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Abstract

We consider an optimal control problem governed by an ODE with

memory playing the role of a control. We show the existence of an op-

timal solution and derive some necessary optimality conditions. Some

examples are then discussed.
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1 Introduction

1.1 Motivation

Dynamics with lags or with more general memory structure (deviated ar-
guments, integro-differential equations...) arise in many different settings in
engineering, economics, ecology, biology, modelling of financial time series...
It is typically the case when studying the optimal performances of a system
in which the response to a given input occurs not instantaneously but only
after a certain elapse of time. We refer for instance to the classical book of
Bellman and Cooke [2] for a general overview of such functional equations.
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To illustrate what follows, let us start with a simple differential equation
with a deviated argument:

ẋ(t) = f(x(θ(t)), t ∈ [0, 1], x(0) = x0 (1.1)

where θ, the deviation, is a function that satisfies 0 ≤ θ(t) ≤ t (nonantic-
ipativity), for every time t. Dynamics of the form (1.1) are nonlocal and
may arise in various applied settings such as population dynamics or biology
(incubation of a disease, maturation phenomena...). We refer the reader to
Kuang’s book [13] and the references therein for an overview of dynamics
with memory in the biosciences, another motivation for related problems in
economics can be found for instance in [11]. In the literature on equations
with deviated arguments, the deviation θ is usually taken as given. However,
it is natural to consider concrete situations where the deviation is not per-
fectly known. For instance, if some-possibly noisy-observation x∗ is available
for the state variable, then the simplest way to estimate θ is by least squares,
that is by minimizing

∫ 1

0

|x(t) − x∗(t)|2dt

with respect to θ, x being linked to θ by (1.1). One can further add con-
straints on θ or add a penalization term of the form

∫ 1

0

g(t, θ(t))dt

which represents a memory cost in the energy to be minimized. This leads
to optimization problems of the form

inf

∫

0

j(t, x(t))dt +

∫ 1

0

g(t, θ(t))dt

with respect to x and θ related by the state equation (1.1). We shall see
in the sequel, that the previous problem is in fact ill-posed in general and
therefore needs to be suitably relaxed. The relaxation of the problem leads
to replace (1.1) by

ẋ(t) =

∫ t

0

f(x(s))dνt(s), x(0) = x0 (1.2)

where νt is a probability measure supported on [0, t] (so that (1.1) corresponds
to the case where νt = δθ(t) is a Dirac mass). Note that this formulation is
very much in the spirit of relaxation by Young measures in the calculus
variations and optimal control theory (see for instance [3], [15]).
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Considering directly (i.e. without invoking relaxation) the state equation
(1.2) controlled by νt is natural as well in population dynamics. Indeed, quot-
ing Kuang’s own words: . . .more realistic models for single species growths
should take into account both the changing of the environment and the effects
of time delay, which leads in [12] to dynamics of the form (1.2). Another
motivation comes from autoregressive models where one seeks to estimate
the dynamics of some state variable by regressing it on its past. In discrete
time, an autoregressive process is a stochastic process that satisfies a relation
of the form:

Xt =
K

∑

k=0

αkf(t − k, Xt−k) + εt

where εt are independent and identically distributed random variables. Such
processes thus have some memory (the range of the memory being the integer
K, called the order of the process), and the fact that the previous dynamics
is given by a convolution captures some stationarity of the memory structure.
This is a particular case of

Xt =
∑

s≤k

νt(s)f(s, Xs) + εt.

Passing to continuous time in the previous equation strongly suggests that
estimating the memory structure of the process by least squares naturally
leads to solve a control problem with a state equation of the form (1.2).

1.2 Control formulation

The present paper deals with the optimal control of equations of the form

ẋ(t) = 〈f(., x(.)), νt〉 =

∫ t

0

f(s, x(s)) dνt(s), t ∈ [0, 1], x(0) = x0, (1.3)

where the control is a family of probability measures t 7→ νt such that νt is
supported on [0, t] (nonanticipativity). The special case where νt = δθ(t) is a
Dirac mass corresponds to the deviated equation

ẋ(t) = f
(

θ(t), x(θ(t))
)

, x(0) = x0, (1.4)

where the control is the deviation θ satisfying θ(t) ≤ t for all t ∈ [0, 1].
We will consider the minimization of the functional

∫ 1

0

j(t, x(t)) dt + h(x(1)) +

∫ 1

0

(

∫ 1

0

g(t, s) dνt(s)
)

dt (1.5)
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where x is related to ν by the state equation (1.3). An example of relevant
function g is g(t, s) = λ|t − s|p with p ≥ 1 and λ ≥ 0. In this case the last

term in the previous functional is λ
∫ 1

0
W p

p (δt, νt) dt where Wp(δt, νt) is the
p-Wasserstein distance between νt and the Dirac measure at t

W p
p (δt, νt) =

∫

[0,t]

|t − s|p dνt(s).

