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The problem of optical flow estimation is largely discussed in computer vision domain for perspective images. It was also proven that, in terms of optical flow analysis from these images, we have di culty distinguishing between some motion fields obtained with smooth camera motion. The omnidirectional cameras developed recently provided images with large filed of view.

These images will contain global information about motion and allows to remove the ambiguity present in the case of planar projection in terms of optical flow analysis. Nevertheless, these images contain significant radial distortions that is necessary to take into account when treating these images to estimate the motion. In this paper, we shall describe new way to compute e cient optical flow for several camera motions given synthetic and real omnidirectional images. Our formulation of optical flow estimation problem will be given in the spherical domain. The omnidirectional images will be mapped on the sphere and used in multichannel image decomposition

INTRODUCTION

Optical flow estimation is one of the basic problems in computer vision.

It is the projection of the 3D velocity on the image and can be extracted from the image brightness variation. It was used by robotics researchers in many tasks such as : object detection and tracking, motion detection, ego-motion estimation, robot navigation or visual odometry (see for example [START_REF] Kim | An omnidirectional vision-based moving obstacle detection in mobile robot[END_REF] [2] [START_REF] Wang | An intelligent surveillance system based on an omnidirectional vision sensor[END_REF] [4] [START_REF] Winters | Omni-directional vision for robot navigation[END_REF] [START_REF] Gluckman | Ego-motion and omnidirectional cameras[END_REF] and references therein).

Given an image sequence I(x, y, t), the optical flow estimation consists in measuring the velocity (v x , v y ) of pixel (x,y) between t and t+1. Assuming the brightness constant across successive frames, this velocity can be computed by the well-known brightness constancy constraint equation (BCCE) eq.( 1): @I @x .v x + @I @y .v y + @I @t = 0,

No unique solution of eq.( 1) is possible, since on each location and each time,

we have to solve a single equation to determine two scalar unknowns(v x , v y ).

This was called the "aperture problem". Equation ( 1) only provides the normal velocity component. To overcome this problem more than one equation is needed to obtain the two velocity components at each position (x, y).

For traditional cameras, a number of di↵erent approaches to recovering optical flow have been proposed by adding other hypotheses of the flow. Horn

and Schunck [START_REF] Horn | Determining optical flow[END_REF] are the first to introduce a smoothness constraint in order to solve the aperture problem. Later a number of approaches are proposed in di↵erent frameworks. These methods can be grouped into correlation [START_REF] Anandan | A computational framework and an algorithm for the measurement of visual motion[END_REF],

energy [START_REF] Adelson | Spatiotemporal energy models for the perception of motion[END_REF] [10], phase [START_REF] Fleet | Computation of component image velocity from local phase information[END_REF] [12] [START_REF] Tsao | A neural scheme for optical flow computation based on gabor filters and generalized gradient method[END_REF], di↵erential [START_REF] Horn | Determining optical flow[END_REF] [14] [START_REF] Nagel | On a constraint equation for the estimation of displacement rates in image sequences[END_REF] and multichannel decomposition approaches [16][17][18] [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF]. It should be noted that the di↵erential method proposed by Lucas and Kanade [START_REF] Kanade | An iterative image registration technique with an application to stereo vision[END_REF], even if it is an old method, is the most commonly used in robotics applications since it is a simple method and often gives acceptable results. A review of a number of the most popular optical flow techniques can be found in [START_REF] Barron | Performance of optical flow techniques[END_REF] where the di↵erent approaches were compared. In this review, Fleet et al. [START_REF] Barron | Performance of optical flow techniques[END_REF] found that a phase-based approach [START_REF] Fleet | Computation of component image velocity from local phase information[END_REF] performed the best numerically than energy [START_REF] Adelson | Spatiotemporal energy models for the perception of motion[END_REF] [10], region-matching [START_REF] Anandan | A computational framework and an algorithm for the measurement of visual motion[END_REF] and di↵erential approaches [START_REF] Horn | Determining optical flow[END_REF] [14] [START_REF] Nagel | On a constraint equation for the estimation of displacement rates in image sequences[END_REF]. Later, it was proven that the multichannel decomposition of the optical flow equation gives robust estimation [START_REF] Weber | Robust computation of optical-flow in a multiscale di↵erential framework[END_REF] [18] [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF]. The multichannel image decomposition methods give a good compromise between robustness and time computation.

