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Invariance of symmetric convex sets
for discrete-time saturated systems

Mirko Fiacchini, Sophie Tarbouriech and Christophe Prieur

Abstract— The characterization of invariance and contrac- The paper is organized as follows: Section Il presents the
tiveness for d_iscrete-time saturated linear systems is caidered. problem statement. Section IlI provides the characteédmat
The geometrical approach used to analyze the problem leads i ariance for symmetric convex set for saturated system
to conditions valid for generic symmetric convex sets. The In Section IV the ellipsoidal case is presented and compared
application of the results to the ellipsoidal case generales ) e . )
known results and leads to Computationa| improvementsl W|th eX|St|ng methOdS. In Section V two nume”cal examples

are detailed. The paper ends with a section of conclusions.
I. INTRODUCTION _

Invariance has become fundamental for the analysis atll\botatlon
design of control systems. The importance of invariantisets ~ The set of positive integers smaller than or equal to the
control is due to stability and robustness implicit projeert integern € N is denoted as\p, i.e. Ny ={xe N:1<x<
of these regions of the state space. Many results regardifgy Given A € R™™, A with i € N, denotes itsi-th row,
invariance and related topics have been provided in liteeat A(j) With j € Ny its j-th column. Given a symmetric matrix
see, for instance, the notable pioneering contributiontiy P € R™", notationP > 0 (P > 0) means thaP is positive
works [10], [15], concerning the maximal invariant set, andsemi-)definite, as usual. Gived C R" and a scalao > 0,

[18] regarding the minimal one. The problem of obtaininglenote the setD = {ax € R": x € D}. The interior of a set

invariant sets for discrete-time nonlinear systems is tdedP is denoted as ifiD), its boundary i&)D. GivenP € R™"

with using ellipsoids in [16], parallelotopes in [7], andWwith P> 0, define the ellipsoid’(P) = {x € R": x"Px< 1}.

polytopes in [1], [8]. Invariance of polytopes for contirus

time nonlinear systems has been considered in [9]. A recent

monograph on invariance and set-theory in control is [5].
Among the nonlinear systems, particular interest has been xt = f(x) = Ax+Bo (Kx), (1)

devoted to the saturated linear ones, as saturation is a verK . o
common nonlinearity, potentially present in every reahpla Wherexe R"is the current state™ < R" is the successor and

The computation of invariant ellipsoids for saturated dine the saturated feedback control is giveniy- ¢ (Kx) € R™.
systems has been addressed in the works [2], [12]-[14], [2 unction¢ : R™ — R™ denotes the §aturat|on function, i.e.
Alternatively, methods to obtain polytopic invariant sate ~ 9i(y) = sgr(yi) min{|yi|, 1}, for everyi € Nm. A useful tool
proposed for saturated systems in [3], [11], [17]. when 'd(.az.allng W|th convex closed sets is the support.funcnon
The main purpose of this paper is to characterize ge- Definition 1: Given gseD C R", the support function of
ometrically invariance and\-contractiveness for discrete- D evaluated af) € R" is ¢ (1) = >up nrx
time saturated linear systems. Using properties of supportA geometrical meaning of the support function Df at
functions and convex analysis, conditions for a generig is the signed “distance” of the further point B (or its
symmetric convex sef to be invariant andA-contractive closure) from the origin, along the directign See [19], [20]
will be stated. In particular, the condition is posed to easu for properties of support functions. In particular, we feca
that every scaled setQ, with a positive and smaller below that set inclusion conditions can be given in terms of
than one, isA-contractive. It is worth recalling that this linear inequalities involving the support functions, s&8][
condition determines implicitly a local Lyapunov function  Property 1: GivenD,C C R", closed and convex, thene
Such general condition is then applied to the ellipsoidab if and only if n7x < @ (n), for all n € R", andC C D if
case. The geometrical approach provides a deeper insigiid only if @(n) < @ (n), for all n € R".
on the problem, which permits to recover and to generalize Invariance and\-contractiveness of a closed convex set
well established results. In particular, it will be showncan be posed in terms of support functions, since their
that computational improvements are achieved by carefullyefinitions involve set inclusion relations, see [5].
considering the geometrical structure of the problem. Definition 2: A set D C R" is an invariant set for the
M. Fiacchini and S. Tarbouriech are with CNRS; LAAS; 7 avenueSyStemXJr = f(x) with x& X if D € X and f(x) € D, for
du colonel Roche, F-31077 Toulouse, France, Universit€Taiglouse; all xe D.

