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INFERENCE IN MIXED HIDDEN MARKOV MODELS AND
APPLICATIONS TO MEDICAL STUDIES

by

Maud Delattre

Abstract. — The aim of the present paper is to document the need for adapting the
definition of hidden Markov models (HMM) to population studies, which rigorous

interpretation typically requires the use of mixed-effects models, as well as for
corresponding learning methodologies. In this article, mixed hidden Markov models

(MHMM) are introduced through a brief state of the art on hidden Markov models

and related applications, especially focusing on disease related problems. Making
the main assumption that a given pathology can be considered at different stages,

hidden Markov models have for example already been used to study epileptic activity

or migraine.

Mixed-effects hidden Markov models have been newly introduced in the statistical

literature. The notion of mixed hidden Markov models is particularly relevant for
modeling medical symptoms, but the data complexity generally requires specific care

and the available methodology for MHMM is relatively poor. Our new approach

can be briefly described as follows. First, we suggest to estimate the population
parameters with the SAEM (Stochastic Approximation EM) algorithm, which has

the property to converge quickly. The well-known forward recursions developed for
HMM allow to compute easily the complete likelihood at each step of the MCMC

procedure used within SAEM. Then, for dealing with the individuals, we suggest to

estimate each set of individual parameters with the MAP (Maximum A Posteriori)
of the parameter distributions. Finally, the hidden state sequences are decoded using

the Viterbi algorithm. Some Monte-Carlo experiments are presented to illustrate the

accuracy of our algorithms.

2000 Mathematics Subject Classification. — 62-02.
Key words and phrases. — hidden Markov models, mixed-effects, longitudinal data, stochastic

approximation EM, forward recursions, maximum a posteriori, Viterbi algorithm.
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Résumé (Infrence dans les modèles de Markov cachés à effets mixtes et

applications médicales)

Cet article veut montrer la nécessité d’étendre la définition des modèles de Mar-
kov cachés, ainsi que leurs méthodes d’estimation, au cadre des études de population,

dont l’interprétation rigoureuse passe par l’utilisation de modèles à effets mixtes.

Nous motivons alors les intérêts des modèles de Markov cachés à effets mixtes au tra-
vers d’un état de l’art succinct sur les modèles de Markov cachés et leurs nombreuses

applications. Nous nous limiterons à des problématiques médicales. Dans ce cadre, les
modèles de Markov cachés supposent que l’évolution des maladies peut s’interpréter

à travers différents états. En effet, la distinction de divers stades évolutifs dans la

maladie justifie l’application de modèles de Markov cachés à certaines pathologies,
comme cela a déjà été le cas pour la migraine, ou encore l’épilepsie.

La définition des modèles de Markov cachés à effets mixtes est très récente. Ces nou-

veaux modèles sont des candidats intéressants pour la modélisation de symptômes,
celle-ci s’opérant généralement à partir de données complexes par leur structure,

et nécessitant une démarche d’analyse particulière. Actuellement, les méthodes d’ap-

prentissage pour les modèles de Markov cachés à effets mixtes restent peu nombreuses
et ne se limitent qu’à l’estimation des paramètres de population. Or, de manière

générale, les modèles mixtes s’interprètent à deux niveaux : au niveau de la popula-

tion d’une part, puis au niveau des individus isolés d’autre part. Ce second point n’a
pas encore été abordé dans le cadre de nos nouveaux modèles. Sur ce constat, nous

proposons de compléter les approches déjà établies par la démarche d’apprentissage
suivante. Pour commencer, l’algorithme SAEM sera adapté aux modèles de Markov

cachés à effets mixtes pour en estimer les paramètres de population. A chacune de ses

itérations, l’étape d’approximation stochastique mettra à profit la procédure forward,
qui propose une méthode de calcul rapide de la vraisemblance dans les modèles de

Markov cachés. Ensuite, cette première estimation à l’échelle populationnelle nous

permettra d’établir les paramètres propres à chaque sujet par maximisation a poste-
riori de leur distribution. Enfin, la simple mise en oeuvre de l’algorithme de Viterbi

dans les modèles de Markov cachés individuels nous donnera les séquences d’états

les plus probables pour chaque individu. En dernier lieu, nous nous attacherons à
illustrer les propriétés de nos algorithmes sur un court exemple.
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1. Hidden Markov models

