G Buttazzo 
email: buttazzo@dm.unipi.it
  
G Carlier 
email: carlier@ceremade.dauphine.fr
  
R Tahraoui 
email: tahraoui@ceremade.dauphine.fr
  
On some systems controlled by the structure of their memory

Keywords: Optimal control problems, memory terms, Wasserstein distance. 2000 Mathematics Subject Classification: 49K25, 34K35, 49K22, 93C30

We consider an optimal control problem governed by an ODE with memory playing the role of a control. We show the existence of an optimal solution and derive some necessary optimality conditions. Some examples are then discussed.

Introduction 1.Motivation

Dynamics with lags or with more general memory structure (deviated arguments, integro-differential equations...) arise in many different settings in engineering, economics, ecology, biology, modelling of financial time series... It is typically the case when studying the optimal performances of a system in which the response to a given input occurs not instantaneously but only after a certain elapse of time. We refer for instance to the classical book of Bellman and Cooke [START_REF] Bellman | Differential-difference equations[END_REF] for a general overview of such functional equations.

To illustrate what follows, let us start with a simple differential equation with a deviated argument:

ẋ(t) = f (x(θ(t)), t ∈ [0, 1], x(0) = x 0 (1.1)
where θ, the deviation, is a function that satisfies 0 ≤ θ(t) ≤ t (nonanticipativity), for every time t. Dynamics of the form (1.1) are nonlocal and may arise in various applied settings such as population dynamics or biology (incubation of a disease, maturation phenomena...). We refer the reader to Kuang's book [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF] and the references therein for an overview of dynamics with memory in the biosciences, another motivation for related problems in economics can be found for instance in [START_REF] Jouini | Optimal investment with taxes: an optimal control problem with endogeneous delay[END_REF]. In the literature on equations with deviated arguments, the deviation θ is usually taken as given. However, it is natural to consider concrete situations where the deviation is not perfectly known. For instance, if some-possibly noisy-observation x * is available for the state variable, then the simplest way to estimate θ is by least squares, that is by minimizing

1 0 |x(t) -x * (t)| 2 dt
with respect to θ, x being linked to θ by (1.1). One can further add constraints on θ or add a penalization term of the form 1 0 g(t, θ(t))dt which represents a memory cost in the energy to be minimized. This leads to optimization problems of the form inf 0 j(t, x(t))dt + 1 0 g(t, θ(t))dt with respect to x and θ related by the state equation (1.1). We shall see in the sequel, that the previous problem is in fact ill-posed in general and therefore needs to be suitably relaxed. The relaxation of the problem leads to replace (1.1) by

ẋ(t) = t 0 f (x(s))dν t (s), x(0) = x 0 (1.2)
where ν t is a probability measure supported on [0, t] (so that (1.1) corresponds to the case where ν t = δ θ(t) is a Dirac mass). Note that this formulation is very much in the spirit of relaxation by Young measures in the calculus variations and optimal control theory (see for instance [START_REF] Buttazzo | Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations[END_REF], [START_REF]Relaxation in Optimization Theory and Variational Calculus[END_REF]).

Considering directly (i.e. without invoking relaxation) the state equation (1.2) controlled by ν t is natural as well in population dynamics. Indeed, quoting Kuang's own words: . . . more realistic models for single species growths should take into account both the changing of the environment and the effects of time delay, which leads in [START_REF] Kuang | Global stability for a class of nonlinear nonautonomous delay equations[END_REF] to dynamics of the form (1.2). Another motivation comes from autoregressive models where one seeks to estimate the dynamics of some state variable by regressing it on its past. In discrete time, an autoregressive process is a stochastic process that satisfies a relation of the form:

X t = K k=0 α k f (t -k, X t-k ) + ε t
where ε t are independent and identically distributed random variables. Such processes thus have some memory (the range of the memory being the integer K, called the order of the process), and the fact that the previous dynamics is given by a convolution captures some stationarity of the memory structure. This is a particular case of

X t = s≤k ν t (s)f (s, X s ) + ε t .
Passing to continuous time in the previous equation strongly suggests that estimating the memory structure of the process by least squares naturally leads to solve a control problem with a state equation of the form (1.2).