UPS, INSA, INP, ISAE, UT1, UTM, LAAS; F-31077 Toulouse, Fcan Recall that any trajectory starting in an invariant et
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Il. PROBLEM STATEMENT
Consider the discrete-time saturated linear system



xt = f(x) with xe X if D C X and, for a suitabl@ € [0,1], Furthermore, for any € Ny, we have three possible cases:

is such thatf (x) € AD, for all x e D. if yi > 1 thendi(y) = ¢i(y) < @i(y); if |yi| <1 thendi(y) =
Since A-contractiveness induces invariance, guaranteeinfy(y) = @i(y); if yi < —1 thendi(y) < ¢i(y) = ¢i(y). In any
A-contractiveness of a set implicitly ensures also invaréan case, the relation (5) holds. ]

The property ofA-contractiveness of a compact convex The bounding functiong(-) and ¢(-) are used to deter-
set can be used to impose a local Lyapunov function. Imine an upper bounding function gf' f(x) for anyn € R",
particular, we are interested in a condition on convex conwith f(-) characterizing the saturated system (1).
pact setQ C R", with 0 € int(Q), whose satisfaction ensures Definition 4: Define the functiorF : R" x R" — R as
that every serQ, with a € [0, 1], is A-contractive, that is T
f(x) € AaQ, forall xe aQ, with A € [0,1]. This, withA < 1, F(x,n)=n"Ax+ > vi(xn),
would imply that there exists a local Lyapunov function '<Him
defined orQ2, whose level sets aQ with a € [0, 1]. Hence, Wwhere, for everyi € Ny and withx € R" andn € R",
it is necessary to pharacteriiecontractivene;s of sepsQ, UTB(i) Bi(Kx) if UTB(i> >0,
for all a € [0, 1], in terms of support functions. First we vi(x,n) :{ TBy @i (Kx) if nTBj <0 (6)
introduce the Minkowski function of a convex, compact set 0k "Bm <

i i T
D C R" with 0 € int(D), atx € R", that is defined as Function F(:,n) is a convex upper bound of " f(-),
for any n € R", and it permits to pose -contractiveness

Wp(x) = gn;rg{a €R: xe aD}. conditions in terms of convex constraints.
- Proposition 2: Given the system (1), the functidn(-,-),

The geometric meaning of the Minkowski function@fC R" as in Definition 4, is such that

at x e R" is close to the concept of distance from the
origin. In fact, giverD andx € R", the value ot (x) is how nTf(x) <F(x,n), VYxeR" vneR" @)
much the seD should be scaled fort to be on its boundary,

i n n
that is such thax € (Wp(x)D). Thenx € dQ(x), where andF () is convex onik?", for everyn € R™

Proof: Convexity of functionF (-, n) is due to the fact that
Q(X) =Wa(x)Q. (2) itis the sum of functions convex ir, for everyn € R". In
fact, nTAx is linear and termsj(-,n) are convex inx by

The setQ(x) is useful to determine the condition for the ;=" ...
set aQ to be A-contractive for the saturated system (1).def|n|t|on, see (6), and from Property 2. Moreover, we have

Such condition is given by a (possibly uncountable) set of n"Bi¢i(Kx) <n"Budi(Kx) if nTB; >0,

nonconvex constraints, as stated in the following propmsit nTB)¢i(Kx) < n'Bdi(Kx) if nTBg <O,
Proposition 1: Given the system (1), the convex, compact ) ) -

setQ with 0 € int(Q) is such thataQ is A-contractive for O €veryi € Nm, which means thaf "By ¢i(x) < Vi(x,n).

everya € [0, 1], with A € [0,1], if and only if Then, condition (7) follows. _ - u
. FunctionF (-,-) admits an alternative representation, more
N f(x) <A@ (n), vxeQ, vneR" (3) suitable to pose the condition for invariance in terms of

Proof: By definition, the setrQ is A-contractive for every linear matrix inequalities (LMI). The equivalence of theotw
a €[0,1] if and only if x™ € AQ(x), for all xe Q. This is representations is stated and proved below.
equivalent, by Property 1, to (3). ] Proposition 3: Given the system (1), functidh(-,-), asin

