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Abstract

The problem of optical flow estimation is largely discussed in computer vision

domain for perspective images. It was also proven that, in terms of optical

flow analysis from these images, we have di�culty distinguishing between

some motion fields obtained with smooth camera motion. The omnidirec-

tional cameras developed recently provided images with large filed of view.

These images will contain global information about motion and allows to

remove the ambiguity present in the case of planar projection in terms of

optical flow analysis. Nevertheless, these images contain significant radial

distortions that is necessary to take into account when treating these im-

ages to estimate the motion. In this paper, we shall describe new way to

compute e�cient optical flow for several camera motions given synthetic and

real omnidirectional images. Our formulation of optical flow estimation prob-

lem will be given in the spherical domain. The omnidirectional images will

be mapped on the sphere and used in multichannel image decomposition
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process to constraint spherical optical flow equation. This decomposition

is based on spherical wavelets. The optical flow fields obtained using our

proposed approach are illustrated and compared to that obtained with mul-

tichannel image decomposition method developed for perspective images and

other published methods dedicated to omnidirectional images.

Keywords: Omnidirectional images, optical flow, spherical wavelets

1. INTRODUCTION

Optical flow estimation is one of the basic problems in computer vision.

It is the projection of the 3D velocity on the image and can be extracted from

the image brightness variation. It was used by robotics researchers in many

tasks such as : object detection and tracking, motion detection, ego-motion

estimation, robot navigation or visual odometry (see for example [1] [2] [3]

[4] [5] [6] and references therein).

Given an image sequence I(x, y, t), the optical flow estimation consists in

measuring the velocity (vx, vy) of pixel (x,y) between t and t+1. Assuming the

brightness constant across successive frames, this velocity can be computed

by the well-known brightness constancy constraint equation (BCCE) eq.(1):

@I

@x
.vx +

@I

@y
.vy +

@I

@t
= 0, (1)

No unique solution of eq.(1) is possible, since on each location and each time,

we have to solve a single equation to determine two scalar unknowns(vx, vy).

This was called the ”aperture problem”. Equation (1) only provides the nor-

mal velocity component. To overcome this problem more than one equation
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is needed to obtain the two velocity components at each position (x, y).

For traditional cameras, a number of di↵erent approaches to recovering op-

tical flow have been proposed by adding other hypotheses of the flow. Horn

and Schunck [7] are the first to introduce a smoothness constraint in order

to solve the aperture problem. Later a number of approaches are proposed

in di↵erent frameworks. These methods can be grouped into correlation [8],

energy [9] [10], phase [11] [12] [13], di↵erential [7] [14] [15] and multichan-

nel decomposition approaches [16][17][18] [19]. It should be noted that the

di↵erential method proposed by Lucas and Kanade [14], even if it is an old

method, is the most commonly used in robotics applications since it is a sim-

ple method and often gives acceptable results. A review of a number of the

most popular optical flow techniques can be found in [20] where the di↵erent

approaches were compared. In this review, Fleet et al. [20] found that a

phase-based approach [11] performed the best numerically than energy [9]

[10], region-matching [8] and di↵erential approaches [7] [14] [15]. Later, it

was proven that the multichannel decomposition of the optical flow equation

gives robust estimation [17] [18] [19]. The multichannel image decomposition

methods give a good compromise between robustness and time computation.

Recently, a new evaluation methodology and benchmarks for optical flow es-

timation methods in perspective images is proposed in [21]. It replace the

quantitative evaluation of optical flow given by Barron et al. [20]. It gives

set of databases and comparison of several well-known methods.

Referring to all these works, the problem of optical flow estimation was

largely discussed in computer vision domain for perspective images. It was

also proved that estimation methods from these images have di�culty distin-
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guishing between small pure translations and small pure rotations. Recently,

the developed omnidirectional cameras with large field of view have been able

to overcome the limited field of view introduced by planar projections [6].

The omnidirectional images with hemispherical field of view contain global

information about motion with the presence of the focus of expansion (FOE)

and/or the focus of contraction (FOC) in the images. Consequently, the

optical flow filed analysis from omnidirectional images is more e�cient also

with smooth camera motion.