Control formulation

The present paper deals with the optimal control of equations of the form

ẋ(t) = f (., x(.)), ν t = t 0 f (s, x(s)) dν t (s), t ∈ [0, 1], x(0) = x 0 , (1.3)
where the control is a family of probability measures t → ν t such that ν t is supported on [0, t] (nonanticipativity). The special case where ν t = δ θ(t) is a Dirac mass corresponds to the deviated equation

ẋ(t) = f θ(t), x(θ(t)) , x(0) = x 0 , (1.4)
where the control is the deviation θ satisfying θ(t) ≤ t for all t ∈ [0, 1]. We will consider the minimization of the functional |t -s| p dν t (s).

The interpretation of the Wasserstein term in the functional is therefore a penalization of long-term memory.

Let us insist here on the fact that the optimal control problem (1.3)-(1.5) in which the memory structure is unknown and acts as a control is, as far as we know, somehow unusual. For variational or optimal control problems where a deviation or a memory structure is given and one looks for a classical optimal control, we refer to [START_REF] Samassi | How to state necessary optimality conditions for control problems with deviating arguments?[END_REF], [START_REF] Carlier | On Pontryagin's principle for the optimal control of some state equation with memory[END_REF], [START_REF] Carlier | On some optimal control problems governed by a state equation with memory[END_REF] (necessary optimality conditions) or [START_REF] Carlier | Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory[END_REF] (dynamic programming approach leading to a Hamilton-Jacobi equation in infinite dimensions).

The paper is organized as follows. Section 2 is devoted to some preliminary results. In section 3, we prove existence of solutions for (1.5) and show that (1.5) is the natural relaxation of the corresponding optimization problem posed over deviation functions. In section 4, we establish optimality conditions. Finally section 5 is devoted to some examples.

Preliminaries

Let (ν t ) t∈[0,1] be a Borel family of probability measures (meaning that t → g dν t is Borel for every continuous g) such that ν t ([0, t]) = 1 for every t; the short notation (ν t ) will be used in the following to denote the family

(ν t ) t∈[0,1] . Let f ∈ C 0 ([0, 1] × R d , R d ) satisfy the Lipschitz condition that there is a k ≥ 0 such that: |f (t, x) -f (t, y)| ≤ k|x -y|, ∀t ∈ [0, 1], ∀(x, y) ∈ R d × R d .
(2.1)

The next result gives the existence and uniqueness of a solution to the state equation (1.3):

Proposition 2.1. Let f ∈ C 0 ([0, 1]×R d , R d )
satisfy the Lipschitz assumption (2.1), (ν t ) be as above and x 0 ∈ R d . Then the Cauchy problem

ẋ(t) = f (., x(.)), ν t , ∀t ∈ [0, 1], x(0) = x 0 (2.2)
admits a unique continuous solution x. Moreover x is Lipschitz continuous and satisfies x W 1,∞ ≤ M for a constant M that only depends on k, |x 0 | and sup t∈[0,1] |f (t, 0)|.

Proof. We proceed as in [START_REF] Carlier | On some optimal control problems governed by a state equation with memory[END_REF]. Let λ > k and equip

C 0 ([0, 1], R d ) with the norm x λ := sup t∈[0,1]
e -λt |x(t)|.

For every x ∈ C 0 ([0, 1], R d ), define the continuous function Hx by

Hx(t) := x 0 + t 0 f (., x(.)), ν s ds ∀t ∈ [0, 1].
For x and y continuous and t ∈ [0, 1], one deduces from (2.1) and the nonanticipativity of (ν t ):

|Hx(t) -Hy(t)| ≤ k x -y λ t 0 s 0 e λτ dν s (τ ) ds ≤ k λ x -y λ e λt .
One then deduces that H is a contraction and therefore has a unique fixed point in C 0 . The second claim easily follows.

In what follows, L 1 denotes the Lebesgue measure on [0, 1]. Let (ν t ) be admissible for our problem which means that it is a Borel family of probability measures such that ν t ([0, t]) = 1 for every t. It will be convenient in the sequel to define γ := (ν t ) ⊗ L 1 that is the probability measure on [0, 1] 2 defined by

[0,1] 2 ϕ(t, s) dγ(t, s) = 1 0 1 0 ϕ(t, s) dν t (s) dt (2.3) for every ϕ ∈ C 0 ([0, 1] 2 , R).
The admissibility of (ν t ) t is equivalent to require that γ := (ν t ) ⊗ L 1 belongs to the set