The interpretation of the Wasserstein term in the functional is therefore a
penalization of long-term memory.

Let us insist here on the fact that the optimal control problem (1.3)-(1.5)
in which the memory structure is unknown and acts as a control is, as far
as we know, somehow unusual. For variational or optimal control problems
where a deviation or a memory structure is given and one looks for a classical
optimal control, we refer to [16], [4], [5] (necessary optimality conditions) or
[6] (dynamic programming approach leading to a Hamilton-Jacobi equation
in infinite dimensions).

The paper is organized as follows. Section 2 is devoted to some pre-
liminary results. In section 3, we prove existence of solutions for (1.5) and
show that (1.5) is the natural relaxation of the corresponding optimization
problem posed over deviation functions. In section 4, we establish optimality
conditions. Finally section 5 is devoted to some examples.

2 Preliminaries

Let (νt)t∈[0,1] be a Borel family of probability measures (meaning that t 7→
∫

g dνt is Borel for every continuous g) such that νt([0, t]) = 1 for every t;
the short notation (νt) will be used in the following to denote the family
(νt)t∈[0,1]. Let f ∈ C0([0, 1] × R

d, Rd) satisfy the Lipschitz condition that
there is a k ≥ 0 such that:

|f(t, x) − f(t, y)| ≤ k|x − y|, ∀t ∈ [0, 1], ∀(x, y) ∈ R
d × R

d. (2.1)

The next result gives the existence and uniqueness of a solution to the
state equation (1.3):

Proposition 2.1. Let f ∈ C0([0, 1]×R
d, Rd) satisfy the Lipschitz assumption

(2.1), (νt) be as above and x0 ∈ R
d. Then the Cauchy problem

ẋ(t) = 〈f(., x(.)), νt〉 , ∀t ∈ [0, 1], x(0) = x0 (2.2)

admits a unique continuous solution x. Moreover x is Lipschitz continuous
and satisfies ‖x‖W 1,∞ ≤ M for a constant M that only depends on k, |x0|
and supt∈[0,1] |f(t, 0)|.
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Proof. We proceed as in [5]. Let λ > k and equip C0([0, 1], Rd) with the
norm

‖x‖λ := sup
t∈[0,1]

e−λt|x(t)|.

For every x ∈ C0([0, 1], Rd), define the continuous function Hx by

Hx(t) := x0 +

∫ t

0

〈f(., x(.)), νs〉 ds ∀t ∈ [0, 1].

For x and y continuous and t ∈ [0, 1], one deduces from (2.1) and the nonan-
ticipativity of (νt):

|Hx(t) − Hy(t)| ≤ k‖x − y‖λ

∫ t

0

∫ s

0

eλτ dνs(τ) ds ≤
k

λ
‖x − y‖λe

λt.

One then deduces that H is a contraction and therefore has a unique fixed
point in C0. The second claim easily follows.

In what follows, L1 denotes the Lebesgue measure on [0, 1]. Let (νt) be
admissible for our problem which means that it is a Borel family of probability
measures such that νt([0, t]) = 1 for every t. It will be convenient in the sequel
to define γ := (νt) ⊗ L1 that is the probability measure on [0, 1]2 defined by

∫

[0,1]2
ϕ(t, s) dγ(t, s) =

∫ 1

0

(

∫ 1

0

ϕ(t, s) dνt(s)
)

dt (2.3)

for every ϕ ∈ C0([0, 1]2, R). The admissibility of (νt)t is equivalent to require
that γ := (νt) ⊗ L1 belongs to the set