The catadioptric images are obtained using a combination of lenses and mir-

rors. These images are distorted due to the non-linear projection of the scene

points in the image. Thus, the traditional treatments developed for perspec-

tive images are not appropriate for the deformed catadioptric images. Dif-

ferent works tried to adapt the existing methods by proposing an adaptation

of the concepts definition of neighborhood, gradient function, Gaussian func-

tion, and so forth... We may classify the proposed works into two di↵erent

approaches:

• Optical flow computation directly on the catadioptric image: A method

to estimate optical flow on the catadioptric images was proposed on

[22] using wavelet approach based on a brightness change constraint

equation. This method does not take into account the radial distorsion

present in omnidirectional images. In our previous work [23], we have

suggested a new di↵erential method adapted to omnidirectional images.

This method is based on motion model designed for paracatadioptric

images and an adapted neighborhood that takes into account the shape

of the mirror. This method [23] uses a conventional gradient operator
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to compute image derivatives necessary for flow computation. This is

why it was not appropriate for omnidirectional images.

• Optical flow computation using image processing on the sphere: The

works of Daniilidis et al. [24], Tosic et al. [25], Mochizuki et al.[26] and

Bagnato et al. [27] belong to this category. Daniilidis et al. defined a

gaussian function and gradient operator on the sphere to solve the opti-

cal flow equation defined also in the spherical coordinates by assuming

that it is locally constant. Later, Tosic and al [25] used multiresolution

representation employing Spherical Laplacian Pyramid to filter spher-

ical images. They proposed a new local motion estimation algorithm

by computing correlation between two spherical images of the scene.

Mochizuki et al.[26] proposed a formulation of Horn-Schunck method

[7] on the spherical images. They computed optical flow on the sphere

that yields monocular disparity on the antipodal point on the equa-

tor. They used this estimation to compute the navigation direction.

A recent work by Bagnato et al. [27] also deals with the problem of

computing optical flow using a formulation on the sphere. The authors

have extended an existing and recent TV-L1 variational method [28]

and have proposed a new formulation of this method as a graph-based

framework on the sphere. They have defined spherical di↵erential op-

erators and proved that it is more accurate than planar di↵erential

operators applied to omnidirectional images to compute optical flow

especially near the poles in spherical images.

Most authors in Omnidirectional vision use the sphere as an appropriate

domain for omnidirectional images. The spherical image processing will take
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into account the specific geometry of omnidirectional cameras [6] [24] [29]

[25]. Our formulation of optical flow estimation is given on the sphere and

the omnidirectional images are mapped onto a unit sphere and treated in the

spherical domain. Then we propose to adapt approach based on multichanel

decomposition of optical flow equation [19]. This method proved its e�ciency

in the case of perspective images and it was indicated that it gives the best

results for optical flow estimation [18] [19] [17]. For this reason, we propose to

use a spherical wavelet and decompose the optical flow equation on the sphere

to estimate the optical flow field. The reminder of the paper is organized as

follows. In section 2, we shall present the optical flow constraint equation on

the sphere and the stereographic projection necessary for all transformations

between the catadioptric image and the unit sphere. Section 3 describes our

approach to compute optical flow using spherical wavelet to constrain the

optical flow equation on the sphere. In section 4, the experimental results

are given and comparative measurements are discussed for synthetic and

real images. We shall eventually give our conclusion in section 5 and provide

guidelines for future works.

2. Optical flow constraint equation on the sphere

Geyer and Daniilidis have introduced unifying theory for all central cata-

dioptric sensors [30]. They proved that central catadioptric projection is

equivalent to a central projection to a virtual sphere followed by projection

from the sphere to the retina. This second projection depends on the shape

of the mirror. Fig.(1) shows the equivalence between any catadioptric pro-

jection and the two-step mapping via the sphere.
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The parameter ⇠ defines the shape of the mirror. In our case, we consider

Figure 1: Equivalence between the catadioptric projection and the two-step mapping via

the sphere.

parabolic mirror where ⇠ = 1. However the method can easily be adapted to

the general case. Let Ps(✓,') = Ps(Xs, Ys, Zs) be the point on the sphere,

having a radius equal to one, where:
8
>>><

>>>:

Xs=sin ✓ cos'

Ys=sin ✓ sin'

Zs= cos ✓

(2)

The stereographic projection of Ps from the sphere to the catadioptric plane

can be expressed on cartesian coordinates as:
8
<

:
x= Xs

1�Zs

y= Ys
1�Zs

(3)
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Using eq.(2)and eq.(3), we obtain the image point Pi(x, y) expressed on

spherical coordinates as: 8
<

:
x=cot ✓

2 cos'

y=cot ✓
2 sin'

(4)

Note that the similar mapping model can easily be derived for all omnidi-

rectional systems [30] [31]. In this paper, we look for a recovering of optical

flow vectors on the sphere. For this reason, the omnidirectional images are

mapped on the sphere and the formulation of Brightness Change Constraint

Equation is rewritten on spherical coordinates. If Is(✓,', t) denotes the tem-

poral spherical image on the unit sphere S2 and rIs = (@Is@✓ ,
1

sin ✓
@Is
@' )

T denotes

the spatial gradient vector on the sphere, the total derivative [24] gives:

1

sin ✓

@Is
@'

v' +
@Is
@✓

v✓ +
@Is
@t

= 0 (5)

This equation is equivalent to eq.(1) and represents the optical flow constraint

equation on the unit sphere. The intensity of point on the sphere can be

obtained by any interpolation of pixel intensities on catadioptric image. In

our case, we used bicubic interpolation. (v✓, v') are the components of the

flow vector in the tangential coordinates system. The partial derivatives

of the spherical images can be obtained using the stereographic projection

model (eq.(4)):
2

4
@Is
@✓

@Is
@'

3

5 =

2

4
@x
@✓

@y
@✓

@x
@'

@y
@'

3

5

2

4
@I
@x

@I
@y

3

5 =

2

4
� cos'
2 sin2 ✓

2

� sin'
2 sin2 ✓

2

� cot ✓
2 sin' cot ✓

2 cos'

3

5

2

4
@I
@x

@I
@y

3

5

(6)

As in perspective case, we have a single equation to solve eq.(5) to determine

two unknowns: v✓ and v'). An additional assumption must be given to solve
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the aperture problem on the sphere. Our proposed solution, detailed in the

following section, consists in using a decomposition of spherical optical flow

equation in spherical wavelets base assuming the constancy of optical flow

over the support of the wavelets.

3. Optical flow from multichannel spherical image decomposition

We based our new approach on the work of Bruno et al.[19] and Bernard

in [18]. It was proven in these references that multichannel decomposition

of the optical flow equation gives robust estimation and a good compromise

between robustness and time computation. Due to temporal aliasing, this

method works well especially in multiscale framework [17] [18] [19]. This

method consists in:

• Filtering an image sequence by a set of spatio-temporal filters or con-

volving an image sequence in wavelet base;

• Applying the optical flow constraint equation on each channel of the

filter or of the wavelet.

The 2D Gabor filter used in [19] and the 2D discrete wavelets used in [18]

are not appropriate to the distorted images given by catadioptric camera

and should be adapted. Our proposed solution consists in using spherical

wavelets base [29] to constrain the optical flow equation on the sphere. We

chose the commonly used wavelet, Morlet wavelets [32], as a special case of

Gabor wavelets. We first convolve the spherical optical flow equation with a

set of spherical Morlet wavelets defined in di↵erent directions. The number

of directions will then determine the size of the over-determined system to
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solve and get the optical flow vectors on the sphere. This convolution di↵ers

from the classical 2D convolution usually used for filtering images. In this

section, we shall define a spherical wavelets and convolution on the sphere.

Both definition will be used to constrain eq.(5).

3.1. Spherical wavelets

Our decomposition is based on directional spherical wavelets base. This

choice of wavelets is motivated by the trust that wavelet bases are a well-

designed tool for our proposed approach. Wavelet bases have a natural multi-

scale structure. As a local frequency analysis tool, wavelets analysis favorably

compares to filtering because it is far less computation intensive and still

provides complete information on the signal. We based our spherical image

decomposition on spherical wavelets proposed by Antoine et al. in [29]. They

defined an interesting family of spherical wavelets which can be applied to

any image represented in the spherical domain. Natural candidates in our

purpose are directional wavelets on the sphere [32].