Recently, a new evaluation methodology and benchmarks for optical flow estimation methods in perspective images is proposed in [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF]. It replace the quantitative evaluation of optical flow given by Barron et al. [START_REF] Barron | Performance of optical flow techniques[END_REF]. It gives set of databases and comparison of several well-known methods.

Referring to all these works, the problem of optical flow estimation was largely discussed in computer vision domain for perspective images. It was also proved that estimation methods from these images have di culty distin-guishing between small pure translations and small pure rotations. Recently, the developed omnidirectional cameras with large field of view have been able

to overcome the limited field of view introduced by planar projections [START_REF] Gluckman | Ego-motion and omnidirectional cameras[END_REF].

The omnidirectional images with hemispherical field of view contain global information about motion with the presence of the focus of expansion (FOE)

and/or the focus of contraction (FOC) in the images. Consequently, the optical flow filed analysis from omnidirectional images is more e cient also with smooth camera motion.

The catadioptric images are obtained using a combination of lenses and mirrors. These images are distorted due to the non-linear projection of the scene points in the image. Thus, the traditional treatments developed for perspective images are not appropriate for the deformed catadioptric images. Different works tried to adapt the existing methods by proposing an adaptation of the concepts definition of neighborhood, gradient function, Gaussian function, and so forth... We may classify the proposed works into two di↵erent approaches:

• Optical flow computation directly on the catadioptric image: A method to estimate optical flow on the catadioptric images was proposed on [START_REF] Demonceaux | Optical flow estimation in omnidirectional images using wavelet approach[END_REF] using wavelet approach based on a brightness change constraint equation. This method does not take into account the radial distorsion present in omnidirectional images. In our previous work [START_REF] Radgui | An adapted lucas-kanade's method for optical flow estimation in catadioptric images[END_REF], we have suggested a new di↵erential method adapted to omnidirectional images.

This method is based on motion model designed for paracatadioptric images and an adapted neighborhood that takes into account the shape of the mirror. This method [START_REF] Radgui | An adapted lucas-kanade's method for optical flow estimation in catadioptric images[END_REF] uses a conventional gradient operator to compute image derivatives necessary for flow computation. This is why it was not appropriate for omnidirectional images.

• Optical flow computation using image processing on the sphere: The works of Daniilidis et al. [START_REF] Daniilidis | Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation[END_REF], Tosic et al. [START_REF] Tosic | Multiresolution Motion Estimation for Omnidirectional Images[END_REF], Mochizuki et al. [START_REF] Mochizuki | Featureless visual navigation using optical flow of omnidirectional image sequence[END_REF] and Bagnato et al. [START_REF] Bagnato | Optical flow and depth from motion for omnidirectional images using a tv-l1 variational framework on graphs[END_REF] belong to this category. Mochizuki et al. [START_REF] Mochizuki | Featureless visual navigation using optical flow of omnidirectional image sequence[END_REF] proposed a formulation of Horn-Schunck method [START_REF] Horn | Determining optical flow[END_REF] on the spherical images. They computed optical flow on the sphere that yields monocular disparity on the antipodal point on the equator. They used this estimation to compute the navigation direction.

A recent work by Bagnato et al. [START_REF] Bagnato | Optical flow and depth from motion for omnidirectional images using a tv-l1 variational framework on graphs[END_REF] also deals with the problem of computing optical flow using a formulation on the sphere. The authors have extended an existing and recent TV-L1 variational method [START_REF] Zach | A duality based approach for realtime tvl 1 optical flow[END_REF] and have proposed a new formulation of this method as a graph-based framework on the sphere. They have defined spherical di↵erential operators and proved that it is more accurate than planar di↵erential operators applied to omnidirectional images to compute optical flow especially near the poles in spherical images.