Definition 4, is such that, for everye R" and everyn € R",
IIl. I NVARIANCE FOR SYMMETRIC CONVEX SETS

One key concept that will be used in the following is F (1) =nTAx+ > max{n"BgjKix, —[n "B [}.  (8)

convexity. First, we define the following functions @" Proof: It is sufficieir?t\ITo prove that
if Vi 2 _17

Gi(y) = max{yi, —1} = { M s A vi(x,n) = max{n" BKix, —[n" B}, C)
di(y) = min{y;, 1} = { Yi i_f yi <1, for everyi € Ny, with x€ R" and n € R", wherev;i(-,-) is
1 ify>1, defined in (6). From (4), it follows that
for everyi € Ny, whose convexity related properties are nTB(i)max{Kix, 1} if fITB(i) >0,
stated in the following. vi(x 1) = "By min{Kix, 1} if nTB <0,

Property 2: Functions@; : R™ — R and ¢; : R™ — R, in
(4), are convex and concave, respectively, and such that and then
. . . N B max{Kix, —1} if 7B >0,
B1Y) < 8Y) < i), © woem={ 1T T L el o
for all ye R™ and for everyi € Np,.
Proof: Convexity of ¢;(-) over R™ follows directly from
the fact that the pointwise maximum of convex functiondVe have that
is convex, see [6]. Analogously; is concave orR™ since . _ max{nTB(i>Kix, —nTB(i>} if nTB(i> >0,
any pointwise minimum of concave functions is concave i 1) = max{nTB;Kix, "B}  if nTB; <0,

Sinceamaxh(x) = maxah(x) for everyh(-) and everya> 0,



which is equivalent to (9). ]

Before presenting the main contribution of the paper, some (x) =

definitions are introduced to simplify the notation. Givée t
system (1), the statee R" andn € R" define

T(x) ={ieNmn: Kx>1},
“(x) ={ieNm: Kix< -1}, (10)
19x) ={iecNn: [Kix <1},
and _
ET(n) ={i€Nn: r] (,>>O}
E~(n) ={ieNmn: r7 ><O} (11)
E%n) ={i€Nm: n'Bj =0}.
Clearly IT(x) Ul~(x) UI%(x) = Ny, and Ef(n)UE~(n)U
E%(n) = Ny Moreover we define
F(Q)={JCNp: IxeQ,neR"s.t.

ied & f]TB(i)KiX<—|nTB(i)|}U{0}. (12)
Notice that] € .#(Q) if and only if J =0 or there exisk € Q
andn € R" such thati € J if and only if i € 17(x) andi €
Ef(n)oriel(x)andj€E~(n), foralli € Ny Itis worth
illustrating the geometrical meaning of séts .# (Q), empty
set apart. Consider the terms in the summation in (8). For
everyx € R" andn € R", it follows, from (9), thatvi(x,n) >

n "B Kix if and only if nTB;Kix < —[nTB;|. Hence, the
set of indices) C N, is in .Z(Q) if and only if there exists
x€ Q andn € R" such thawi(x,n) = —|nTB)| > nTB;)Kix
for all (and only those) € J. Roughly speaking, we can think

to elements] of .#(Q) as the possible sets of indices such

that thei-term in summation in (8) “saturates” if and only if
i €J. Then, givenx € R" andn € R", and denoting

3em = (1F00NE~(m) U (1" NE* (),
xn) = 19x)U (|+(x)mE+(n))u (13)
(1~ NE~(m) UE%(),

we have thatl(x,n)UJ(x,n) = Nm and .7 (Q) is the set of
all possibleJ(x,n) for everyx € Q and n € R" (and the
empty set).

is a valid representation d¥(x,n) for all x € Q such that
[T, I7(x) =1~ and for everyn € R" such that
E*(n)=E" andE~(n) = E~. From definitions (11) and
(13), posingd = J(x,n), we have that condition