1.1. Definition. — Hidden Markov models first appeared in the statistical litera-
ture in the late 60’s, in a series of articles from Baum and coworkers ([1], [2], [3]).
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Those new models weren’t referred to as “hidden Markov models” yet. The expres-
sion “probabilistic functions of finite state Markov chains” was rather used, reflecting
quite well the definition of hidden Markov models. HMM applications, especially to
speech recognition, abounded in the 70’s and were at the origin of some method-
ological developments for learning these new models. In 1989, Rabiner published a
tutorial ([4]) in which hidden Markov models were rigorously defined. This paper also
clarified the related methodologies and gave several application examples devoted to
speech recognition problems.

In hidden Markov models, a double process is assumed, among which only one
is observed. Consequently, two levels are separately considered in the definition of
such models. First comes the definition of the hidden process, which is a Markov
process, generally assumed to have memory one; second comes the definition of the
observations’ process conditional on the hidden one. In this section, we will consider
a parametric framework and Ψ will denote the vector of all HMMs’ parameters.

Let {Zj}j∈N? be a stationary Markov chain with a discrete and finite state space
S = {1, . . . , S}. In the following, let π be the stationary distribution of the chain and
let A denote the S × S transition matrix of the Markov process, and ∀s, s′ ∈ S2, let
also as,s′ be the transition probability associated with the transition from state s to
state s′:

as,s′ = PΨ (Zj+1 = s′|Zj = s) ;∀j ≥ 1

where
S∑

s′=1

as,s′ = 1;∀s ∈ S

In hidden Markov models, a second process {Yj}j∈N? enables inference on the latent
process. More precisely, the jth observation is assumed to be a probabilistic function
of the jth hidden visited state.

For discrete observations, emission probabilities are introduced to specify how the
observations are related to the state sequence. Let O be the observation space, and
let bo,s be the probability associated to observation o ∈ O while current (unknown)
state is s ∈ S:

bo,s = PΨ (Yj = o|Zj = s) ;∀j ∈ N?

The emission probabilities are such that:∑
o∈O

bo,s = 1;∀s ∈ S

For example, when the observations are count data, Poisson distributions with pa-
rameters λ1, λ2, . . . , λS are usually chosen to model emissions in states 1, 2, . . . , S
respectively. The model for observations would thus read:

bo,s = Pλs
(Yj = o|Zj = s) = exp(−λs)

λos
o!

;∀s ∈ S
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At last, an additional assumption holds: conditionally to Zj , Yj is independent of
Y1, ..., Yj−1, Yj+1, ... and Z1, ..., Zj−1, Zj+1, ....

From the above definitions and assumptions, the general expression of the likeli-
hood in HMMs becomes:

(1) L (y1, . . . , yJ ; Ψ) =
∑

z1,...,zJ∈SJ

π (z1)
J∏
j=1

byj ,zj

J−1∏
j=1

azj ,zj+1

where J is the length of the observed sequence.
Remark: extension to continuous observations is straightforward by defining con-

ditional emission densities, for example a Gaussian distribution with parameters
(ms;σ2

s) in state s ∈ S.

1.2. Learning methods. — Infering hidden Markov models is challenging, mostly
due to the complex expression of the likelihood and to the non observable visited
states. As a consequence, hidden Markov models are associated with three “basic
problems”. Quoting from [4], (i) computing the likelihood, (ii) estimating the model
parameters (emission probabilities, transition probabilities, and possibly the proba-
bility distribution of the states at time 1), and (iii) decoding the most probable state
sequence for a given sequence of observations. Some algorithms are referenced and
discussed in [4], giving potential solutions to (i), (ii) & (iii). Among those presented
in [4], the forward procedure, the Baum-Welch algorithm and the Viterbi algorithm
are the most relevant ones, applying respectively to (i), (ii) & (iii). The Baum-Welch
algorithm is an EM-type algorithm which is expected to compute the maximum like-
lihood estimator (MLE). The question of the consistency of the MLE has been largely
investigated. This is however a complex problem, and very strong assumptions were
usually required to get the MLE consistency. Among other works, those of Leroux
([5]) and Douc and Matias ([6]) could be cited. More recently, Douc et al. demon-
strated the consistency of the MLE under very weak assumptions in [7]. Their result
even holds in situations where the state space is not compact.