Most authors in Omnidirectional vision use the sphere as an appropriate domain for omnidirectional images. The spherical image processing will take into account the specific geometry of omnidirectional cameras [START_REF] Gluckman | Ego-motion and omnidirectional cameras[END_REF] [24] [29] [START_REF] Tosic | Multiresolution Motion Estimation for Omnidirectional Images[END_REF]. Our formulation of optical flow estimation is given on the sphere and the omnidirectional images are mapped onto a unit sphere and treated in the spherical domain. Then we propose to adapt approach based on multichanel decomposition of optical flow equation [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF]. This method proved its e ciency in the case of perspective images and it was indicated that it gives the best results for optical flow estimation [START_REF] Bernard | Discrete wavelet analysis: A new framework for fast optic flow computation[END_REF] [19] [START_REF] Weber | Robust computation of optical-flow in a multiscale di↵erential framework[END_REF]. For this reason, we propose to use a spherical wavelet and decompose the optical flow equation on the sphere to estimate the optical flow field. The reminder of the paper is organized as follows. In section 2, we shall present the optical flow constraint equation on the sphere and the stereographic projection necessary for all transformations between the catadioptric image and the unit sphere. Section 3 describes our approach to compute optical flow using spherical wavelet to constrain the optical flow equation on the sphere. In section 4, the experimental results are given and comparative measurements are discussed for synthetic and real images. We shall eventually give our conclusion in section 5 and provide guidelines for future works.

Optical flow constraint equation on the sphere

Geyer and Daniilidis have introduced unifying theory for all central catadioptric sensors [START_REF] Geyer | A unifying theory for central panoramic systems and practical implications[END_REF]. They proved that central catadioptric projection is equivalent to a central projection to a virtual sphere followed by projection from the sphere to the retina. This second projection depends on the shape of the mirror. Fig. [START_REF] Kim | An omnidirectional vision-based moving obstacle detection in mobile robot[END_REF] shows the equivalence between any catadioptric projection and the two-step mapping via the sphere.

The parameter ⇠ defines the shape of the mirror. In our case, we consider parabolic mirror where ⇠ = 1. However the method can easily be adapted to the general case. Let P s (✓, ') = P s (X s , Y s , Z s ) be the point on the sphere, having a radius equal to one, where:

8 > > > < > > > : X s =sin ✓ cos ' Y s =sin ✓ sin ' Z s = cos✓ (2) 
The stereographic projection of P s from the sphere to the catadioptric plane can be expressed on cartesian coordinates as:

8 < : x= Xs 1 Zs y= Ys 1 Zs (3) 
Using eq.( 2)and eq.( 3), we obtain the image point P i(x, y) expressed on spherical coordinates as: 8 < :

x=cot ✓ 2 cos ' y=cot ✓ 2 sin ' (4) 
Note that the similar mapping model can easily be derived for all omnidirectional systems [30] [31]. In this paper, we look for a recovering of optical flow vectors on the sphere. For this reason, the omnidirectional images are mapped on the sphere and the formulation of Brightness Change Constraint

Equation is rewritten on spherical coordinates. If I s (✓, ', t) denotes the temporal spherical image on the unit sphere S 2 and rI s = ( @Is @✓ , 1 sin ✓ @Is @' ) T denotes the spatial gradient vector on the sphere, the total derivative [START_REF] Daniilidis | Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation[END_REF] gives:

1 sin ✓ @I s @' v ' + @I s @✓ v ✓ + @I s @t = 0 (5) 
This equation is equivalent to eq.( 1) and represents the optical flow constraint equation on the unit sphere. The intensity of point on the sphere can be obtained by any interpolation of pixel intensities on catadioptric image. In our case, we used bicubic interpolation. (v ✓ , v ' ) are the components of the flow vector in the tangential coordinates system. The partial derivatives of the spherical images can be obtained using the stereographic projection model (eq.( 4)):