Γ := {γ probability on [0, 1]2 : γ(T ) = 1, π1#γ = L1}. (2.4)

where T is the triangle T := {(t, s) ∈ [0, 1]2 : s ≤ t} and π1#γ denotes the
first marginal of γ. Given γ ∈ Γ, the disintegration Theorem (see [8]) enables
one to disintegrate γ as γ = (νt) ⊗ L1 with (νt) admissible. In the sequel,
under the assumptions of proposition 2.1, the solution of the Cauchy problem
(2.2) will be denoted xγ. Let us also remark that xγ can be characterized by
the weak form of (2.2) that can be conveniently written in terms of γ as:

∫ 1

0

ϕ̇(t) · xγ(t) dt = −

∫

[0,1]2
ϕ(t) · f(s, xγ(s)) dγ(t, s), xγ(0) = x0 (2.5)

for every ϕ ∈ C1
c ((0, 1), Rd). The other obvious advantage of formulating the

problem in terms of γ ∈ Γ is that Γ is weakly* compact.
In the sequel, we shall always assume that f ∈ C0([0, 1]× R

d, Rd) satisfy
the Lipschitz assumption (2.1) so that xγ is well-defined for every γ ∈ Γ.
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Lemma 2.2. If (γn) ∈ ΓN weakly* converges to γ, then xγn
converges to xγ

in C0([0, 1], Rd).

Proof. Setting xn := xγn
, it follows from proposition 2.1 and Ascoli-Arzelà’s

theorem that (xn) is precompact in C0. Let y be the uniform limit of some
(not relabeled) subsequence. Let ϕ ∈ C1

c ((0, 1), Rd), one has for every n

∫ 1

0

ϕ̇(t) · xn(t) dt = −

∫

[0,1]2
ϕ(t) · f(s, xn(s)) dγn(t, s), xn(0) = x0. (2.6)

Since xn converges uniformly to y, and γn converges weakly* to γ, passing
to the limit in (2.6) one deduces from the continuity of f that y = xγ, and
by a standard compactness argument we deduce that the whole sequence
converges to xγ.

3 The optimization problem

3.1 Existence of optimal controls and relaxation

We are now interested in the optimization problem

inf
γ∈Γ

J(γ) (3.1)

where

J(γ) :=

∫ 1

0

j(t, xγ(t)) dt + h(xγ(1)) +

∫

T

g(t, s) dγ(t, s).

Theorem 3.1. We make the following assumptions:

• the function j : [0, 1]×R
d → [0, +∞] is Borel measurable, nonnegative

and j(t, ·) is lower semicontinuous for a.e. t ∈ [0, 1];

• the function h : R
d → [0, +∞] is nonnegative and lower semicontinu-

ous;

• the function g : T → [0, +∞] is nonnegative and lower semicontinuous
on T ;

• there exists γ0 ∈ Γ such that J(γ0) < +∞.
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Then the optimal control problem (3.1) has a finite value and admits a solu-
tion.

Proof. Thanks to lemma 2.2, one easily deduces from the assumptions above
that J is weakly* lower-semicontinuous (for the lower semicontinuity of the
last term express g as the supremum of continuous functions) and the exis-
tence claim then follows from the weak* compactness of Γ.

Let us define the set of admissible deviations:

Θ := {θ : [0, 1] → [0, 1] Borel, θ(t) ≤ t, for a.e. t ∈ [0, 1]}

and the optimal deviation problem

inf
θ∈Θ

F (θ), with F (θ) := J
(

(δθ(t)) ⊗ L1
)

(3.2)

that is the restriction of (3.1) to deviation (or delay) functions. Then (3.1)
is the relaxation of (3.2) in the following sense (see for instance [3, 15] for a
general presentation of relaxation theory for variational problems).

Theorem 3.2. If j ∈ C0([0, 1] × R
d), h ∈ C0(Rd) and g ∈ C0(T ), then for

every γ ∈ Γ, there exists a sequence θn in Θ such that F (θn) converges to
J(γ). In particular

min
γ∈Γ

J(γ) = inf
θ∈Θ

F (θ).

Proof. It follows from lemma 2.2 that J is weakly* continuous. Fix now
γ ∈ Γ; it is a well-known result in the theory of Young measures (see for
instance Theorem 9.3 in [1]) that there exists a sequence of Borel maps
σn : [0, 1] 7→ [0, 1] such that (δσn(t)) ⊗ L1 converges weakly* to γ. Defining
θn(t) := min{σn(t), t} so that θn ∈ Θ, it is enough to prove that (δθn(t))⊗L1

converges weakly* to γ to conclude. Let ϕ ∈ C0([0, 1]2) and let us denote by
ωϕ the modulus of continuity of ϕ. For every δ > 0, we have

∣

∣

∣

∫ 1

0

ϕ(t, θn(t)) − ϕ(t, σn(t)) dt
∣

∣

∣
≤ 2‖ϕ‖∞L1({t : σn(t) ≥ t + δ}) + ωϕ(δ).