2. From hidden Markov models to mixed hidden Markov models

Many authors suggested applying hidden Markov models to deal with some biolog-
ical problems. Hidden Markov models have become a very successful modeling tool
in molecular biology, and applications to genetics abound in the statistical literature.
Hidden Markov models have also been used in epidemiology, as an alternative to
compartimental SIR (Susceptible-Infectious-Recover) and SIS (Susceptible-Infectious-
Susceptible) models, to study the propagation of epidemics or infections in specific
populations ([8], [9]). In this context, the observations consist of counts of infected
patients at successive time points. As such phenomenons are characterized by patient
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to patient transmission, successive outcomes can’t be considered as independent out-
comes and assuming a Markov structure is of strong interest. Sometimes, the studied
disease is asymptomatic on some patients. Hidden Markov models could thus be an
adapted way to describe the infection latent process, through the estimation of im-
portant epidemiological parameters, or even through the distinction of periods with
different transmission rates. For example, Le Strat and coworkers were interested in
influenza-like illness (I.L.I.) and poliomyelitis in 1999 ([8]). In [8], I.L.I. incidence
rates were modeled as a two-state Gaussian hidden Markov model, leading to a clear
distinction between epidemic and non epidemic periods. The number of monthly Po-
liomyelitis cases were analyzed in the same manner, with a two-state Poisson hidden
Markov model. In a same way, Cooper and Lipsitch were interested in nosocomial
infections ([9]) and proved that models with a latent Markov process granted the
best fit of their data. Then, although hidden Markov models have not been widely
used in this field, some authors showed that HMMs could be particularly relevant for
the study of chronic illnesses, such as migraine ([10]), multiple sclerosis ([11], [12])
or epilepsy ([13]). Here, the transitions between some unobserved states, whom to-
tal number is possibly predefined, are supposed to describe the evolution of disease
symptoms, like the daily numbers of seizure counts in the context of epilepsy ([13]),
the monthly numbers of lesion counts in the context of multiple sclerosis ([11], [12]),
or headache scores when dealing with migraine ([10]).

To study diseases, the interests of hidden Markov models are numerous. First, those
particular models are quite easily interpretable, and appear to show up similarities
with the biological process that governs the pathologies. The Markov states are thus
associated with distinct stages or seriousness degrees for the studied illness, and the
assumption is that patients alternate periods in those stages. As an example, patients
with multiple sclerosis seem to undergo relapsing and remitting periods ([11], [12]).
In the same way, Albert ([13]) assumes the epileptic patients to go through two
distinct stages, namely a low and a high seizure susceptibility. In related clinical trials,
markers are used to support disease diagnosis, and explaining their value by indirectly
observed illness stages seems to have a biological meaning; at least this approach is
widely used. Seeing this, the use of latent states, typically through mixture models,
to study disease dynamics on specific patients is natural. It is also quite reasonable to
assume that consecutive values of a biomarker for a given patient are interdependent.
For example, past events or repeated past passages to acute forms of the disease
could reinforce susceptibility to the illness. It is thus justified to enrich the mixture
with a first-order memory, leading to hidden Markov models. Having a well-founded
biological interpretation, we could also imagine hidden Markov models could improve
the understanding of the process underlying some more obscure pathologies.

Therefore, hidden Markov models have conceptual validity in some disease studies.
The estimated model parameters help thus to interpret the disease process at several
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levels. First, through the emission distributions, they give some idea of the way the
biomarker’s values are related to the hidden states. Second, the estimated transition
probabilities help to see how state changes are frequent in the studied population. In-
terpretation could even be carried on by including covariates and regression variables
in the parametrization of the model.

However, modeling disease using hidden Markov models is not straightforward.
In particular, while hidden, the “design” of the underlying Markov process could be
challenging. When enough knowledge on the disease of interest exists, the number
of hidden states can be a priori fixed; but most often, the number of hidden illness
stages is unknown. Several numbers of states have to be tried and adapted selection
criteria are needed. As an example, hidden Markov models from two to six states are
tried to model I.L.I. data in [8], and the BIC criteria is chosen to discriminate the
most adapted model from the others, leading to a five-state Gaussian hidden Markov
model. Le Strat stresses the lack of interpretability of such a result.

More specific modeling difficulties occur when modeling the outcomes of clinical
studies, mainly due to their structure. Indeed, several patients are included, and are
subject to repeated measurements.