In [29] it was shown that any Euclidian wavelets can be mapped to sphere

using an inverse stereographic projection. We chose the spherical Morlet

wavelets  M , represented in eq.(7) to decompose spherical images. k0 is the

norm of the wave vector of the wavelet in the Euclidian limit (accounting for

the number of oscillations). '0 is the angle of the wavelet and a is the scale of

the wavelet. Note that this function is admissible for k0 large enough (>= 6)

[29]. Fig.(2) shows the spherical Morlet wavelet defined in two di↵erent

directions on half-spheres.

 M(✓,') =
1

2

p
�eik0 tan(✓/2)/ cos('�'0)e�2 tan(✓/2)2/a2(1 + tan(✓/2)2/a2) (7)
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with :

� =
4a2

((a2 � 1) cos ✓ + (a2 + 1))2

Figure 2: Spherical Morlet wavelet at scale a = 0.04 and '0 = 0 (left) and '0 = ⇧/2

(Right)

3.2. Wavelet Transform on the sphere

Wavelet transformation is di↵erent from the Euclidean one. We shall

present the definition of a convolution on the sphere. This convolution will

be used to compute the spherical wavelet transform of images to calculate

the optical flow vectors.

Let ⌘ = (✓,') be the point on the sphere S2.  is the spherical wavelet

defined on the sphere. If the rigid rotation g is an element of the group

of rotations SO(3) acting on the sphere S2,  is rigidly transported on the

sphere according to the operator Rg as:

Rg (⌘) =  (g
�1⌘)
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The continuous wavelet transform of spherical image Is(✓,') can be expressed

as a convolution on the sphere with the spherical wavelet  as:

W Is(⌘) =< Is, Rg >

The convolution on the sphere is defined by Driscoll and Healy [33] as:

hIs, Rg i =
Z

S2

Is(⌘) (g�1⌘)d⌘ (8)

Where : d⌘ = sin ✓d✓d'. This convolution is performed in the Fourier do-

main using a simple multiplication like in Rn. In practice, we will use the

open source YAWTB Toolbox that contain an implementation of several di-

rectional wavelets on the sphere based on the work of Antoine et al. [29].

3.3. Optical flow estimation

In order to estimate the velocity vector at each point on the sphere using

Eq.(5), we need to add some constraints to the spherical optical flow equation

to solve the aperture problem. This assumption is based on the constancy

of optical flow over the support of the spherical wavelets.

Let us consider the projection of the optical flow equation (eq.(5)) onto a

wavelets base  i(✓,') (with i= 1... N, and N is the number of wavelet direc-

tions). This allows to write :

<  M(✓,'),
1

sin ✓

@Is
@'

v' +
@Is
@✓

v✓ +
@Is
@t

>= 0 (9)
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Where <> denotes the spherical convolution operator defined bellow in

section(3.2). The multichannel decomposition approach is based on the as-

sumption that (v✓, v') are constant over support of the wavelets  i(✓,') for

all i = 1...N . Note that the support of the wavelet must not be large to

maintain the assumption of constant optical flow. Eq.(9) become:

<  M(✓,'),
1

sin ✓

@Is
@'

> v'+ <  M(✓,'),
@Is
@✓

> v✓+ <  M(✓,'),
@Is
@t

>= 0

(10)

Taking N directions for the directional wavelets, it leads a system of 2 ⇤ N

equations since spherical Morlet wavelets are complex.
0

BBBBBBBBB@

real <  1(✓,'),
1

sin ✓
@Is
@' > real <  1(✓,'),

@Is
@✓ >

imag <  1(✓,'),
1

sin ✓
@Is
@' > imag <  1(✓,'),

@Is
@✓ >

.... .....

real <  N(✓,'),
1

sin ✓
@Is
@' > real <  N(✓,'),

@Is
@✓ >

imag <  N(✓,'),
1

sin ✓
@Is
@' > imag <  N(✓,'),

@Is
@✓ >

1

CCCCCCCCCA

| {z }

0

@ v'

v✓

1

A =

0

BBBBBBBBB@

�real <  1(✓,'),
@Is
@t >

�imag <  1(✓,'),
@Is
@t >

......