F(x,n) = TAx+znTB Kix+ ¥ n'Bg+
ieltNE~
+ 3 (-n'B )<Aqb (1)
iel-NE+

implies the satisfaction of (3) for any € R" such that
n'Bg >0 ifieE" andn'B; <0 if i € E~. Applying
the S-procedure we find the following equivalent condition

nTAX+3 n'B; K.x+z Tin"Bi+ 3 (—TinTBj)+

ied ieJNE+ |eJﬂE
+ 3 (1-1)n"Bj+ 3 (—1)n"Bj) < Agnp(n),
ieltNE— |e| NE+

for T, = 1;(x) > 0 for alli € ETUE™. Thus, if there exist
gi(x) € R for all i € Ef UE™ such that

nTAX+ 3 NTBKix+ 5 ai(x)n"Bg) < Aghp(n),
ied icETUE~
(16)
for all n € R", and
gi(X) = Ti(X) > 0, ificJNE",
gi(x) = —T1i(x) <0, if ieJNE™, (17)
g(xX)=1-T1(x) <1, ifiel™nE™,
gxX)=t(x)—1>-1, ifiel NE',
thenF (x,n) <)\(pQ 1(n) for all n € R" such thain"Byj) >0

ificE* andn’ B(><OifieE‘.

Consider now the point= —x andn = —n, clearlyxc Q
by symmetry ofQQ. Following a logical process analogous to
the one illustrated above, and since

=170 =1"(~ )—I‘(@
I~ =170 =17(-=x) =17(x],
J=J(x,n)= (x -n)=3(xn),
E+=E+(n)=E*(—n)=E*(Q),
E-=E~(n)=E"(-n)=E*(n),

we can determine a condition in termsfndn ensuring

Theorem 1:Given the system (1), and the symmetricthatF (x,17) <A (n) for all n € R" such thaﬁTB<i) <0

convex compact se@ C R", with 0 € int(Q), if for every
Je 7(Q) and everyi € J, there existe? (x) € R such that
|6’ (x)] <1 and
nTAX+ 3 n'B)Kix+ 3 o’ (x)n
ied
<A (N)s Vn eR", ¥xe€Q,

thenaQ is A-contractive, withA € [0, 1], for everya € [0, 1.
Proof: First notice that, from Proposition 2, a sufficient
condition foraQ to be A-contractive, for alla € [0,1], is
Fxn) <Agx(n), ¥xeQ,vneR"  (15)
We have to prove that (14) implies (15). Bix Q andn € R"
and denotd* = 17(x), I~ =17(x), I°=1%x) and E* =
E*(n), E- =E~(n). From Proposition 3, we have that

F(x,n)=nTAx+ Z n'ByHKix+ ¥ n B(->Kix+

nTB) <

|e|+mE+
+ 3N B<>KIX+ > N'Bip+ I (—=n"Bgj),
iel=NE— ieltNE— iel—NE*

if icET and r]TB @y >0 if i € E7. Such condition is the
existence ofgi(—x) € R for all i e E* UE™ such that

NTAX+ 3 nTByKix+ ¥ ai(=x)nTBj) < Agaxy(n),
i€l iEETUE~
(18)
for all n € R", and
a(-x) <0, ifielnE",
gi(—x) >0, ifieJNE™,
G(—x) > -1, ificl*nE-, (19)
gi(—x) <1, if iel " NET.

Condition (18) is obtained by replacixgvith —x andn with
—n in F(x,n) <A@ (n). Notice that conditions (16)-(17)
and (18)-(19), which are imposed foE Q, are substantially
the same. The only difference is on the constraints (17) on
variablesai(x) and (19) ongi(—x), withi € ETNE~. Then
they are both satisfied if and only if there exist3(x) for

€ (I"NE7)u (1" NE") = J(x,n) such that|o?(x)| < 1



and (14) holds ax. Since such condition has to be posed foand then, since the supremum of a linear function over a
everyx € Q and everyn € R" and by definition of.#(Q), bounded convex set is attained at its boundary, we have
the theorem is proved. [ |

Theorem 1, concerning generic symmetric convex compact
sets, is particularized in what follows to ellipsoids.

sup M(x,))TA= sup M(x,J)"H=
fieas(P~1) nes (Pt

= @sp-1y(M(x,3)) SAVXTPX  ¥x€ &E(P).