As hidden Markov models are a possible way to analyze one particular sequence of
data, the first approach consisted in considering as many hidden Markov models as
included patients. Each individual set of parameters was therefore estimated indepen-
dently of the others. Albert followed this approach to epileptics’seizure count data
([13]) and to multiple sclerosis data ([11]). However, by continuing Albert’s work
on multiple sclerosis, Altman ([12]) underlined estimation inaccuracy, and noted the
obtained estimates were always associated with large s.e.

Clearly, the individual fit approach to longitudinal data has the major drawback
of incorrectly capturing the heterogeneity among patients. Indeed, the complete set
of individual estimates only give a limited summary of the variation or heterogeneity
of the individual parameters. The need for “. . . a model [that would] describe all
patient’s data simultaneously” was therefore argued for the first time in Altman’s
article ([14]). On the same idea as mixed models, the heterogeneity characterizing
the data would be finely taken into account by including i.i.d. random effects in
each patients’ hidden Markov model parameters definition. It would also be a way
to foresee possible correlations between parameters. This way, Altman supposed
defining a hidden Markov model with random parameters would help to increase the
precision of the estimates, and would best capture the potential variation among
patients. Those remarks, dating back to 2005, are at the origin of mixed hidden
Markov models.
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3. Mixed hidden Markov models

3.1. Definition. — A rigorous definition of mixed hidden Markov models by Alt-
man followed in 2007 in [14]. Parallel to this work, Ip and coworkers also published
an article on mixed hidden Markov models in 2007 ([15]). In both papers, mixed
hidden Markov models appear as an extension of “classical” hidden Markov models
to deal with the specific contexts using a population approach.

Mixed hidden Markov models include several levels of definition. Assume we have
at our disposal data from n subjects. A hidden Markov model is used for each
individual set of data, while the parameters for each individual model are assumed
to be random with a common probability distribution. As for HMMs’ definition, we
will consider a parametric framework. Using the same notations, O is the common
observation space, and S is the common state space.

3.1.1. Definition of n “distinct” hidden Markov models. — The first step of a
MHMM’s definition consists in specifying a hidden Markov model for the observa-
tions of each of the n subjects. More precisely, the distribution of the observations
for each individual is based on a Markov chain, which sequence of visited states
is unknown. Let us restrict to subject i (1 ≤ i ≤ n). Let ni be the number of
observations for this subject, and let Yi = (yi1 . . . yini)

T and Zi = (zi1 . . . zini)
T be

respectively the sequence of observations for individual i and his sequence of hidden
states. As MHMMs’ definition mainly goes through the specification of individual
hidden Markov models, as many sets of parameters as subjects are needed instead of
only one set of parameters Ψ for HMMs. Let Ψi denote the vector of parameters for
subject i. Typically, Ψi is part of the definition of

1. the emission distributions, via a series of emission probabilities for discrete ob-
servations:

b(i)o,s = PΨi
(yij = o|zij = s) ;∀1 ≤ j ≤ ni;∀o ∈ O;∀s ∈ S

2. the transition matrix

a
(i)
s,s′ = PΨi

(zi,j+1 = s′|zij = s) ;∀j ≥ 1;∀(s, s′) ∈ S2

3.1.2. Model for the individual parameters. — The n vector of individual parameters
Ψi have a same probability distribution. The parameters θ of this population distri-
bution are the so-called population parameters. We will consider a linear Gaussian
model for the (transformed) individual parameters that can include covariates:{

h (Ψi) = µ+ Ciβ +Diηi

ηi v
i.i.d.
N (0,Ω)

where h is a vector of link functions, Ci and Di are known matrices of covariates
for individual i, µ and β are unknown vectors of fixed effects, and Ω captures the
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variability of individual behaviors that the covariates can’t explain themselves. Here,
θ = (µ, β,Ω).

With such a hierarchical definition, a single statistical model describes the whole
individuals’data simultaneously while taking into account the potential heterogeneity
among patients.

The observed likelihood is given by

L (Y1,Y2, . . . ,Yn; θ) =
n∏
i=1

∫
L (Yi,Ψi; θ) dΨi(2)

=
n∏
i=1

∫
L (Yi|Ψi)L (Ψi; θ) dΨi

where L (Yi|Ψi) has a similar expression as the observed likelihood of a “classical”
HMM given in (1). This observed likelihood cannot be computed in a closed form
and this complex expression makes the model inference directly intractable.