�real <  N(✓,'),
@Is
@t >

�imag <  N(✓,'),
@Is
@t >

1

CCCCCCCCCA

| {z }

(11)

To solve this over-determined system for the two unknowns v✓ and v', the

least squares method is used. Therefore, the solution of (11) is given by
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minimizing:

�!
V = arg min

v✓,v'

NX

i=1

[<  i(✓,'),
1

sin ✓

@Is
@'

> v'+ <  i(✓,'),
@Is
@✓

> v✓

+ <  i(✓,'),
@Is
@t

>]2 (12)

If we denote the over-determined system by :

A.

2

4 v'

v✓

3

5 = B (13)

The solution of the system is given as:

2

4 v'

v✓

3

5 = (A0 ⇤ A)�1 ⇤ A0 ⇤B (14)

In practice, the linear system is solved with least square method. The esti-

mated solution is taken into account according to two fixed thresholds. We

compare the conditioning of a matrix (A0 ⇤ A) with a first threshold. In

addition, we test if the estimated solution V = (v', v✓)is acceptable or not

by comparing the error ||AV � B|| with a second fixed threshold. These

two comparisons inform us on the stability of the linear system and allow

to verify if our hypothesis of optical flow constancy is true or not and thus

decide to take into account or not the estimated solution.

The least square estimation described above allows to determine a set of op-

tical flow vectors defined on the tangential coordinate system (v✓, v', 0). To

compare our optical flow field with that obtained using Bruno et al. method

[19], this motion field must be projected on the catadioptric image using this
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transformation: 2

4 vx

vy

3

5 =

2

4
@x
@✓

@x
@'

@y
@✓

@y
@'

3

5

2

4 v✓

v'

3

5 (15)

Using eq.(4), the velocity vector (vx, vy) in image space can be found by the

following transformation of angular velocity (v✓, v'):

2

4 vx

vy

3

5 =

2

4
� cos'
2 sin2 ✓

2

� cot ✓
2 sin'

� sin'
2 sin2 ✓

2

cot ✓
2 cos'

3

5

2

4 v✓

v'

3

5 (16)

4. Experiments and Results

To show the improvement given by our proposed method, we will com-

pare it to four previously published methods.

We will compare our method first to a similar method developed for perspec-

tive camera given by Bruno et al.[19]. This method is based on decomposition

of optical flow equation using Gabor filter bank. The parameters of Gabor

filter are fixed to preserve the stability of the linear system and to give the

smallest error estimation. We have fixed experimentally the optimal param-

eters of Gabor filter according to the size of the movement applied to the

virtual cameras. Figure (3) shows angular errors obtained for many values of

scale �, central frequency f0 and the number of filters N . According to the

motion in the synthetic sequences, the optimal Gabor filter banks parameters

are sets as follows:

� 2 [3.0, 6.0], f0 < 0.14 N = 6.
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In [19], the optical flow estimation is performed in multiresolution framework.

We use image decomposition with Gabor filter bank defined in three level of

multiresolution estimation where G2�kf0,2k�,N corresponds to the Gabor filter

bank in level k. Equivalently the spherical wavelets support is arranged to

have the same size as that fixed in [19]. For this reason, we fixed a scale of

wavelets in a = 0.05 and a = 0.03 respectively for large and small motion.

For all sequences, we took six orientations of the spherical Morlet wavelets

and 2D Gabor filter.

We have compared our proposed method also to that of Kanade et al. [14].

This method is still one of the most popular versions of two-frame di↵eren-

tial methods for motion estimation and is often used in robotic applications.

Lucas and Kanade compute the optical flow on a point (x, y), considering

that the motion is constant in a fixed neighborhood of this point.

The third method, which we will compare our proposed method with, is our

previously published method dedicated to omnidirectional images [23]. This

method is an adaptation of Lucas and Kanade’s method which uses a new

constrain taking into account the distortions existing in the omnidirectional

images.