From the weak* convergence of (δσn(t)) ⊗ L1 to γ and from the fact that
the support of γ is included in the triangle T , it is easy to deduce that for
every δ > 0, L1({t : σn(t) ≥ t + δ}) tends to 0. The weak* convergence of
(δθn(t)) ⊗ L1 to γ then follows directly.
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It is easy to build from the previous result examples where there is no
optimal delay function for (3.2). Indeed, let us take d = 1, f(x) = x, x0 = 1,
h = 0, j(t, x) = |x − x∗(t)|2 with x∗(t) = −1 + 2et/2 and g(t, s) = s(t − s).
By construction x∗ = xγ∗ for γ∗ = 1

2
(δ0 + δt)⊗L1 so that J(γ∗) = 0 and γ∗ is

optimal. If θ was an optimal delay for (3.2) then one should have F (θ) = 0
so that θ(t) ∈ {0, t} a.e. and xθ = x∗ (where slightly abusing notations xθ

denotes x(δθ(t))⊗L1). From the state equation one should then also have

et/2 = x∗(θ(t)) = −1 + 2eθ(t)/2, a.e.

which contradicts θ(t) ∈ {0, t} a.e..

3.2 Solutions with finitely many Dirac masses

A simple application of a refinement of the well-known Carathéodory’s theo-
rem (see [14]), attributed to Fenchel and Bunt in Theorem 1.3.7. of [10] (see
[9] pages 40–41 for a complete proof), gives the existence of optimal controls
involving only finitely many Dirac masses.

Proposition 3.3. Assume that f satisfies (2.1) and f and g are continuous,
then for every γ = (νt) ⊗ L1 ∈ Γ there exists η = (µt) ⊗ L1 such that µt has
finite support with at most cardinality d + 1 such that xγ = xη and

∫ 1

0

g(t, s) dνt(s) =

∫ 1

0

g(t, s) dµt(s) a.e. t.

In particular, in the optimization problem (3.1) it is enough to optimize over
measures in Γ of the form (νt)⊗L1 with νt a convex combination of at most
d + 1 (d if g = 0) Dirac masses.

Proof. Let γ ∈ Γ, x := xγ and define for every t ∈ [0, 1] the compact set

Sx,t :=
{

(f(s, x(s)), g(t, s)) : s ∈ [0, t]
}

⊂ R
d+1.

By construction, for almost every t one has

(

ẋ(t),

∫ t

0

g(t, s) dνt(s)
)

∈ co(Sx,t).

Since Sx,t is a connected set, it follows from the Fenchel-Bunt theorem (see

[10] and [9]) that
(

ẋ(t),
∫ t

0
g(t, s) dνt(s)

)

may be expressed as a convex combi-
nation of at most d+1 points in Sx,t. Hence there exists a discrete probability
µt on [0, t] with at most d + 1 points in its support such that

ẋ(t) = 〈f(., x(.)), µt〉 ,

∫ 1

0

g(t, s) dνt(s) =

∫ 1

0

g(t, s) dµt(s).
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The fact that the discrete measure µt can be chosen measurable in t follows
from standard measurable selection arguments (see for instance [7]).

4 Necessary conditions of optimality

In this section, we look for optimality conditions for (3.1). In what follows,
we further assume that j, h and g are continuous and that

• h is of class C1,

• j(t, .) and f(t, .) are differentiable for every t ∈ [0, 1] and ∇xj and ∇xf

are continuous on [0, 1] × R
d.

Let γ = (νt) ⊗ L1 be a solution to (3.1), η = (µt) ⊗ L1 ∈ Γ and ε ∈ (0, 1);
then

1

ε
[J(γ + ε(η − γ)) − J(γ)] ≥ 0. (4.1)

As usual, our aim is to pass to the limit as ε → 0+ and to express the opti-
mality conditions obtained this way in the form of some maximum principle,
which will be achieved by introducing some suitable adjoint variable. To
shorten notation, we set γε = γ + ε(η − γ), x = xγ and xε = xγε

.