3.2. Inference in MHMM. — Inference in mixed hidden Markov models is not
straightforward, and only some partial methods have already been suggested. Here,
we will finally put forward a different way to grasp MHMM’s learning.

3.2.1. First steps. — Mixed hidden Markov models are somehow “new” models. As a
consequence, their usage is documented in a very limited way and the related method-
ologies are not well established. The maximum likelihood approach could be used for
estimating the population parameters but the complex expression for the likelihood
makes its maximum difficult to locate. Mixed hidden Markov models can be viewed
as missing data models where the visited states and the individual parameters are the
non observed data. As a consequence, the EM algorithm seems to be a natural param-
eter estimation method for such models ([15]) but the E-step cannot be performed in
a closed-form. Altman suggested alternative methods, such as quasi-Newton methods
or Gaussian quadrature methods, or even the MCEM algorithm ([14]). Nevertheless,
these algorithms are time expansive. Several days may be required to estimate the
model parameters when the number of random effects in the model exceeds three.
This forces her to restrict her attention to models involving random effects on the
emission distribution only. Considering the problem of predicting mastisis prevalence
in cows, Detilleux suggested to estimate the model parameters of a mixed hidden
Markov model using a Gibbs sampler ([16]).

3.2.2. Our methodology. — Performing parameter inference in mixed hidden Markov
models has been underlined to be a complex problem. Knowledge of the population
parameters is necessary to grasp the mean tendency, as well as its variability among
individuals; but it is not enough when focusing on a particular individual. Using the
population parameters alone could bias individual diagnosis. That’s why it is impor-
tant to divide the mixed hidden Markov models’ problem into three main questions:
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1. First naturally comes the question of estimating the population parameters.

2. Then the individual sets of parameters have to be estimated.

3. Estimating the most probable individual state sequences is the final issue to
address.

In this paragraph, statistical methods dealing with the three points above are sug-
gested. The use of the SAEM algorithm for estimating the population parameters is
the most original part of our methodology, and is thus more detailed.

3.2.2.1. Population parameters’ estimation. — In models such as mixed hidden
Markov models, the E-step of the EM algorithm is not directly tractable. Then, we
propose to adapt the MCMC-SAEM algorithm ([17]) to the mixed hidden Markov
model setting. Each iteration of the algorithm can be decomposed into three steps.
The non observed data are simulated (simulation step). These simulated data are
used in a second step together with the observations to approximate the complete
likelihood (stochastic approximation step). This likelihood is then be maximized to
update the estimation of the parameters (maximization step).

In the context of mixed hidden Markov models, the first idea would be to consider
the individual parameters (Ψi) and the Markov chains (Zi) as the non observed data.
Indeed, the conditional distribution of (Ψi,Zi) can easily be simulated by MCMC
and the complete likelihood L (Y1, . . . ,Yn,Z1, . . . ,Zn,Ψ1, . . . ,Ψn; θ) can easily be
maximized.

Even if this first version of the algorithm can be implemented and gives good re-
sults, considering the Markov chain as a nuisance parameter of the model allows to
propose a much more simple and efficient procedure. Note that a quick computation
of the n individual likelihoods L (Yi,Ψi; θ) is the key of the algorithm. Indeed, the fol-
lowing decomposition allows many simplifications extremely useful for implementing
the SAEM algorithm:

(3) L (Yi,Ψi; θ) = L (Yi|Ψi)L (Ψi; θ)

Computing L (Yi|Ψi) turns out to be easy by making use of the forward recursions
that are part of the well-known Baum-Welch algorithm which allows computing the
observed likelihood in hidden Markov models. Then, L (Ψi; θ) derive from the Gaus-
sian distribution and is easy to compute and to maximize.

Let us describe iteration k of the algorithm. Here, θk denotes the current estimate
of the population parameters.

