 1i(1) = 1. We are interested in a hypothesis test of H 0 : β 2 = β 20 versus H 1 : β 2 = β 20 .
The ordinary EL method defines the likelihood as

EL(β 1 , β 2 ) = max w i { n i=1 w i | n i=1 w i z i (β 1 , β 2 ) = 0, n i=1 w i = 1, w i ≥ 0} , (1) 
where

z i (β 1 , β 2 ) = x i (y i -x ⊤ 1i β 1 -x ⊤ 2i β 2 ).
Then the profile EL method defines the ratio function

for β 2 as R(β 2 ) = max β 1 ∈R p 1 EL(β 1 , β 2 )/ max β 1 ∈R p 1 ,β 2 ∈R p 2 EL(β 1 , β 2 ).
As shown in [START_REF] Owen | Empirical likelihood for linear model[END_REF] the denominator likelihood is maximized at n i=1 1/n. Hence the profile EL ratio becomes R(β 2 ) = max

β 1 ∈R p 1 { n i=1 nw i | n i=1 w i z i (β 1 , β 2 ) = 0, n i=1 w i = 1, w i ≥ 0} . ( 2 
)
Its computation is usually done via iterative algorithms or a grid search algorithm. The computational challenges placed by the free parameter β 1 is inhibiting even when p 1 is as low as 3, while quite commonly regression analysis involves more than three independent variables.

When the true value of β 1 is known, we can avoid profiling using the following EL and EL ratio:

EL(β 2 ) = max w i { n i=1 w i | n i=1 w i zi (β 2 ) = 0, n i=1 w i = 1, w i ≥ 0} , (3) 
where zi (

β 2 ) = x 2i (y i -x ⊤ 1i β 10 -x ⊤ 2i β 2 ) and R(β 2 ) = max w i { n i=1 nw i | n i=1 w i zi (β 2 ) = 0, n i=1 w i = 1, w i ≥ 0} . (4)
However, β 10 is not always known and we propose following alternative method based on the idea of added variable plots. Define matrices

X 1n = (x 11 , • • • , x 1n ) ⊤ , X 2n = (x 21 , • • • , x 2n ) ⊤ , H n = X 1n (X ⊤ 1n X 1n ) -1 X ⊤ 1n and Y n = (y 1 , • • • , y n ) ⊤ .
We regress x 2i and y i on x 1i and denote the respective residuals by x * 2i and y * i . Specifically

x * 2i = x 2i -X ⊤ 2n h i and y * i = y i -Y ⊤ n h i , where h i denote the ith column of H n . With (x * 2i , y * i ), we have an induced linear model y * i = x * ⊤ 2i β 2 + e * i .
We define the likelihood based on (x * 2i , y * i ) as

EL * (β 2 ) = max w i { n i=1 w i | n i=1 w i z * i (β 2 ) = 0, n i=1 w i = 1, w i ≥ 0} , (5) 
where

z * i (β 2 ) = x * 2i (y * i -x * ⊤ 2i β 2
). Accordingly we define the EL ratio as

R * (β 2 ) = max w i { n i=1 nw i | n i=1 w i z * i (β 2 ) = 0, n i=1 w i = 1, w i ≥ 0} . ( 6 
)
We note that the optimization problem in ( 6) is free of the nuisance parameter β 1 . We have the following results.

Some notation is needed. Let mineig(V ) denote the minimum eigenvalue of the symmetric matrix V and ||ν|| denote the L 2 norm of a vector ν. Let ch(A) denote the convex hull of the set

A ⊆ R p .
Theorem 1 Let n 0 ≥ p, γ ≥ 0, a, b > 0, and let N = {x i |y ix ⊤ i β 0 < 0} and P = {x i |y ix ⊤ i β 0 > 0}. Assume that ch(N ) ∩ ch(P ) = ∅ with probability tending to 1 as n → ∞. Also assume that 1

n 2 n i=1 ||x i || 4 E (e 4
i ) → 0. Suppose a < σ i < b||x i || γ for all i and that for all n ≥ n 0 ,

a < mineig(X ⊤ n X n /n) and (1/n) n i=1 ||x i || 2+γ < b. Then, -2 log R * (β 20 ) → χ 2 p 2 in distribution as n → ∞.
Note that the conditions of the above theorem is same as those of corollary 2 of [START_REF] Owen | Empirical likelihood for linear model[END_REF].

Hence this alternative EL method works under the same requirements of the profile EL method.