Γ := {γ probability on [0, 1] 2 : γ(T ) = 1, π 1# γ = L 1 }. (2.4)
where T is the triangle T := {(t, s) ∈ [0, 1] 2 : s ≤ t} and π 1# γ denotes the first marginal of γ. Given γ ∈ Γ, the disintegration Theorem (see [START_REF] Dellacherie | Probabilities and Potential[END_REF]) enables one to disintegrate γ as γ = (ν t ) ⊗ L 1 with (ν t ) admissible. In the sequel, under the assumptions of proposition 2.1, the solution of the Cauchy problem (2.2) will be denoted x γ . Let us also remark that x γ can be characterized by the weak form of (2.2) that can be conveniently written in terms of γ as:

1 0 φ(t) • x γ (t) dt = - [0,1] 2 ϕ(t) • f (s, x γ (s)) dγ(t, s), x γ (0) = x 0 (2.5) for every ϕ ∈ C 1 c ((0, 1), R d ).
The other obvious advantage of formulating the problem in terms of γ ∈ Γ is that Γ is weakly* compact.

In the sequel, we shall always assume that f ∈ C 0 ([0, 1] × R d , R d ) satisfy the Lipschitz assumption (2.1) so that x γ is well-defined for every γ ∈ Γ.

Lemma 2.2. If (γ n ) ∈ Γ N weakly* converges to γ, then x γn converges to x γ in C 0 ([0, 1], R d ).
Proof. Setting x n := x γn , it follows from proposition 2.1 and Ascoli-Arzelà's theorem that (x n ) is precompact in C 0 . Let y be the uniform limit of some (not relabeled) subsequence. Let ϕ ∈ C 1 c ((0, 1), R d ), one has for every n

1 0 φ(t) • x n (t) dt = - [0,1] 2 ϕ(t) • f (s, x n (s)) dγ n (t, s), x n (0) = x 0 . (2.6)
Since x n converges uniformly to y, and γ n converges weakly* to γ, passing to the limit in (2.6) one deduces from the continuity of f that y = x γ , and by a standard compactness argument we deduce that the whole sequence converges to x γ .

3 The optimization problem

Existence of optimal controls and relaxation

We are now interested in the optimization problem

inf γ∈Γ J(γ) (3.1)
where

J(γ) := 1 0 j(t, x γ (t)) dt + h(x γ (1)) + T g(t, s) dγ(t, s).
Theorem 3.1. We make the following assumptions:

• the function j : [0, 1] × R d → [0, +∞] is Borel measurable, nonnegative and j(t, •) is lower semicontinuous for a.e. t ∈ [0, 1];
• the function h : R d → [0, +∞] is nonnegative and lower semicontinuous;

• the function g : T → [0, +∞] is nonnegative and lower semicontinuous on T ;

• there exists γ 0 ∈ Γ such that J(γ 0 ) < +∞.

Then the optimal control problem (3.1) has a finite value and admits a solution.

Proof. Thanks to lemma 2.2, one easily deduces from the assumptions above that J is weakly* lower-semicontinuous (for the lower semicontinuity of the last term express g as the supremum of continuous functions) and the existence claim then follows from the weak* compactness of Γ.

Let us define the set of admissible deviations:

Θ := {θ : [0, 1] → [0, 1] Borel, θ(t) ≤ t, for a.e. t ∈ [0, 1]}
and the optimal deviation problem inf θ∈Θ

F (θ), with F (θ) := J (δ θ(t) ) ⊗ L 1 (3.2)
that is the restriction of (3.1) to deviation (or delay) functions. Then (3.1) is the relaxation of (3.2) in the following sense (see for instance [START_REF] Buttazzo | Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations[END_REF][START_REF]Relaxation in Optimization Theory and Variational Calculus[END_REF] for a general presentation of relaxation theory for variational problems).

Theorem 3.2. If j ∈ C 0 ([0, 1] × R d ), h ∈ C 0 (R d
) and g ∈ C 0 (T ), then for every γ ∈ Γ, there exists a sequence θ n in Θ such that F (θ n ) converges to J(γ). In particular

min γ∈Γ J(γ) = inf θ∈Θ F (θ).
Proof. It follows from lemma 2.2 that J is weakly* continuous. Fix now γ ∈ Γ; it is a well-known result in the theory of Young measures (see for instance Theorem 9.3 in [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]) that there exists a sequence of Borel maps

σ n : [0, 1] → [0, 1] such that (δ σn(t) ) ⊗ L 1 converges weakly* to γ. Defining θ n (t) := min{σ n (t), t} so that θ n ∈ Θ, it is enough to prove that (δ θn(t) ) ⊗ L 1 converges weakly* to γ to conclude. Let ϕ ∈ C 0 ([0, 1] 2
) and let us denote by ω ϕ the modulus of continuity of ϕ. For every δ > 0, we have