1. Simulation
The kth iteration begins with drawing Ψ(k)

i from the conditional distribution
p (Ψi|Yi; θk) for all 1 ≤ i ≤ n. The Hasting-Metropolis algorithm used for this
simulation step requires to compute L (Yi|Ψi; θk) in a closed form for evaluating
each acceptance probabilities. As mentioned above, computing this conditional
likelihood is straightforward thanks to the forward procedure.
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2. Stochastic approximation
Follows a stochastic approximation of the log likelihood:

Qk (θ) = Qk−1 (θ) + γk

[
n∑
i=1

logL
(
Yi,Ψ

(k)
i ; θ

)
−Qk−1 (θ)

]

where (γk)k≥0 is decreasing to 0 over iterations. Qk (θ) can be written as the
sum of two terms among which only one depends on parameter θ:

Qk (θ) = Rk + Tk (θ)

where

Rk = Rk−1 + γk

[
n∑
i=1

logL
(
Yi|Ψ(k)

i

)
−Rk−1

]
and

Tk (θ) = Tk−1 (θ) + γk

[
n∑
i=1

logL
(
Ψ(k)

i ; θ
)
− Tk−1 (θ)

]
Then, it is equivalent to maximize Qk (θ) or Tk (θ) with respect to θ and our
stochastic approximation step would just reduces in computing Tk (θ).

3. Maximization
kth iteration ends in maximizing Tk to update the estimation of θ:

θk = argmax
θ

Tk (θ)

Iterations of this procedure are repeated until numerical convergence of the sequence
(θk) to some estimate θ̂ is achieved.

Computing the standard errors (s.e.) of the estimated parameter θ̂ requires com-
puting the Fisher Information Matrix (F.I.M.). We propose to estimate the F.I.M.
using the stochastic approximation procedure described in [17] and based on the Louis
formula.

3.2.2.2. Individual parameters’ estimation. — After estimating the population pa-
rameters with the SAEM algorithm, each individual parameter estimate Ψi can be
calculated through the MAP (Maximum A Posteriori) method:

Ψ̂i = argmax
Ψi

p
(
Ψi|Yi; θ̂

)
Such maximization for each individual requires some optimization procedure.

Remark: An alternative would be to estimate the conditional mean E
(
Ψi|Yi; θ̂

)
with the MCMC procedure used within the SAEM algorithm.
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3.2.2.3. Most likely state sequences’ decoding. — Once the individual parameters
(Ψi) are estimated, each individual model can be considered separately and the op-
timal individual state sequences can be decoded using the Viterbi algorithm:

Ẑi = argmax
Zi

p
(
Zi|Yi, Ψ̂i

)

4. Application

4.1. The model. — Our simulations were inspired by the quite numerous studies
on epileptic activity. Similarly to the works cited above, we assumed the existence of a
hidden Markov chain, which would condition the intensity of the seizures in epileptic
patients. The common intuition is the following. The first and the second states
would respectively be associated with a low and a high epileptic activity. Periods
in both states would thus alternate in epileptic patients. As in [13], the emission
distributions are chosen to be Poisson distributions. This means that conditional to
the state the number of daily seizures for a given epileptic patient is assumed to follow
a Poisson distribution. Let λ(i)

1 and λ(i)
2 be individual i’s Poisson parameters in state

1 and in state 2, with λ
(i)
1 < λ

(i)
2 . Let also p

(i)
11 and p

(i)
21 be individual i’s transition

probabilities associated respectively with the transitions from state 1 to state 1 and
from state 2 to state 1.

Our model is the following:

logit(p(i)
11 ) = γ1 + η1i(4)

logit(p(i)
21 ) = γ2 + η2i(5)

log(λ(i)
1 ) = log(λ1) + η3i(6)

log(α(i)) = log(α) + η4i(7)

λ
(i)
2 = λ

(i)
1 + α(i)(8)

The random effects are assumed to be independent and normally distributed:

ηi = (η1i, η2i, η3i, η4i) v
i.i.d.
N (0,Ω)

θ corresponds here to the concatenation of the fixed effects (γ1, γ2, λ1, α) and the
elements of the variance-covariance matrix Ω.

4.2. A first numerical experiment. — One dataset with 200 individuals and 100
observations per subject were simulated using the following values for the fixed effects:
γ1 = 1.4, γ2 = −1.4, λ1 = 0.8, α = 2.3. The random effects were simulated assuming
a diagonal variance-covariance matrix Ω with the following diagonal elements: ω2

γ1 =
0.1, ω2

γ2 = 0.1, ω2
λ1

= 0.2 and ω2
α = 0.1.