IV. INVARIANCE FOR ELLIPSOIDS

In this section we focus on a relaxed condition for
contractiveness of ellipsoidal setsQ for any o € [0,1],
based on convex constraints. The aim of computat|onal
tractability of the related problem is achieved by resinigt
the choice of function? (x) to linear functions. Given the
ellipsoid Q = &(P), with P € R™" symmetric and positive

From the expression of the support function6(P~1) at
M(x,J), (21) follows. [ |

It can be proved, see [14], that conditions of Theorem 1
nd Corollary 1 are also necessary, besides of sufficient, fo
A-contractiveness off Q, for all o € [0,1], with m=1.

Notice that the condition foA-contractiveness of ellip-
definite, andx € R", the Minkowski function isWgq(x) = ;oidsa(_), foralla €[0.1], prese.nted by.CoroIIa'ry 1,.consists
VXTPx and, sinceaQ — (XER": XTPx < az}, then in poss_lbly nonconvex con_s_tram'gs. This condition is retd_ax

to obtain a sufficient condition given by convex constragints
Q(X) =Wao(x)Q={yeR": y Py < xTPx}. (20) by assuming linearity otrﬂ(x), for all J € #(P) andi € J.

Proposition 5: Given the system (1), and the ellipsoid
Q=¢&(P), with Pe R™" andP > 0, if for everyJ € .#(P)
and everyi € J, there existdH (i,J) € R™" such that

First we provide a characterization dfcontractiveness of
ellipsoidsaQ, with a € [0,1].
Proposition 4: Given the system (1), the ellipsoi@ =

&(P), withPe R™"and P> 0, is such thataQ is A- H(@i, )P~ 1H(i,d)T <1, vle Z(P), Viel,
contractive, withA € [0,1], for any a0, 1] if and only if N(J)TPN(J) < A2P, vle .7 (P),
nTf(x) SAVXTPxy/nTP-1n, vxeQ, vneR" whereN(J) = A+zB Ki+ 3 B) H(i,J), thenaQ is A-

Proof: From Proposition 1, we have only to prove that

TPxy/nTP- 11 for all R and gn  contractive, Wlth)\ e [0 1], for everya €0, 1].
Gy (n) = VXIPxV1 or all x< ancn < Proof: The property follows directly from Corollary 1 im-

— ./nTO-L
Recall thatg () (n) = v/ Q . for evTeryQ_1> 0 and any posing linearity of functionss’ (x), that isa;?(x) = H (i, J)x,
n € R", see [5]. Then, definin@(x) = (x' Px)~ P, we have

for all J€ .#(P) and everyi € J. [ |
Pox(n) = supnTy= sup nly= sup n'y , , o
yeQ(x) yT Py<xT Px yTB(x)y<1 Comparison and computational considerations
=V/NTP(X)tn = VXTPxy/nTP-1n, The main improvements of the proposed results are illus-
which proves the proposition. m trated by comparison with some existing methods. First, we

Condition for invariance provided in Theorem 1 involvegecall the main result of the work [14].
an infinite number of constraints inc Q, not necessarily = Theorem 2:Given the system (1), and the ellipsaiti=
convex, one for anyn € R". In the ellipsoidal case, the &(P), with P € R™" and P > 0, if there existsL € R™"
explicit dependence om can be removed, as illustrated such that
@n the_ following, to obtain a _formulgtion of the cond_ition L P‘lLiT <1, Vi € Ny,
involving only the statex. In this section we denote, with a N@J)TPNQJ) <AP,  VJC N, (23)
slight abuse of notation# (P) = .7 (& (P)).

Corollary 1: Given the system (1), and the ellipsdil= where N(J) = A+ z Bi)Ki + z BLi, then aQ is A-
&(P), with Pe R™" andP > 0, if for everyJ € .#(P) and

everyi € J, there existw? (x) € R such thaio? (x)| < 1 and contractive, witha e [O 1, for everya €[0.1].

Notice that there are analogies with results presented in
M(x,)TP M(x,J) <A%XTPx, Vxe &(P), (21) Proposition 5, but also important differences. First of all
notice that the second condition in (23) is imposed for every
possible subset oNy, while our result involves only the
A-contractive, withA e [O 1], for everya €0, 1]. appropriately selected subsetsNyf, that we denoted” (P).
Proof: We prove that conditions (14) and (21) are equivThe presence of further constraints in the condition of [14]
alent for the case ofd = &(P). For everyJ € .#(P), the implies that our proposal is less conservative. Moreover th
condition in (14) can be posed, from Proposition 4, as  matricesH(i,J) in Proposition 5 are replaced with the rows