Lemma 4.1. As ε → 0+, zε := ε−1(xε − x) converges uniformly on [0, 1] to
z, the solution of the linearized system:

ż(t) = 〈Az, νt〉 + 〈a, µt − νt〉 , t ∈ [0, 1], z(0) = 0 (4.2)

where A and a are the continuous functions:

A(s) := ∇xf(s, x(s)), a(s) := f(s, x(s)), ∀s ∈ [0, 1]. (4.3)

Proof. First, let us remark that by the same arguments used in proposition
2.1, equation (4.2) posseses a unique (Lipschitz) solution z. By construction
we have zε(0) = 0 and

żε(t) =

〈

1

ε
[f(., x + εzε) − f(., x))], νt

〉

+ 〈f(., xε), µt − νt〉 (4.4)

from which, by the Lipschitz assumption on f , we easily deduce that zε is
bounded in W 1,∞ (in particular ‖xε − x‖W 1,∞ = O(ε)). By Ascoli-Arzela’s
theorem, zε then possesses a cluster point y in C0. Passing to the limit in
(4.4) along a convergent subsequence then easily yields y = z and thus by
compactness the whole family (zε)ε converges to z as ε → 0+.
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Under our differentiability assumption, using lemma 4.1 and passing to
the limit in (4.1) we then get:

∫ 1

0

B · z dt + b · z(1) +

∫ 1

0

〈g(t, .), µt − νt〉 dt ≥ 0. (4.5)

where z is related to γ and η by the linearized equation (4.2) and

B(s) := ∇xj(s, x(s)) ∀s ∈ [0, 1], b := ∇h(x(1)). (4.6)

To make condition (4.5) tractable, we shall introduce, as usual in control
theory, an adjoint state; to do so we shall need a few notations and prelimi-
naries. Recall that γ ∈ Γ is given by the disintegration γ = (νt)⊗L1 and let
ν := π2#γ be the second marginal of γ defined by

∫ 1

0

ϕ(s) dν(s) =

∫

[0,1]2
ϕ(s) dγ(t, s) =

∫ 1

0

〈ϕ, νt〉 dt, ∀ϕ ∈ C0([0, 1]).

Invoking again the disintegration theorem, γ admits the disintegration γ =
ν ⊗ (ν∗

s ) that is (ν∗
s ) is a Borel family of probability measures and for every

test-function ϕ ∈ C0([0, 1]2) one has

∫

[0,1]2
ϕ dγ =

∫ 1

0

〈ϕ(., s), ν∗
s 〉 dν(s) =

∫ 1

0

〈ϕ(t, .), νt〉 dt. (4.7)

Note that the requirement that γ is supported by T implies that ν∗
s ([s, 1]) = 1.

Since γ has L1 as first marginal, (4.7) also holds for test functions of the form
(t, s) 7→ q(t)ϕ(s) with ϕ continuous but q only L1. This enables us, for q ∈ L1,
to define 〈q, ν∗

s 〉 ν as the finite measure defined by

〈ϕ, 〈q, ν∗
s 〉 ν〉 :=

∫ 1

0

q(t) 〈ϕ, νt〉 dt =

∫

[0,1]2
q(t)ϕ(s) dγ(t, s) ∀ϕ ∈ C0([0, 1]).

The adjoint of (4.2) will then be expressed using the measures ν∗
s and ν, as

usual, it is an equation of backward type which is formally written as:

q̇ = B − AT 〈q, ν∗
s 〉 ν, q(1) = −b (4.8)

where the continuous functions B and A are defined by (4.6) and (4.3) re-
spectively, AT denotes the transpose of A and the measure 〈q, ν∗

s 〉 ν is defined
as above. Equation (4.8) has to be understood in an integral sense, a solution
of (4.8) is then by definition an L1((0, 1), Rd) function q such that

q(t) = −b −

∫ 1

t

B ds +

∫

[t,1]