It follows from the theorem that for any 0 < α < 1 an EL confidence region for β 20 with an asymptotic coverage probability 1α is given by

{β 2 | -2 log R * (β 2 ) < c 1-α } where c 1-α is defined such that P (χ 2 p 2 > c 1-α ) = α.
Also it can be shown trivially that β * 2 = β2 as NPMLEs (nonparametric maximum likelihood estimate) in linear regression are ordinary least squares estimates, where β2 and β * 2 denote an NPMLE of β 2 with respect to the EL defined in (1) and ( 5). This implies that while the proposed EL is different from the one by the profile EL, they provide the same point estimate and the confidence intervals are centered at the same value in the sense that the p-values are 1 at the same point. Moreover, the confidence regions and intervals are almost identical as examples show later. An asymptotic level α test can be specified by using the complement of the confidence region as a rejection region.

3 Simulation Results

Simulation study 1

We present results that empirically verify the results of Theorem 1. We use following simulation setup where M 1 and M 2 represent homoscedastic and heteroscedastic errors model:

M 1 :

y i = 3 + 2z 1i + z 2i + z 3i + z 4i + z 5i + e i M 2 : y i = 3 + 2z 1i + z 2i + z 3i + z 4i + z 5i + 0.3(s 1i + s 2i + s 3i + s 4i + s 5i )e i where z 1i ∼ χ 2 1 , z 2i ∼ N (-1, 1), z 3i ∼ exp(1), z 4i ∼ N (1, 1), z 5i ∼ χ 2 3 and z ji , j = 1, • • • , 5
are independent of one another, and s ji are truncated z ji so that |s ji | ≤ 5. Two distributions, N (0, 1) and exp(1) -1 are considered for e i . In each of 5000 simulated samples we considered two hypotheses: β 20 = 2 and β 20 = (2, 1) ⊤ where the covariate(s) of main interest is/are z 1i and (z 1i , z 2i ) and in the notation of the previous section x 2i = z 1i and x 2i = (z 1i , z 2i ) ⊤ respectively. We calculated -2 log R * (β 20 ) for each β 20 .

We note that the simulation setup reflects quite a common situation in regression that analysis concerning even mildly sophisticated problems would involve four or five independent variables, while only one or two of them are of main interest. Even with the nuisance parameters of a moderate dimension as low as three or four, computing (2) is challenging and the usual profile EL method may be deemed impractical. The proposed alternative method comes to its rescue. As the computational burden of the usual profile EL is inhibiting, we instead compare the proposed alternative EL with R(β 2 ). All the computations were conducted using emplik package in R.2.0.1.

Q-Q plots in figure 1 and 2 empirically validate the results of Theorem 1 for homoscedastic and heteroscedastic errors model. As the errors in the heteroscedastic model are functions of all the five independent variables, the heteroscedasticity in the model (M2) is strong. Therefore the empirical distributions of R * (β 20 ) show a rather weak agreement with the respective χ 2 asymptotic reference distributions in figure 2. This also explains less than desirable performance of the proposed method for the heteroscedasticity model reported in table 1. The performance can be improved certainly with increasing sample size.

Table 1 show that the proposed EL method performs comparably to a method with the EL in

(3) and that the asymptotic results in Theorem 1 can be used to construct level appropriate tests or confidence intervals. Note that the EL method with the EL in (3) should be best as true values are plugged in for β 1 in the EL (3). Hence the comparable performance of the proposed method is all that can be desired.

Simulation study 2

This study empirically examines the properties of the proposed likelihood and confidence intervals constructed. We simulate one sample of n = 100 from the following setup and construct a 95% confidence interval for the slope coefficient: y i = 3 + 2z 1i + e i , where z 1 ∼ χ 2 1 and e i ∼ N (0, 1).

Figure 3 presents two -2 log EL ratio functions. We note that -2 log R * (β 20 ) (solid line) and -2 log R(β 2 ) (dashed line) are almost identical and both reach the minimum 0 at the same value.

This empirically verifies that their NPMLEs for the slope coefficient are same.

Appendix

Proof of Theorem 1 As we have β *

2 = β2 , β * 2 is a consistent estimator of β 2 . Let ẽn = (e 1 , • • • , e n ) ⊤ and Σ n = E e (ẽ n ẽ⊤ n ) = diag(σ 2 i )
where E e denotes the conditional expectation given (x 1i , x 2i ). There exists a positive definite matrix S under the conditions of the theorem such that S = lim n→∞

1 n X ⊤ 2n (I n -H n )Σ n (I n -H n )X 2n . Define Z * = 1 n n i=1 z * i (β 20 ) and S n = 1 n n i=1 z * i (β 20 )z * ⊤ i (β 20 ).
Let a n ≈ b n mean that there are constants 0