T T ~oTo n of a single matrixL in Theorem 2. Any solution obtained
N M(x,J) SAVXIPxy/n'P~in, Vn eR", vxe g((PZ)é) by the method in Theorem 2 can be recovered by posing

Givenn € R with 1 0, definedl = (nTP-1n)-Y/27, and H(i,J) = L;, for everyJ_andl € J,_ln our condltlo_n.
. - ST AT 1A The work [2] provides an improved version of the
notice thatn € d&(P~), in factn' P~=n = 1. Thus, apart - o )
L . . sufficient condition for A-contractiveness, although for
from the trivial case of7 =0, (22) is equivalent to : . o
continuous-time systems. An analogous criterion can be

ATM(x,J) <AVXTPx, VA €d& (P, vxe &(P), formulated for the discrete-time case.

whereM(x,J) = Ax+ z By Kix+ Z B0’ (x), thenaQ is



Theorem 3:Given the system (1), and the ellipsal=
&(P), with P € R™" and P > 0, if for everyJ C Ny, and
everyi € J, there exists5(i,J) € RY™" such that

10

G(i,J)P1G(i,)T <1, VICNp, Viel,
N(J)TPN(J) < AP, ¥J C Np,

whereN(J) = A+ Y B;Ki+ Y B;)G(i,J), thenaQ is A-
ic ied

IS
contractive, withA € [0,1], for everya € [0, 1].

The method proposed in Theorem 3 is more general than
that one in Theorem 2, since it introduces more variables ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
in place of matrixL, reducing the conservativeness, see [2] Moo s w0 s ¥ 5 o1 2
(although f‘?r the continuous-time case). On the other hangly 1 Ejipsoidal estimations obtained with Theorem 3né and
the constraints still involve every subsetf,, as for [14].  Proposition 5 (outer).

Remark 1:The fact that a quadratic constraint is imposed .
for everyJ C Ny, in spite of ford € .#(P), implies that, also whose eigenvalues are2P09:+0.4444, and

~10}F

in this case, any solution satisfying condition of Theorem 3 1 0 17 T 0.1847 —-0.11361
fulfils condition of Proposition 5 too. This leads to a smalle 1 0 ~0.1847 01136

or equal degree of conservativeness of our result with céspe 0 -1 —0.0988 —0.2734

to Theorem 3 (and thus also to Theorem 2). Nevertheless, g— | o0 -1 |, K=| —0.0988 —0.2734 |,
we have not been able yet to find a solution of condition in 0 1 0.0988 02734
Proposition 5 which does not satisfy also Theorem 3 (that 1 -1 0.0858 —0.3870
is, to prove that our approach is “strictly” less consemeti 1 1 02835 01598

than latter). On the other hand, the numerical benefits of our _ o o

approach are evident, as the LMIs involved in condition ofndA = 1. Matrix K € R"™*< is the LQR gain withQ = I,

Theorem 3 might be much more than those of our conditio®nd R = Im and the eigenvalues oA+ BK are 01681+

This fact is illustrated by Examples 1 and 2. 0.0764. Notice the particular structures of matrid@andK
Remark 2:The set#(Q) can be determined by means ofand consider for instandg andK; for i =1 andi = 2. It

a finite number of quadratic programming problems. In factS evident that there is note R" andn € R" such that

consideri_ng'z = }R”_, the solution of a quadratic programming n’ B)Kix < —InT Byl

problem in 21 variables can determine whether the 3et nTB(2>K2x > —|r7TB(2>|,

Np, belongs to# (R") or not. Consequently,2quadratic 2 ) B o

dimensional optimization problems can be posed to defifdMPly becausd ) = —B,) andK; = —Ka. From definition

#(R"), which is such that7 (Q) C .#(R"). of . (P), see (12), none of the elemenls Ny, such that
It is also worth stressing that methods presented in [14]< J and Zgﬁjnbe!on'gs t0.7(P), for every positive definite

and [2] have been compared with the relaxed, computd1@trixPeR™". Similarly, if 1¢Jand 2 J, thend ¢ .7 (P),

: ; e . - for all P R™". Hence, ifJ € .#(P) then either X J and

tional oriented, results of Proposition 5. Consideringagen ' '

functions o7 (x) for everyJd € .7 (P) and everyi € J, as in 2 €9 Or 1¢J and 2¢ J. Many other subsets dfy do