AT (s) 〈q, ν∗
s 〉 dν(s) for a.e. t ∈ [0, 1]. (4.9)
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Such a solution belongs to BV((0, 1), Rd), the space of curves in R
d of bounded

variation, and the weak formulation of (4.8) reads as

∫ 1

0

q · ϕ̇ dt = −

∫ 1

0

B ·ϕ dt− b ·ϕ(1)+

∫

[0,1]2

(

A(s)ϕ(s) · q(t)
)

dγ(t, s) (4.10)

for every ϕ ∈ C1([0, 1]), Rd) such that, ϕ(0) = 0. Note that it is easy to see in
this case that (4.10) also holds for every test-function, ϕ ∈ W 1,∞((0, 1), Rd)
such that ϕ(0) = 0. Since q ∈ BV((0, 1), Rd) the left-limit q(1−) is well
defined, and the condition q(1) = −b in (4.8) has to be intended as q(1−) =
−b; this convention for BV functions will be used in the rest of the paper.
The well-posedness of (4.8) follows from the following result.

Lemma 4.2. Let B ∈ C0([0, 1], Rd), A ∈ C0([0, 1], Rd×d) and b ∈ R
d. Then

(4.8) admits a unique solution q ∈ BV((0, 1), Rd). Moreover if z is the
solution of (4.2) then

∫ 1

0

B · z dt + b · z(1) = −

∫ 1

0

q(t) 〈a, µt − νt〉 dt. (4.11)

Proof. Take λ > ‖A‖∞ and equip L1((0, 1), Rd) with the norm

‖q‖ :=

∫ 1

0

eλt|q(t)| dt.

In view of (4.9), it is natural, for every q ∈ L1 to define Kq by

Kq(t) := −b −

∫ 1

t

B ds +

∫

[t,1]

AT (s) 〈q, ν∗
s 〉 dν(s) for a.e. t ∈ [0, 1],

so that Kq ∈ BV((0, 1), Rd). Let q1 and q2 be in L1 and t ∈ (0, 1), let
ε ∈ (0, t) and ϕε be a continuous function such that 0 ≤ ϕε ≤ 1, ϕε = 1 on
[t, 1] and ϕε = 0 on [0, t − ε]. We then have:

|Kq1(t) − Kq2(t)| ≤ ‖A‖∞

∫ 1

0

ϕε 〈|q1 − q2|, ν
∗
s 〉 dν

= ‖A‖∞

∫ 1

0

〈ϕε, ντ 〉 |q1(τ) − q2(τ)| dτ

≤ ‖A‖∞

∫ 1

0

ντ ([t − ε, τ ])|q1(τ) − q2(τ)| dτ

≤ ‖A‖∞

∫ 1

t−ε

|q1 − q2| dτ.
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Letting ε → 0+ we get

|Kq1(t) − Kq2(t)| ≤ ‖A‖∞

∫ 1

t

|q1 − q2| dτ. (4.12)

Multiplying (4.12) by eλt, integrating and using Fubini’s theorem then yields

‖Kq1 − Kq2‖ ≤ ‖A‖∞

∫ 1

0

eλt
(

∫ 1

t

|q1 − q2| dτ
)

dt

= ‖A‖∞

∫ 1

0

|q1(τ) − q2(τ)|
(

∫ τ

0

eλt dt
)

dτ

≤
‖A‖∞

λ
‖q1 − q2‖.

Since we have chosen λ > ‖A‖∞, the map K is a contraction and the existence
and uniqueness of a solution to (4.8) then follows from Banach-Picard’s fixed
point theorem.

Let us now establish (4.11). Using z (which is Lipschitz) as test-function
in (4.10), we first get

∫ 1

0

q · ż dt = −

∫ 1

0

B · z dt − b · z(1) +

∫

[0,1]2
(A(s)z(s)) · q(t) dγ(t, s)

then using (4.2) yields

∫ 1

0

q · ż dt =

∫

[0,1]2
(A(s)z(s)) · q(t) dγ(t, s) +

∫ 1

0

q(t) · 〈a, µt − νt〉 dt

which proves (4.11).

Theorem 4.3. Under the assumptions of this section, if γ ∈ Γ, γ = (νt) ⊗
L1 = ν ⊗ (ν∗

s ) solves (3.1) and x = xγ then one has for L1-a.e. t

spt(νt) ⊂ argmaxs∈[0,t]

{

q(t) · f(s, x(s)) − g(t, s)
}

, (4.13)

where q is the adjoint variable whose dynamics is given by

q(1) = −∇h(x(1)), q̇(s) = ∇xj(s, x(s)) −∇xf(s, x(s))T 〈q, ν∗
s 〉 ν(s). (4.14)

12



Proof. Let γ = (νt)⊗L1 ∈ Γ be optimal for (3.1); then for every η = (µt)⊗L1,
it follows from (4.5), (4.6) and (4.11) that

∫ 1

0

〈q(t) · f(., x(.)) − g(t, .), νt − µt〉 dt ≥ 0

with q defined by (4.14). Since in the previous inequality, µt is an arbitrary
probability measure supported on [0, t], (4.13) directly follows.