Finally, we will conduct comparison with the results obtained using a method

developed by Danilidis et al. [24]. This method can be also considered as

an adaptation of Lucas and Kanade’s method. It uses the same assumption

that the motion is constant in a fixed neighborhood. The main di↵erence

between this two adapted methods ([23] and [24]) is that the first one uses a

new definition of neighborhood and new motion model to solve the aperture
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Figure 3: Top: Angular error in function of scale � ( N = 6; f0 = 0.014). Middle:

Angular error in function of central frequency f0 ( N = 6; � = 5). Bottom: Angular error

in function of number of filters N(f0 = 0.014; � = 5). These experiments are applied to

the sequence obtained with translation T = [�1cm, 0, 0] of virtual camera.
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problem on the image space, whereas the second one is based on the spher-

ical representation of omnidirectional images and solves the same spherical

optical flow equation that we use in this paper.

As presented in section 3.3, to test the stability of our linear estimation

we fixed the conditioning threshold on 0.1 and the adequacy threshold of

estimated solution in 0.1. This allows to do not take into account the aber-

rant estimation of optical flow. We have considered three kinds of motions:

translation, rotation and combined motion to show the e↵ectiveness of our

contribution. These motions are applied to virtual and real cameras moving

on a plane perpendicular to their optical axis.

4.1. Synthetic sequences

We have tested our algorithm on di↵erent synthetic sequences for which

2D motion fields are known. These sequences have been generated with

POVRAY. A virtual parabolic camera observes four textured planes sepa-

rated by approximatively 100cm. POVRAY generated images of 500 ⇤ 500

pixels. An example of synthetic images is shown in (Fig.(4)). We have com-

pared our proposed method to that proposed in [19] for perspective images

and that proposed in [23] for catadioptric images. To assess the optical flow

estimation methods, we use the mean of angular errors [20] between the

known velocity vectors,Vr = (ur, vr) and an estimated vectors Ve = (ue, ve).

This error measurement takes into account at the same time the error made

on orientation and amplitude of the estimated vectors flow for each pixel of
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the image. It is given by:

e = arccos(
ueur + vevr + 1p

u2
r + v2r + 1

p
u2
e + v2e + 1

) (17)

Fig.(5) shows the angular error map obtained for di↵erent camera motions.

Figure 4: Left: Synthetic image composed by four textures plans and on right its spherical

equivalent image

The blue color means an error of 0 when a green and red color reflects an

important error. The optical flow fields are shown in Fig.(6), Fig.(7) and

Fig.(8) using Bruno et al. and proposed methods. Note that in all these

experimentations we do not consider the image points around the center of

images. In these locations both methods generate significant errors. In the

rest of the image space the flow vectors prove that the adapted approach on

the sphere compute a succeeded velocity vectors even with large camera mo-

tion and also in di↵erent positions on the distorted omnidirectional images.

This means that the fixed support of 2D Gabor filter is not appropriate to

omnidirectional images.
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The mean angular errors obtained from di↵erent sequences using the five

implemented methods are indicated in Tab.(1). These results show that the

classical approaches ([19] and [14]), even if these methods work well for per-

spectives images, are not appropriate to omnidirectional images. Only the

case of very small rotational motion of virtual camera gives an acceptable

result using these methods.

The angular errors obtained using spherical methods ([24] and our proposed

method in this paper) are inferior to that obtained using adapted method on

the image space [23]. These results give the argument that methods dedicated

to omnidirectional images are more robust when using a spherical model to

represent images. Finally, we can see that angular errors are inferior using

our spherical approach especially with large camera motions. This result

proves that multichannel spherical images decomposition method proposed

in this paper gives good estimation of local motion compared to di↵erential

methods [24] [23].

4.2. Real sequences

We have also used sequences of real omnidirectional images. The se-

quences are obtained using a camera which is mounted on a mobile robot

and moves on a plane perpendicular to its optical axis. The camera is a

SONY DFW � SX910. We obtain an image of 1280 ⇤ 960 pixels. The cata-

dioptric sensor mounted in the mobile robot is illustrated in Fig.(9) with

the image that it gives. The camera is calibrated using the Omnidirectional

Calibration Toolbox [34]. Fig.(10) shows the optical flow fields for a rotation

around Z-axis in real scene. Fig.(11) illustrates a combined motion of camera

and shows the optical flow fields. Finally, Fig.(12) represents the optical flow
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Figure 5: Angular Error Maps obtained using Bruno et al. method (left) and adapted

method (right) for di↵erent kinds of motion: Top: Pure translation in X and Y-direction.