2 4 @Is @✓ @Is @' 3 5 = 2 4 @x @✓ @y @✓ @x @' @y @' 3 5 2 4 @I @x @I @y 3 5 = 2 4 cos ' 2 sin 2 ✓ 2 sin ' 2 sin 2 ✓ 2 cot ✓ 2 sin ' cot ✓ 2 cos ' 3 5 2 4 @I @x @I @y 3 5 (6) 
As in perspective case, we have a single equation to solve eq.( 5) to determine two unknowns: v ✓ and v ' ). An additional assumption must be given to solve the aperture problem on the sphere. Our proposed solution, detailed in the following section, consists in using a decomposition of spherical optical flow equation in spherical wavelets base assuming the constancy of optical flow over the support of the wavelets.

Optical flow from multichannel spherical image decomposition

We based our new approach on the work of Bruno et al. [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF] and Bernard in [START_REF] Bernard | Discrete wavelet analysis: A new framework for fast optic flow computation[END_REF]. It was proven in these references that multichannel decomposition of the optical flow equation gives robust estimation and a good compromise between robustness and time computation. Due to temporal aliasing, this method works well especially in multiscale framework [START_REF] Weber | Robust computation of optical-flow in a multiscale di↵erential framework[END_REF] [18] [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF]. This method consists in:

• Filtering an image sequence by a set of spatio-temporal filters or convolving an image sequence in wavelet base;

• Applying the optical flow constraint equation on each channel of the filter or of the wavelet.

The 2D Gabor filter used in [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF] and the 2D discrete wavelets used in [START_REF] Bernard | Discrete wavelet analysis: A new framework for fast optic flow computation[END_REF] are not appropriate to the distorted images given by catadioptric camera and should be adapted. Our proposed solution consists in using spherical wavelets base [START_REF] Antoine | Wavelets on the sphere : Implementation and approximations[END_REF] to constrain the optical flow equation on the sphere. We chose the commonly used wavelet, Morlet wavelets [START_REF] Demanet | Gabor wavelets on the sphere[END_REF], as a special case of Gabor wavelets. We first convolve the spherical optical flow equation with a set of spherical Morlet wavelets defined in di↵erent directions. The number of directions will then determine the size of the over-determined system to solve and get the optical flow vectors on the sphere. This convolution di↵ers from the classical 2D convolution usually used for filtering images. In this section, we shall define a spherical wavelets and convolution on the sphere.

Both definition will be used to constrain eq.( 5).

Spherical wavelets

Our decomposition is based on directional spherical wavelets base. This choice of wavelets is motivated by the trust that wavelet bases are a welldesigned tool for our proposed approach. Wavelet bases have a natural multiscale structure. As a local frequency analysis tool, wavelets analysis favorably compares to filtering because it is far less computation intensive and still provides complete information on the signal. We based our spherical image decomposition on spherical wavelets proposed by Antoine et al. in [START_REF] Antoine | Wavelets on the sphere : Implementation and approximations[END_REF]. They defined an interesting family of spherical wavelets which can be applied to any image represented in the spherical domain. Natural candidates in our purpose are directional wavelets on the sphere [START_REF] Demanet | Gabor wavelets on the sphere[END_REF].

In [START_REF] Antoine | Wavelets on the sphere : Implementation and approximations[END_REF] it was shown that any Euclidian wavelets can be mapped to sphere using an inverse stereographic projection. We chose the spherical Morlet wavelets M , represented in eq.( 7) to decompose spherical images. k0 is the norm of the wave vector of the wavelet in the Euclidian limit (accounting for the number of oscillations). ' 0 is the angle of the wavelet and a is the scale of the wavelet. Note that this function is admissible for k 0 large enough (>= 6) [START_REF] Antoine | Wavelets on the sphere : Implementation and approximations[END_REF]. Fig. [START_REF] Yoshizaki | Free space detection from catadioptric omnidirectional images for visual navigation using optical flow[END_REF] shows the spherical Morlet wavelet defined in two di↵erent directions on half-spheres. 