< A < B < ∞ such that A ≤ a n /b n ≤ B for all n and let lim n→∞ n -1 X ⊤ 1n X 1n = I without loss of generality. Then, ||x * 2i || ≈ ||x 2i -(n -1 X ⊤ 2n X 1n )x 1i ||
except on the events whose probability tends to 0 with increasing n. Note that

||x 2i -(n -1 X ⊤ 2n X 1n )x 1i || ≤ ||x 2i || + max j ||(n -1 X ⊤ 2n X 1n ) (j) || ||x 1i || ≈ ||x 2i || + ||x 1i || ,
where (n -1 X ⊤ 2n X 1n ) (j) denotes the jth row of (n -1 X ⊤ 2n X 1n ). Also for all 1 ≤ i, j ≤ n, H n(i,j) ≈

n -1 x ⊤ 1i x 1j = o(1)
, where H n(i,j) denote the i, jth element of 

H n . Hence mineig(X ⊤ 2n (I-H n )X n /n) ≈ mineig(X ⊤ 2n X 2n /n).
√ n Z * = 1 √ n X ⊤ 2n (I n -H n )(I n -H n ) ⊤ ẽn = 1 √ n x * 2i e i ,
√ n Z * is asymptotically normally distributed with mean 0 and variance S by the multivariate central limit theorem.

On the other hand,

S n = 1 n x * 2i x * ⊤ 2i (e 2 i -2e i ẽ⊤ n h i +(ẽ ⊤ n h i ) 2 ), where e i ẽ⊤ n h i ≈ 1 n n k=1 e i e k x ⊤ 1k x 1i and (ẽ ⊤ n h i ) 2 ≈ ( 1 n n k=1 e k x ⊤ 1k x 1i
) 2 except on the events whose probability tends to 0 with increasing n. For all i, 

E e ( 1 n n k=1 e i e k x ⊤ 1k x 1i ) = 1 n σ 2 i x 1i || 2 = o(1) E e 1 n n k=1 e i e k x ⊤ 1k x 1i 2 = 1 n 2 {E e (e 4 i )||x 1i || 4 + k =i σ 2 i σ 2 k (x ⊤ 1k x 1i ) 2 } = o(1) E e 1 n n k=1 e k x ⊤ 1k x 1i 2 = 1 n 2 n k=1 σ 2 k (x ⊤ 1k x 1i ) 2 = o(1) . We have |e i ẽ⊤ n h i | = o p (1) and (ẽ ⊤ n h i ) 2 = o p ( 
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 12 Figure 1: Q-Q plots of -2 log R * (β20) and quantiles of respective χ 2 reference distributions for homoscedastic errors model (M1) based on 5000 simulations with n = 400.
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 3 Figure 3: Plots of empirical likelihood ratio functions: solid line for -2 log R * (β20) and dashed line for -2 log R(β2)

  It follows that under the conditions of the theorem, 1 and b * such that a* < mineig(X ⊤ 2n (I-H n )X n /n) for all n ≥ n 0 , and (1/n) n i=1 ||x * 2i || 2+γ < b * . Therefore, x * 2i e i , 1 ≤ i ≤ n, satisfy the Lindberg's condition under the conditions of the theorem as well as x i e i of the original model do. As

	n 2	n i=1 ||x * 2i || 4 E (e 4 i ) → 0
	and there exist positive constants a	

* 

Table 1 :

 1 Observed Type I Error Rates for Homoscedastic (M1) and Heteroscedastic Errors Model (M2): R * indicates the results by the proposed method and R by the method with true values plugged in for the nuisance parameters.

	M1	H0		β20 = 2			β20 = (2, 1)	
			R *		R		R *		R	
	ei	n α	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05
		75	0.1478 0.0840 0.1338 0.0776 0.1792 0.1064 0.1612 0.1010
	N (0, 1)	100	0.1424 0.0802 0.1284 0.0710 0.1576 0.0962 0.1464 0.0808
		200	0.1320 0.0742 0.1164 0.0588 0.1414 0.0806 0.1302 0.0730
		75	0.1660 0.0966 0.1474 0.0842 0.1892 0.1154 0.1806 0.1132
	exp(1) -1 100	0.1466 0.0836 0.1334 0.0736 0.1752 0.1060 0.1686 0.1002
		200	0.1250 0.0676 0.1094 0.0566 0.1452 0.0876 0.1368 0.0776
	M2	H0		β20 = 2			β20 = (2, 1)	
			R *		R		R *		R	
	ei	n α	0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05
		75	0.1922 0.1246 0.1664 0.1044 0.1950 0.1312 0.1704 0.1094
	N (0, 1)	100	0.1716 0.1076 0.1498 0.0892 0.1848 0.1144 0.1668 0.1002
		200	0.1328 0.0746 0.1156 0.0606 0.1482 0.0848 0.1342 0.0768
		75	0.2128 0.1394 0.1800 0.1164 0.2352 0.1588 0.2054 0.1370
	exp(1) -1 100	0.1890 0.1180 0.1560 0.0930 0.2148 0.1342 0.1910 0.1230
		200	0.1442 0.0858 0.1214 0.0648 0.1628 0.0984 0.1470 0.0870