Theorem 1 and Corollary 1, leads to more general theoreticaPt Pelong to.7 (P). Similar considerations can be posed on

results and provides a deeper insight on the problem,  the third, forth and ﬁ7fth elements @ andK. Finally we
find that, among the 2= 128 sets] € Ny, only 7 (or less)

of them compose# (P). This implies simpler optimization

problems (and then lower numerical sensibility) besides of
We provide here two numerical examples to illustrate thgotentially smaller degree of conservativeness of theltesu

benefits of the proposed approach. An ellipsoidal estimation of the domain of attraction has
Example 1:This simple example has the only purpose oP€en computed using Proposition 5 and maximizing the

comparing the result obtained considering the constréimts Scaling factorf8 such thatflr € Q, wherel is a given

J C Np, in spite of forJ € .#(P). Although the example polytope. The optimal solution is the outer ellipsoid in tig

is rather artificial, it provides an insight on how, also forl.- To remove the dependency éhof the set.7(P), we

low dimensional systems, the results can be affected by t§@nsidered the degenerate ellipsaffP) = R" in defini-

improper choice of setd C Ny, We consider a case in which tion (12). Then, ellipsoidal estimations are computed gisin

the cardinality of# (P) is much smaller than®and compare Theorem 3 and employing two semi-definite programming
the results obtained using Theorem 3 and Proposition 5. SOIvers in MATLAB. The solution obtained witSEDUMI

V. NUMERICAL EXAMPLES

Consider the system (1) with= 2 andm= 7, where solver is the same as that one obtained using Proposition 5.
On the contrarySDPT3solver provides as optimal solution
A 0.8876 —0.5555 the inner ellipsoid depicted in Figure 1. Hence the optimal

~ | 05555 15542 |’ solutions of both methods seem to be the same, but the



and compute invariant ellipsoids. Future research dasti
concern the particularization of the presented results to
polytopes and the extension to more general nonlinearities
as generalized saturated functions, for instance, see [21]

(1]

(2]

_15 L L L
-20 -15 -10 -5

Xol s 10 15 20 [3]

Fig. 2. SetQ and trajectories of the system starting on its boundary. [4]

higher computational burden required by Theorem 3 affected
numerically the solver, leading to a suboptimal solution. [

The invariance of2 = &(P) is checked by computing the (g
trajectories of the system, for different initial condii® see
Figure 2. Notice that every trajectory remains boundedimsi (7]
the setQ and converges to the origin.

Example 2: This example shows that the number of LMIs [8]
required to obtain the maximal-contractive ellipsoid can
be consistently reduced by using the proposed method. I
particular we show that the cardinality of(Q) can be much
smaller than the number of seisC Ny, also for generic
systems. As seen in the previous example, the structure gf;
matricesB andK can determine the sef (R"). For different
values ofn € N andm € N, with m< n, we consider a matrix 11]
B whose firstp < m columns are randomly generated, ané
the otherm— p columns are linear combinations of the first
p. That means, roughly speaking, tHathas rankp < m.
Notice that the elements of (R") do not depend on matrix
A. The matrixK is then obtained as the solution of an LQR

problem. The results are reported in Table 1. (13]

(nIm[p[ g [2"] [14]
515 2] 27 | 32
55|33 | 3

6| 6|2]| 44 | 64 [15]
6|6|3]| 52| 64
6|6|4| 60| 64

7| 7|2 61| 128 [16]
71713 74 | 128
7| 7|4 88 |128

7| 7|5 120 128 [17]
7| 7|6 128 128

TABLE |
[18]

CARDINALITY g OF .# (R") COMPARED WITH2™.

Notice that the cardinality of the set# (R") can be much [19]
smaller than ?, the number of the subsets Bf,. Then, at
the price of some required pre-computation, the complex20]
ity of the optimization problem leading to the desirad

. LT . 21
contractive ellipsoid can be consistently reduced. (2]

VI. CONCLUSIONS
L . . ) [22]
A characterization of invariance and contractiveness for

saturated linear systems is presented. In particular,itonsl
for invariance and contractiveness of symmetric convex set
are determined. The results have been applied to chazteri

12] J. M. Gomes da Silva and S. Tarbouriech.
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