Remark 4.4. In the case where f is linear in x (that is f(s, x) = A(s)x) and
j(t, .) and h are convex (so that J(γ) is convex in xγ, but in general not in
γ), then the following condition is sufficient for optimality:

spt(νt) ⊂ argmaxs∈[0,t]

{

q(t) · (A(s)xη(s)) − g(t, s)
}

, (4.15)

for every η ∈ Γ and a.e. t ∈ [0, 1]. Indeed, if γ = (νt) ⊗ L1, x = xγ, q

is the adjoint variable defined as in theorem 4.3 and η = (µt) ⊗ L1 ∈ Γ,
by the above convexity assumptions and the same manipulations as before
(integration by parts and disintegration), we get:

J(η) − J(γ) ≥

∫ 1

0

∇xj(s, x(s)) · (xη(s) − x(s))ds +

∫

[0,1]2
g(t, s)d(η − γ)(t, s)

=

∫ 1

0

〈q(t) · Axη(.) − g(t, .), νt − µt〉 dt

which proves that (4.15) is a sufficient optimality condition. Of course, (4.15)
is not necessary in general and is difficult to exploit since it involves every
admissible η. However, we shall give a simple example in section 5 where the
sufficient condition (4.15) together with the necessary condition of theorem
4.3 actually enables one to compute an optimal control.

Remark 4.5. Let us indicate, without giving details, that one may obtain in
a similar way as in theorem 4.3 optimality conditions for the optimal control
of the slightly more general state equation containing a local term:

ẋ(t) = η(t, x(t)) + 〈f(., x(.)), νt〉 , x(0) = x0.

Indeed, considering the minimization of the cost J (which has the same form
as before), one gets, by similar arguments as previously, that any minimizer
γ = (νt)⊗L1 has to satisfy the statement of theorem 4.3, the only modifica-
tion being that the adjoint equation now reads as

q̇(s) = ∇xj(s, x(s)) −∇xη(s, x(s))T q(s) −∇xf(s, x(s))T 〈q, ν∗
s 〉 ν(s). (4.16)
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5 Examples

5.1 Scalar case

We start by considering the scalar ODE with memory

ẋ(t) = α 〈x, νt〉 , x(0) = 1

where α > 0 is a parameter and (νt) is an admissible control. It is clear that
if we want to minimize a cost like

J(γ) =

∫ 1

0

xγ(t) dt

the best choice for the control is γ = (νt) ⊗ L1 with νt = δ0 for all t ∈ [0, 1],
which gives

x(t) = 1 + αt, Jmin = 1 +
α

2
.

Analogously, for a cost like

J(γ) = −xγ(1)

the best choice is γ = (νt) ⊗ L1 with νt = δt for all t ∈ [0, 1], which gives

x(t) = eαt, Jmin = −eα.

Take now the cost

J(γ) = a

∫ 1

0

xγ(t) dt − bxγ(1)

with a, b > 0 and with no penalization in the use of memory (i.e. g = 0).
The Pontryagin principle of theorem 4.3 gives the adjoint equation

q̇(t) = a − α 〈q, ν∗
t 〉 ν(t), q(1) = b (5.1)

and the necessary condition of optimality

spt(νt) ⊂ argmaxs∈[0,t]

{

αq(t)xγ(s)
}

(5.2)

since xγ is increasing, the latter is equivalent to

νt =

{

δt if q(t) > 0
δ0 if q(t) < 0.