Table 1 displays the results of the SAEM algorithm used for estimating the pop-
ulation parameters and their standard errors. The true values of the population
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parameters θ?, the initial values θ0 and the estimates θ̂ are given together with their
estimated standard errors (s.e.) and relative standard errors (r.s.e.).

Table 1 here

Table 1 shows the SAEM estimates are similar to the true values. On this particu-
lar example, the relative estimation error is less than 15% on the whole, except for
parameter ω2

γ2 (36%). We also note that the (relative) standard errors for each pa-
rameter are low, which is very encouraging, except for variance parameters ω2

γ1 and
ω2
γ2 (48% and 41% respectively).

Figure 1 here

Figure 1 shows the sequences of estimated parameters (θk). One clearly sees that
SAEM converges in very few iterations to a neighborhood of the “true” value used
for simulating the data, even with a poor initialization. Moreover, it took only 6′ on
a laptop for estimating both the population parameters and the Fisher information
matrix with this dataset.

Then we have estimated the individual parameters (ψi; 1 ≤ i ≤ 200) by computing
the MAP estimates for each subject.

Finally, each individual state sequence was estimated with the Viterbi algorithm.
As dealing with simulated datasets, the “true” state sequences are known. Even if this
information is omitted during the whole inference process, true and estimated states
can be compared. Figure 2 presents the results obtained with three typical subjects.
On each graph, the (simulated) observations (daily seizures) are represented as a
function of time (number of days). The true unknown states are displayed in the left
column. The second column depicts the raw data, i.e. the only information available
in the practice for inference. The right column displays the estimated states. We can
observe a very good agreement between the true and the decoded states.

Figure 2 here

4.2.1. Monte Carlo study. — This first result is encouraging but it was obtained on
a particular dataset. Then a Monte Carlo study should confirm the good behavior
of the proposed methodology. 100 dataset were simulated using the same design and
the same population distribution. Then, the population parameters and their stan-
dard errors were estimated with SAEM for each dataset. For m = 1, 2, . . . , 100, let
θ̂m be the estimated vector of population parameters obtained with the mth simu-
lated dataset and let r̂sem be their respective estimated standard-errors. For each
model parameter, we have computed the mean estimated parameter θ, the mean esti-
mated relative standard error rse and the relative standard deviation of the estimated
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parameters rsd(θ̂):

θ =
1

100

100∑
m=1

θ̂m(9)

rse =
1

100

100∑
m=1

r̂sem(10)

rsd(θ̂) = 100×

√√√√ 1
100

100∑
m=1

(
θ̂m − θ?
|θ?|

)2

(11)

Here, θ? denotes the true values of the population parameters. Table 2 gives a brief
summary of the Monte Carlo results.

Table 2 here

Figures 3 and 4 display the empirical distributions of the 100 relative estimation
errors defined as:

REEm = 100× θ̂m − θ?

θ?
(12)

Figure 3 here

Figure 4 here

Except for ω2
γ1 and ω2

γ2 , one can observe that the estimates show very little bias and
small ranges, (table 2. The median REE for the fixed effects γ1, γ2, λ1 and α remains
between −5% and 5% (figures 3). The estimated variances ωλ1 and ωα are also very
well estimated. The variances ωγ1 and ωγ2 are more difficult to estimate accurately.
Indeed, the REE boxplots suggest quite important relative RMSE (root mean square
errors) for those two parameters (44% and 51%) but this apparent estimation difficulty
is in accordance with the estimated relative standard errors for those two parameters
(54% and 58%).

More generally, one can remark the very good agreement between the estimated
standard errors and the empirical standard deviations. The empirical standard devia-
tions obtained from simulated data allow to evaluate the uncertainty of the estimated
parameters. Of course, these empirical standard deviations cannot be computed in
the practice when only one dataset is available and when the true population pa-
rameters are unknown. Nevertheless, one can have confidence with the estimated s.e.
provided by the algorithm for evaluating the uncertainty of the estimated parameters.

These numerical results suggest that our algorithm produces unbiased and con-
sistent population parameter estimates and standard errors in large databases. A
theoretical study of the statistical property of the maximum likelihood population
estimates is beyond the scope of this paper, but we will consider this issue in future
works. On the other hand, more exhaustive studies should be led considering more
difficult and more realistic contexts than the one here.
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4.3. Technical remarks. — The proposed methodology for MHMM has been im-
plemented in the Monolix software (http://software.monolix.org). All the numerical
examples were performed with Monolix 3.1.