1 0 ϕ(t, θ n (t)) -ϕ(t, σ n (t)) dt ≤ 2 ϕ ∞ L 1 ({t : σ n (t) ≥ t + δ}) + ω ϕ (δ).
From the weak* convergence of (δ σn(t) ) ⊗ L 1 to γ and from the fact that the support of γ is included in the triangle T , it is easy to deduce that for every δ > 0, L 1 ({t : σ n (t) ≥ t + δ}) tends to 0. The weak* convergence of (δ θn(t) ) ⊗ L 1 to γ then follows directly.

It is easy to build from the previous result examples where there is no optimal delay function for (3.2). Indeed, let us take d = 1, f (x) = x, x 0 = 1, h = 0, j(t, x) = |xx * (t)| 2 with x * (t) = -1 + 2e t/2 and g(t, s) = s(ts). By construction x * = x γ * for γ * = 1 2 (δ 0 + δ t ) ⊗ L 1 so that J(γ * ) = 0 and γ * is optimal. If θ was an optimal delay for (3.2) then one should have F (θ) = 0 so that θ(t) ∈ {0, t} a.e. and x θ = x * (where slightly abusing notations x θ denotes x (δ θ(t) )⊗L 1 ). From the state equation one should then also have

e t/2 = x * (θ(t)) = -1 + 2e θ(t)/2 , a.e.
which contradicts θ(t) ∈ {0, t} a.e..

Solutions with finitely many Dirac masses

A simple application of a refinement of the well-known Carathéodory's theorem (see [START_REF] Rockafellar | Convex Analysis[END_REF]), attributed to Fenchel and Bunt in Theorem 1.3.7. of [START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF] (see [START_REF] Eggleston | Convexity[END_REF] pages 40-41 for a complete proof), gives the existence of optimal controls involving only finitely many Dirac masses. Proposition 3.3. Assume that f satisfies (2.1) and f and g are continuous, then for every γ = (ν t ) ⊗ L 1 ∈ Γ there exists η = (µ t ) ⊗ L 1 such that µ t has finite support with at most cardinality d + 1 such that x γ = x η and 1 0 g(t, s) dν t (s) = 1 0 g(t, s) dµ t (s) a.e. t.

In particular, in the optimization problem (3.1) it is enough to optimize over measures in Γ of the form (ν t ) ⊗ L 1 with ν t a convex combination of at most d + 1 (d if g = 0) Dirac masses.

Proof. Let γ ∈ Γ, x := x γ and define for every t ∈ [0, 1] the compact set

S x,t := (f (s, x(s)), g(t, s)) : s ∈ [0, t] ⊂ R d+1 .
By construction, for almost every t one has ẋ(t), t 0 g(t, s) dν t (s) ∈ co(S x,t ).

Since S x,t is a connected set, it follows from the Fenchel-Bunt theorem (see [START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF] and [START_REF] Eggleston | Convexity[END_REF]) that ẋ(t), t 0 g(t, s) dν t (s) may be expressed as a convex combination of at most d+1 points in S x,t . Hence there exists a discrete probability µ t on [0, t] with at most d + 1 points in its support such that ẋ(t) = f (., x(.)), µ t , 1 0 g(t, s) dν t (s) = 1 0 g(t, s) dµ t (s).

The fact that the discrete measure µ t can be chosen measurable in t follows from standard measurable selection arguments (see for instance [START_REF] Castaing | Valadier: Convex Analysis and Measurable Multifunctions[END_REF]).

Necessary conditions of optimality

In this section, we look for optimality conditions for (3.1). In what follows, we further assume that j, h and g are continuous and that

• h is of class C 1 ,
• j(t, .) and f (t, .) are differentiable for every t ∈ [0, 1] and ∇ x j and

∇ x f are continuous on [0, 1] × R d . Let γ = (ν t ) ⊗ L 1 be a solution to (3.1), η = (µ t ) ⊗ L 1 ∈ Γ and ε ∈ (0, 1); then 1 ε [J(γ + ε(η -γ)) -J(γ)] ≥ 0. ( 4.1) 
As usual, our aim is to pass to the limit as ε → 0 + and to express the optimality conditions obtained this way in the form of some maximum principle, which will be achieved by introducing some suitable adjoint variable. To shorten notation, we set γ ε = γ + ε(ηγ), x = x γ and x ε = x γε .