M (✓, ') = 1 2 p e ik 0 tan(✓/2)/ cos(' ' 0 ) e 2 tan(✓/2) 2 /a 2 (1 + tan(✓/2) 2 /a 2 ) (7) with : = 4a 2 ((a 2 1) cos ✓ + (a 2 + 1)) 2

Wavelet Transform on the sphere

Wavelet transformation is di↵erent from the Euclidean one. We shall present the definition of a convolution on the sphere. This convolution will be used to compute the spherical wavelet transform of images to calculate the optical flow vectors.

Let ⌘ = (✓, ') be the point on the sphere S 2 .

is the spherical wavelet defined on the sphere. If the rigid rotation g is an element of the group of rotations SO(3) acting on the sphere S 2 , is rigidly transported on the sphere according to the operator R g as:

R g (⌘) = (g 1 ⌘)
The continuous wavelet transform of spherical image I s (✓, ') can be expressed as a convolution on the sphere with the spherical wavelet as:

W I s (⌘) =< I s , R g >
The convolution on the sphere is defined by Driscoll and Healy [START_REF] Driscoll | Computing fourier transforms and convolutions on the 2-sphere[END_REF] as:

hI s , R g i = Z S 2 Is(⌘) (g 1 ⌘)d⌘ (8) 
Where : d⌘ = sin ✓d✓d'. This convolution is performed in the Fourier domain using a simple multiplication like in R n . In practice, we will use the open source YAWTB Toolbox that contain an implementation of several directional wavelets on the sphere based on the work of Antoine et al. [START_REF] Antoine | Wavelets on the sphere : Implementation and approximations[END_REF].

Optical flow estimation

In order to estimate the velocity vector at each point on the sphere using Eq.( 5), we need to add some constraints to the spherical optical flow equation to solve the aperture problem. This assumption is based on the constancy of optical flow over the support of the spherical wavelets.

Let us consider the projection of the optical flow equation (eq.( 5)) onto a wavelets base i (✓, ') (with i= 1... N, and N is the number of wavelet directions). This allows to write :

< M (✓, '), 1 sin ✓ @I s @' v ' + @I s @✓ v ✓ + @I s @t >= 0 (9) 
Where <> denotes the spherical convolution operator defined bellow in section(3.2). The multichannel decomposition approach is based on the assumption that (v ✓ , v ' ) are constant over support of the wavelets i (✓, ') for all i = 1...N . Note that the support of the wavelet must not be large to maintain the assumption of constant optical flow. Eq.( 9) become:

< M (✓, '), 1 sin ✓ @I s @' > v ' + < M (✓, '), @I s @✓ > v ✓ + < M (✓, '), @I s @t >= 0 (10) 
Taking N directions for the directional wavelets, it leads a system of 2 ⇤ N equations since spherical Morlet wavelets are complex. 0

B B B B B B B B B @ real < 1 (✓, '), 1 sin ✓ @Is @' > real < 1 (✓, '), @Is @✓ > imag < 1 (✓, '), 1 sin ✓ @Is @' > imag < 1 (✓, '), @Is @✓ > .... ..... real < N (✓, '), 1 sin ✓ @Is @' > real < N (✓, '), @Is @✓ > imag < N (✓, '), 1 sin ✓ @Is @' > imag < N (✓, '), @Is @✓ > 1 C C C C C C C C C A | {z } 0 @ v ' v ✓ 1 A = 0 B B B B B B B B B @
real < 1 (✓, '), @Is @t > imag < 1 (✓, '), @Is @t > ......

real < N (✓, '), @Is @t > imag < N (✓, '), @Is @t > 1 C C C C C C C C C A | {z } (11) 
To solve this over-determined system for the two unknowns v ✓ and v ' , the least squares method is used. Therefore, the solution of ( 11) is given by minimizing:

! V = arg min v ✓ ,v' N X i=1 [< i (✓, '), 1 sin ✓ @I s @' > v ' + < i (✓, '), @I s @✓ > v ✓ + < i (✓, '), @I s @t >] 2 (12) 
If we denote the over-determined system by : A.