In Monolix, it is possible to choose the number of Markov chains used for the
SAEM algorithm. Here, two Markov chains were used instead of only one chain.
That allowed to slightly improve the convergence of the algorithm by reducing its
stochastic behavior.

Each initial guess for the SAEM algorithm was randomly chosen for each Monte
Carlo run.

The initial probability distribution of the hidden Markov chain was not estimated.
It was assumed that π(i)

1 = π
(i)
2 = 1

2 .

5. Conclusion and perspectives

A brief state of the art on HMMs’ applications to disease progression data shows
that hidden Markov models are a reasonable modeling tool in this context. How-
ever, longitudinal data need models able to take account of the existing heterogeneity
between individuals. This remark recently lead to the use of mixed hidden Markov
models. However, related algorithms initially first tackled the population parameter
estimation only including a small number of random effects. We suggested a new and
complete inference methodology. The originality of our work consists in the use of the
SAEM algorithm for estimating the model population parameters. A Monte Carlo
study showed its good practical properties. More precisely, the SAEM algorithm con-
verges to a neighborhood of the good parameter values in very few iterations even
when the initial guess is poor. The estimation process is fast, even with large datasets.
The impact of the data size and the theoretical properties of the algorithm keep to be
rigorously studied in future works. The main problems to tackle would be a precise
analysis of the convergence of the algorithm as well as the statistical properties of the
maximum likelihood estimate in MHMM.

From a practical point of view those new models seem to offer very promising sta-
tistical applications. More precisely, mixed-effects hidden Markov models could help
for a more finely analysis of clinical trials, when the collected data often consist of
longitudinal count data and when one suspect several hidden states. Having a mea-
sure of interest, the most popular approach consists of mean comparisons, between
groups of patients or treatment periods. However, the classical comparison methods
could sometimes lead to improper conclusions. Assume a finite set of hidden stages
give a plausible interpretation for the dynamics of the studied pathology, then an
inappropriate choice for the statistical model (i.e. a model ignoring the transitions
between distinct stages) does not catch enough information on the phenomenon ob-
served. We could imagine a treatment effect occurs at transition level and a variation
of the time spent in one specific hidden state once entering this state could constitute
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the only difference between treatment groups or between treatment periods, without
modifying the observations’ distribution in any state. Then, a simple comparison
between means of observed outcomes would either fail in bringing to light a signifi-
cant treatment effect or show an overestimated or underestimated treatment induced
change. Hidden Markov models including the treatment group or the treatment dose
as covariates in the definition of both the transition model and the observation model,
would thus help to capture the true treatment effect and adequately locating it.
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Graphs

Figure 1. Estimation of the population parameters: convergence of the
SAEM algorithm.
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Figure 2. State sequences of three typical subjects. Left: the observed
data and the true unknown states, center: the observed data without the
states, right: the estimated states.

Table 1. Estimation of the population parameters: the true values, the
initial values, the estimations, their standard errors and relative standard

errors.

θ? θ0 θ̂ s.e. r.s.e. (%)
γ1 1.4 0.4 1.41 0.058 4
γ2 -1.4 -0.4 -1.45 0.06 4
λ1 0.8 2 0.779 0.03 4
α 2.3 0.5 2.25 0.062 3

ω2
γ1 0.1 0.4 0.113 0.055 48
ω2
γ2 0.1 0.4 0.136 0.056 41
ω2
λ1

0.2 0.4 0.202 0.029 14
ω2
α 0.1 0.4 0.115 0.015 13
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Figure 3. Estimation of the fixed effects: empirical distribution of the
relative errors of estimations.

Table 2. Estimation of the population parameters: the true values, the
means and the relative standard deviations of the estimated parameters,
the mean estimated relative standard errors.

θ? θ rsd(θ̂) (%) rse (%)
γ1 1.4 1.394 4 4
γ2 -1.4 -1.414 4 4
λ1 0.8 0.778 3 4
α 2.3 2.292 3 3

ω2
γ1 0.1 0.112 44 54
ω2
γ2 0.1 0.121 51 58
ω2
λ1

0.2 0.200 14 14
ω2
α 0.1 0.098 14 13



20 MAUD DELATTRE

Figure 4. Estimation of the variance parameters: empirical distribution
of the relative errors of estimations.