Lemma 4.1. As ε → 0 + , z ε := ε -1 (x εx) converges uniformly on [0, 1] to z, the solution of the linearized system:

ż(t) = Az, ν t + a, µ t -ν t , t ∈ [0, 1], z(0) = 0 (4.2)
where A and a are the continuous functions:

A(s) := ∇ x f (s, x(s)), a(s) := f (s, x(s)), ∀s ∈ [0, 1]. (4.3) 
Proof. First, let us remark that by the same arguments used in proposition 2.1, equation (4.2) posseses a unique (Lipschitz) solution z. By construction we have z ε (0) = 0 and

żε (t) = 1 ε [f (., x + εz ε ) -f (., x))], ν t + f (., x ε ), µ t -ν t (4.4)
from which, by the Lipschitz assumption on f , we easily deduce that

z ε is bounded in W 1,∞ (in particular x ε -x W 1,∞ = O(ε))
. By Ascoli-Arzela's theorem, z ε then possesses a cluster point y in C 0 . Passing to the limit in (4.4) along a convergent subsequence then easily yields y = z and thus by compactness the whole family (z ε ) ε converges to z as ε → 0 + .

Under our differentiability assumption, using lemma 4.1 and passing to the limit in (4.1) we then get:

1 0 B • z dt + b • z(1) + 1 0 g(t, .), µ t -ν t dt ≥ 0. (4.5)
where z is related to γ and η by the linearized equation ( 4.2) and

B(s) := ∇ x j(s, x(s)) ∀s ∈ [0, 1], b := ∇h(x(1)). (4.6)
To make condition (4.5) tractable, we shall introduce, as usual in control theory, an adjoint state; to do so we shall need a few notations and preliminaries. Recall that γ ∈ Γ is given by the disintegration γ = (ν t ) ⊗ L 1 and let ν := π 2# γ be the second marginal of γ defined by

1 0 ϕ(s) dν(s) = [0,1] 2 ϕ(s) dγ(t, s) = 1 0 ϕ, ν t dt, ∀ϕ ∈ C 0 ([0, 1]).
Invoking again the disintegration theorem, γ admits the disintegration γ = ν ⊗ (ν * s ) that is (ν * s ) is a Borel family of probability measures and for every test-function ϕ ∈ C 0 ([0, 1] 2 ) one has Note that the requirement that γ is supported by T implies that ν * s ([s, 1]) = 1. Since γ has L 1 as first marginal, (4.7) also holds for test functions of the form (t, s) → q(t)ϕ(s) with ϕ continuous but q only L 1 . This enables us, for q ∈ L 1 , to define q, ν * s ν as the finite measure defined by ϕ, q, ν * s ν :=

1 0 q(t) ϕ, ν t dt = [0,1] 2 q(t)ϕ(s) dγ(t, s) ∀ϕ ∈ C 0 ([0, 1]).
The adjoint of (4.2) will then be expressed using the measures ν * s and ν, as usual, it is an equation of backward type which is formally written as:

q = B -A T q, ν * s ν, q(1) = -b (4.8)
where the continuous functions B and A are defined by (4.6) and (4.3) respectively, A T denotes the transpose of A and the measure q, ν * s ν is defined as above. Equation (4.8) has to be understood in an integral sense, a solution of (4.8) is then by definition an L 1 ((0, 1), R d ) function q such that q(t) = -b -

1 t B ds + [t,1] A T (s) q, ν * s dν(s) for a.e. t ∈ [0, 1]. (4.9)
Such a solution belongs to BV((0, 1), R d ), the space of curves in R d of bounded variation, and the weak formulation of (4.8) reads as

1 0 q • φ dt = - 1 0 B • ϕ dt -b • ϕ(1) + [0,1] 2 A(s)ϕ(s) • q(t) dγ(t, s) (4.10) for every ϕ ∈ C 1 ([0, 1]), R d ) such that, ϕ(0) = 0.
Note that it is easy to see in this case that (4.10) also holds for every test-function, ϕ ∈ W 1,∞ ((0, 1), R d ) such that ϕ(0) = 0. Since q ∈ BV((0, 1), R d ) the left-limit q(1 -) is well defined, and the condition q(1) = -b in (4.8) has to be intended as q(1 -) = -b; this convention for BV functions will be used in the rest of the paper. The well-posedness of (4.8) follows from the following result.