2 4 v ' v ✓ 3 5 = B ( 13 
)
The solution of the system is given as:

2 4 v ' v ✓ 3 5 = (A 0 ⇤ A) 1 ⇤ A 0 ⇤ B (14) 
In practice, the linear system is solved with least square method. The estimated solution is taken into account according to two fixed thresholds. We compare the conditioning of a matrix (A 0 ⇤ A) with a first threshold. In addition, we test if the estimated solution V = (v ' , v ✓ )is acceptable or not by comparing the error ||AV B|| with a second fixed threshold. These two comparisons inform us on the stability of the linear system and allow to verify if our hypothesis of optical flow constancy is true or not and thus decide to take into account or not the estimated solution.

The least square estimation described above allows to determine a set of optical flow vectors defined on the tangential coordinate system (v ✓ , v ' , 0). To compare our optical flow field with that obtained using Bruno et al. method [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF], this motion field must be projected on the catadioptric image using this transformation:

2 4 v x v y 3 5 = 2 4 @x @✓ @x @' @y @✓ @y @' 3 5 2 4 v ✓ v ' 3 5 (15) 
Using eq.( 4), the velocity vector (v x , v y ) in image space can be found by the following transformation of angular velocity (v ✓ , v ' ):

2 4 v x v y 3 5 = 2 4 cos ' 2 sin 2 ✓ 2 cot ✓ 2 sin ' sin ' 2 sin 2 ✓ 2 cot ✓ 2 cos ' 3 5 2 4 v ✓ v ' 3 5 (16) 

Experiments and Results

To show the improvement given by our proposed method, we will compare it to four previously published methods.

We will compare our method first to a similar method developed for perspective camera given by Bruno et al. [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF]. This method is based on decomposition of optical flow equation using Gabor filter bank. The parameters of Gabor filter are fixed to preserve the stability of the linear system and to give the smallest error estimation. We have fixed experimentally the optimal parameters of Gabor filter according to the size of the movement applied to the virtual cameras. Figure [START_REF] Wang | An intelligent surveillance system based on an omnidirectional vision sensor[END_REF] shows angular errors obtained for many values of scale , central frequency f 0 and the number of filters N . According to the motion in the synthetic sequences, the optimal Gabor filter banks parameters are sets as follows:

2 [3.0, 6.0], f 0 < 0.14 N = 6.

In [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF], the optical flow estimation is performed in multiresolution framework.

We use image decomposition with Gabor filter bank defined in three level of multiresolution estimation where G 2 k f 0 ,2 k ,N corresponds to the Gabor filter bank in level k. Equivalently the spherical wavelets support is arranged to have the same size as that fixed in [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF]. For this reason, we fixed a scale of wavelets in a = 0.05 and a = 0.03 respectively for large and small motion.

For all sequences, we took six orientations of the spherical Morlet wavelets and 2D Gabor filter.

We have compared our proposed method also to that of Kanade et al. [START_REF] Kanade | An iterative image registration technique with an application to stereo vision[END_REF].

This method is still one of the most popular versions of two-frame di↵erential methods for motion estimation and is often used in robotic applications.

Lucas and Kanade compute the optical flow on a point (x, y), considering that the motion is constant in a fixed neighborhood of this point.

The third method, which we will compare our proposed method with, is our previously published method dedicated to omnidirectional images [START_REF] Radgui | An adapted lucas-kanade's method for optical flow estimation in catadioptric images[END_REF]. This method is an adaptation of Lucas and Kanade's method which uses a new constrain taking into account the distortions existing in the omnidirectional images.