Middle: Pure rotation of 1
�
around Z-Axis. Bottom: combined motion
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Figure 6: Optical flow fields from pure translation of camera. In the top: T =

[5cm, 3cm, 0]. In the middle: T = [�1cm, 0, 0]. In the bottom: T = [0, 3cm, 0]. The

fields on the left correspond to the Bruno et al. method and those on the right to the

adapted method.
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Figure 7: Optical flow fields from pure rotation of camera. At the top: R = [0, 0, 2�].

In the middle: R = [0, 0, 1�]. At the bottom: R = [0, 0, 0.5�]. The fields on the left

correspond to the Bruno et al. method and those on the right to the adapted method.
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Figure 8: Optical flow fields from combined motion of the camera. At the top: R = [0, 0, 2�]

and T = [2cm,�1cm, 0]. In the middle: R = [0, 0, 1�] and T = [2cm, 0, 0]. At the bottom:

R = [0, 0, 1�] and T = [0.5cm, 0.2cm, 0]. The fields on the left correspond to the Bruno et

al. method and those on the right to the adapted method.
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Classical Adapted Adapted

methods method on methods on

the image space the sphere

Bruno Kanade Radgui Danilidis Our

Sequences et al.[19] et al.[14] et al.[23] et al.[24] approach

T
ra
n
sl
at
io
n

T = [�1cm, 0, 0] 8.28� 7.99� 5.81� 5.33� 4.94
�

T = [0, 3cm, 0] 16.00� 14.11� 8.63� 11.90� 4.56
�

T = [5cm, 3cm, 0] 14.62� 18.92� 16.46� 19.49� 4.71
�

R
ot
at
io
n R = [0, 0, 1�] 10.19� 8.60� 7.97� 7.59� 5.07

�

R = [0, 0, 2�] 13.98� 16.73� 16.00� 12.91� 4.01
�

R = [0, 0, 0.5�] 7.46� 5.61� 5.20� 7.50� 7.78
�

C
om

bi
n
ed

m
ot
io
n

R = [0, 0, 0.5�] 7.46� 8.97� 5.55� 5.73� 5.36
�

T = [0.3cm, 0, 0]

R = [0, 0, 1�] 11.53� 15.39� 9.84� 7.71� 4.57
�

T = [2cm, 0, 0]

R = [0, 0, 1�] 12.64� 11.33� 8.00� 7.40� 5.15
�

T = [0.5cm, 0, 0]

R = [0, 0, 1�] 12.94� 11.35� 8.05� 7.28� 5.04
�

T = [0.5cm, 0.2cm, 0]

R = [0, 0, 2�] 14.14� 16.07� 15.70� 12.25� 5.70
�

T = [2cm,�1cm, 0]

Table 1: Mean of angular errors obtained for di↵erent synthetic sequences.
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fields obtained using a fixed omnidirectional camera and moving one object

of the scene. In all these cases, the results show that our proposed method

allows an estimation of accurate motion field in various scenes and di↵erent

kinds of camera motions.

5. Conclusion and future work

In this paper we have described a new method to estimate optical flow

vectors in omnidirectional images. This method uses the sphere as the space

of image processing. We have used spherical wavelets to constrain the optical

flow equation on the sphere. The simulation results in real and synthetic

images shows that the proposed method allows an accurate estimation of

optical flow for a wide range of camera motions.

As future works, we shall first try to estimate optical flow using multichannel

decomposition in multiresolution frameworks. We trust that due to temporal

aliasing, it will give more accurate optical flow vectors. On the other hand,

we have observed that a number of other recent works in omnidirectional

vision takes a traditional method like that of Lucas and Kanade [14] for

optical flow estimation, even if it is not adapted, to recover the egomotion [6]

[35] [36] or the epipoles [37] [38]. We believe that using our adapted optical

flow field proposed in this paper, instead of the classical one, will improve

the estimation of egomotion and epipoles in omnidirectional images.
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