Thanks to remark 4.4 and the fact that xη is nondecreasing for every admissi-
ble η then the conditions (5.1)-(5.2) are in fact sufficient. Since q(1) = b > 0,
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we necessarily have νt = δt for t close to 1. Now, it is natural, in view of the
previous considerations to look for an optimal control in the form

νt =

{

δ0 if t ∈ (0, t0)
δt if t ∈ (t0, 1)

where t0 ∈ [0, 1] will be determined in such a way that the previous necessary
and sufficient optimality conditions hold. For such a family of Dirac masses,
a direct computation yields

ν = t0δ0 + L1
[t0,1]

and

ν∗
s =







t−1
0 L1

[0,t0] if s = 0 and t0 6= 0,

δ0 if s = 0 and t0 = 0,
δt if s ∈ (t0, 1)

(note that ν∗
s is only defined for ν-a.e. s). Integrating (5.1) on (t0, 1] then

yields

q(t) =
a

α
+

(

b −
a

α

)

eα(1−t), t ∈ (t0, 1).

There are now two cases: either

b

a
≥

eα − 1

αeα
(5.3)

in which case, q remains positive on (0, 1) and thus t0 = 0 and νt = δt for
every t ∈ [0, 1] is optimal. Or (5.3) does not hold; in this case, set

t0 = 1 −
1

α
ln

( a

a − αb

)

∈ (0, 1).

Now let t ∈ (0, t0), integrating (5.1) between t and t0, we simply get q(t) =
a(t − t0) so that q is negative on (0, t0) and then νt = δ0 for t ∈ (0, t0) and
νt = δt for t ∈ (t0, 1) is an optimal control.

5.2 A two-dimensional example

Let us now consider the two-dimensional linear-quadratic-like problem that
consists in minimizing

∫ 1

0

1

2

(

a(t)x2(t) + b(t)y2(t)
)

dt

with respect to the admissible control (νt) when the state equations for x

and y are
ẋ(t) = α 〈x, νt〉 , ẏ(t) = β 〈y, νt〉
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together with the initial conditions (x(0), y(0)) = (x0, y0). The weight func-
tions a and b are continuous (but not necessarily positive). We also assume
that α > 0, β > 0 and x0 > 0, y0 < 0 which guarantees that x is increasing
and positive and y is decreasing and negative. The adjoint equations read as

q̇1 = ax − α 〈q1, ν
∗
s 〉 ν, q̇2 = by − α 〈q2, ν

∗
s 〉 ν, q1(1) = q2(1) = 0. (5.4)

Furthermore, the maximum principle of theorem 4.3 gives

spt νt ⊂ argmaxs∈[0,t]

{

q1(t)x(s) + q2(t)y(s)
}

.

Since x is increasing and y is decreasing, we thus deduce that:

q1(t) > 0, q2(t) < 0 ⇒ νt = δt,

q1(t) < 0, q2(t) > 0 ⇒ νt = δ0.

Now, if a(1) > 0 and b(1) > 0, it is easy to deduce from (5.4) and the fact
that spt ν∗

s ⊂ [s, 1] (and that ν({1}) = 0) that q1(t) < 0 and q2(t) > 0 for
t < 1 sufficiently close to 1 and therefore the optimal ν’s have to satisfy
νt = δ0 for t close to 1.

If a and b are everywhere positive, then (5.4) implies q1 < 0 and q2 > 0
on [0, 1) so that (not surprisingly) there is only one optimal ν that is νt = δ0

for every t. Now let us consider the case where a and b may change sign and
let us look for conditions that ensure that q1(t) > 0 and q2(t) < 0 for t close
to 0 so that optimal ν’s satisfy νt = δt for t close to 0.

Let us assume further that α < 1 and β < 1, then we straightly deduce
from the state equation the estimates

‖x‖∞ ≤
x0

1 − α
, ‖y‖∞ ≤

|y0|

1 − β
(5.5)

using those estimates and the adjoint equation for q1, we also get

‖q1‖∞ ≤
‖a‖∞x0

(1 − α)2
. (5.6)

We then get

−q1(0) =

∫ 1

0

ax dt − α

∫ 1

0

〈q1, ν
∗
s 〉 dν

≤

∫ 1

0

a+x dt −

∫ 1

0

a−x dt +
α‖a‖∞x0

(1 − α)2

≤ x0

( 1

1 − α

∫ 1

0

a+ dt −

∫ 1

0

a− dt +
α‖a‖∞
(1 − α)2

)
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so that q1(t) < 0 for t close to 0 as soon as

∫ 1

0

a− dt >
1

1 − α

∫ 1

0

a+ dt +
α‖a‖∞
(1 − α)2

.

A similar condition on b ensures that q2(t) > 0 for t close to 0.
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