Finally, we will conduct comparison with the results obtained using a method developed by Danilidis et al. [START_REF] Daniilidis | Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation[END_REF]. This method can be also considered as an adaptation of Lucas and Kanade's method. It uses the same assumption that the motion is constant in a fixed neighborhood. The main di↵erence between this two adapted methods ( [START_REF] Radgui | An adapted lucas-kanade's method for optical flow estimation in catadioptric images[END_REF] and [START_REF] Daniilidis | Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation[END_REF]) is that the first one uses a new definition of neighborhood and new motion model to solve the aperture problem on the image space, whereas the second one is based on the spherical representation of omnidirectional images and solves the same spherical optical flow equation that we use in this paper.

As presented in section 3.3, to test the stability of our linear estimation we fixed the conditioning threshold on 0.1 and the adequacy threshold of estimated solution in 0.1. This allows to do not take into account the aberrant estimation of optical flow. We have considered three kinds of motions:

translation, rotation and combined motion to show the e↵ectiveness of our contribution. These motions are applied to virtual and real cameras moving on a plane perpendicular to their optical axis.

Synthetic sequences

We have tested our algorithm on di↵erent synthetic sequences for which 2D motion fields are known. These sequences have been generated with POVRAY. A virtual parabolic camera observes four textured planes separated by approximatively 100cm. POVRAY generated images of 500 500

pixels. An example of synthetic images is shown in (Fig.( 4)). We have compared our proposed method to that proposed in [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF] for perspective images and that proposed in [START_REF] Radgui | An adapted lucas-kanade's method for optical flow estimation in catadioptric images[END_REF] for catadioptric images. To assess the optical flow estimation methods, we use the mean of angular errors [START_REF] Barron | Performance of optical flow techniques[END_REF] between the known velocity vectors,V r = (u r , v r ) and an estimated vectors V e = (u e , v e ). Note that in all these experimentations we do not consider the image points around the center of images. In these locations both methods generate significant errors. In the rest of the image space the flow vectors prove that the adapted approach on the sphere compute a succeeded velocity vectors even with large camera motion and also in di↵erent positions on the distorted omnidirectional images.

This means that the fixed support of 2D Gabor filter is not appropriate to omnidirectional images.

The mean angular errors obtained from di↵erent sequences using the five implemented methods are indicated in Tab. [START_REF] Kim | An omnidirectional vision-based moving obstacle detection in mobile robot[END_REF]. These results show that the classical approaches ( [START_REF] Bruno | Robust motion estimation using spatial gabor-like filters[END_REF] and [START_REF] Kanade | An iterative image registration technique with an application to stereo vision[END_REF]), even if these methods work well for perspectives are not appropriate to omnidirectional images. Only the case of very small rotational motion of virtual camera gives an acceptable result using these methods.

The angular errors obtained using spherical methods ( [START_REF] Daniilidis | Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation[END_REF] and our proposed method in this paper) are inferior to that obtained using adapted method on the image space [START_REF] Radgui | An adapted lucas-kanade's method for optical flow estimation in catadioptric images[END_REF]. These results give the argument that methods dedicated to omnidirectional images are more robust when using a spherical model to represent images. Finally, we can see that angular errors are inferior using our spherical approach especially with large camera motions. This result proves that multichannel spherical images decomposition method proposed in this paper gives good estimation of local motion compared to di↵erential methods [START_REF] Daniilidis | Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation[END_REF] [23].

Real sequences

We have also used sequences of real omnidirectional images. The sequences are obtained using a camera which is mounted on a mobile robot and moves on a plane perpendicular to its optical axis. The camera is a SONY DF W SX910. We obtain an image of 1280 ⇤ 960 pixels. The catadioptric sensor mounted in the mobile robot is illustrated in Fig. [START_REF] Adelson | Spatiotemporal energy models for the perception of motion[END_REF] with the image that it gives. The camera is calibrated using the Omnidirectional Calibration Toolbox [START_REF] Mei | Single view point omnidirectional camera calibration from planar grids[END_REF]. fields obtained using a fixed omnidirectional camera and moving one object of the scene. In all these cases, the results show that our proposed method allows an estimation of accurate motion field in various scenes and di↵erent kinds of camera motions.

Conclusion and future work

In this paper we have described a new method to estimate optical flow vectors in omnidirectional images. This method uses the sphere as the space of image processing. We have used spherical wavelets to constrain the optical flow equation on the sphere. The simulation results in real and synthetic images shows that the proposed method allows an accurate estimation of optical flow for a wide range of camera motions.

As future works, we shall first try to estimate optical flow using multichannel decomposition in multiresolution frameworks. We trust that due to temporal aliasing, it will give more accurate optical flow vectors. On the other hand, we have observed that a number of other recent works in omnidirectional vision takes a traditional method like that of Lucas and Kanade [START_REF] Kanade | An iterative image registration technique with an application to stereo vision[END_REF] for optical flow estimation, even if it is not adapted, to recover the egomotion [START_REF] Gluckman | Ego-motion and omnidirectional cameras[END_REF] [35] [START_REF] Vassallo | A general approach for egomotion estimation with omnidirectional images[END_REF] or the epipoles [37] [38]. We believe that using our adapted optical flow field proposed in this paper, instead of the classical one, will improve the estimation of egomotion and epipoles in omnidirectional images. 

Figure 1 :

 1 Figure 1: Equivalence between the catadioptric projection and the two-step mapping via the sphere.

Figure 2 :

 2 Figure 2: Spherical Morlet wavelet at scale a = 0.04 and ' 0 = 0 (left) and ' 0 = ⇧/2 (Right)

Figure 3 :

 3 Figure 3: Top: Angular error in function of scale ( N = 6; f 0 = 0.014). Middle: Angular error in function of central frequency f 0 ( N = 6; = 5). Bottom: Angular error in function of number of filters N (f 0 = 0.014; = 5). These experiments are applied to the sequence obtained with translation T = [ 1cm, 0, 0] of virtual camera.

Fig.( 5 )

 5 Fig.[START_REF] Winters | Omni-directional vision for robot navigation[END_REF] shows the angular error map obtained for di↵erent camera motions.

Figure 4 :

 4 Figure 4: Left: Synthetic image composed by four textures plans and on right spherical equivalent image

Fig.( 10 )

 10 shows the optical flow fields for a rotation around Z-axis in real scene. Fig.(11) illustrates a combined motion of camera and shows the optical flow fields. Finally, Fig.(12) represents the optical flow

Figure 5 :

 5 Figure 5: Angular Error Maps obtained using Bruno et al. method (left) and adapted method (right) for di↵erent kinds of motion: Top: Pure translation in X and Y-direction. Middle: Pure rotation of 1 around Z-Axis. Bottom: combined motion

Figure 6 :

 6 Figure 6: Optical flow fields from pure translation of camera. In the top: T = [5cm, 3cm, 0]. In the middle: T = [ 1cm, 0, 0]. In the bottom: T = [0, 3cm, 0]. The fields on the left correspond to the Bruno et al. method and those on the right to the adapted method.

Figure 7 :

 7 Figure 7: Optical flow fields from pure rotation of camera. At the top: R = [0, 0, 2 ]. In the middle: R = [0, 0, 1 ]. At the bottom: R = [0, 0, 0.5 ]. The fields on the left correspond to the Bruno et al. method and those on the right to the adapted method.

Figure 8 :

 8 Figure 8: Optical flow fields from combined motion of the camera. At the top: R = [0, 0, 2 ] and T = [2cm, 1cm, 0]. In the middle: R = [0, 0, 1 ] and T = [2cm, 0, 0]. At the bottom: R = [0, 0, 1 ] and T = [0.5cm, 0.2cm, 0]. The fields on the left correspond to the Bruno et al. method and those on the right to the adapted method.
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 910 Figure 9: Omnidirectional camera mounted on mobile robot and the real image that it gives

Figure 11 :Figure 12 :

 1112 Figure 11: original images and optical flow fields obtained using combined motion of a translation along Y-axis and rotation around Z-axis from the Bruno et al. method (left) and the adapted method (right)

Classical