Lemma 4.2. Let B ∈ C 0 ([0, 1], R d ), A ∈ C 0 ([0, 1], R d×d ) and b ∈ R d . Then (4.8
) admits a unique solution q ∈ BV((0, 1), R d ). Moreover if z is the solution of (4.2) then

1 0 B • z dt + b • z(1) = - 1 0 q(t) a, µ t -ν t dt. (4.11) 
Proof. Take λ > A ∞ and equip L 1 ((0, 1), R d ) with the norm

q := 1 0 e λt |q(t)| dt.
In view of (4.9), it is natural, for every q ∈ L 1 to define Kq by

Kq(t) := -b - 1 t B ds + [t,1] A T (s) q, ν * s dν(s) for a.e. t ∈ [0, 1],
so that Kq ∈ BV((0, 1), R d ). Let q 1 and q 2 be in L 1 and t ∈ (0, 1), let ε ∈ (0, t) and ϕ ε be a continuous function such that 0

≤ ϕ ε ≤ 1, ϕ ε = 1 on [t, 1] and ϕ ε = 0 on [0, t -ε].
We then have:

|Kq 1 (t) -Kq 2 (t)| ≤ A ∞ 1 0 ϕ ε |q 1 -q 2 |, ν * s dν = A ∞ 1 0 ϕ ε , ν τ |q 1 (τ ) -q 2 (τ )| dτ ≤ A ∞ 1 0 ν τ ([t -ε, τ ])|q 1 (τ ) -q 2 (τ )| dτ ≤ A ∞ 1 t-ε |q 1 -q 2 | dτ.
Letting ε → 0 + we get

|Kq 1 (t) -Kq 2 (t)| ≤ A ∞ 1 t |q 1 -q 2 | dτ. (4.12) 
Multiplying (4.12) by e λt , integrating and using Fubini's theorem then yields

Kq 1 -Kq 2 ≤ A ∞ 1 0 e λt 1 t |q 1 -q 2 | dτ dt = A ∞ 1 0 |q 1 (τ ) -q 2 (τ )| τ 0 e λt dt dτ ≤ A ∞ λ q 1 -q 2 .
Since we have chosen λ > A ∞ , the map K is a contraction and the existence and uniqueness of a solution to (4.8) then follows from Banach-Picard's fixed point theorem.

Let us now establish (4.11). Using z (which is Lipschitz) as test-function in (4.10), we first get

1 0 q • ż dt = - 1 0 B • z dt -b • z(1) + [0,1] 2
(A(s)z(s)) • q(t) dγ(t, s) then using (4.2) yields where q is the adjoint variable whose dynamics is given by q(1) = -∇h(x(1)), q(s) = ∇ x j(s, x(s)) -∇ x f (s, x(s)) T q, ν * s ν(s). (4.14)

1 0 q • ż dt = [0,1] 2 (A(s)z(s)) • q(t) dγ(t, s) + 1 0 q(t) • a,
Proof. Let γ = (ν t )⊗L 1 ∈ Γ be optimal for (3.1); then for every η = (µ t )⊗L 1 , it follows from (4.5), (4.6) and (4.11) that 1 0 q(t) • f (., x(.))g(t, .), ν tµ t dt ≥ 0 with q defined by (4.14). Since in the previous inequality, µ t is an arbitrary probability measure supported on [0, t], (4.13) directly follows.

Remark 4.4. In the case where f is linear in x (that is f (s, x) = A(s)x) and j(t, .) and h are convex (so that J(γ) is convex in x γ , but in general not in γ), then the following condition is sufficient for optimality:

spt(ν t ) ⊂ argmax s∈[0,t] q(t) • (A(s)x η (s)) -g(t, s) , (4.15) 
for every η ∈ Γ and a.e. t ∈ [0, 1]. Indeed, if γ = (ν t ) ⊗ L 1 , x = x γ , q is the adjoint variable defined as in theorem 4.3 and η = (µ t ) ⊗ L 1 ∈ Γ, by the above convexity assumptions and the same manipulations as before (integration by parts and disintegration), we get: 

J(η) -J(γ) ≥ 1 0 ∇ x j(s, x(s)) • (x η (s) -x(s))ds + [0,1] 2 g(t, s)d(η -γ)(t, s) = 1 0 q(t)
ẋ(t) = η(t, x(t)) + f (., x(.)), ν t , x(0) = x 0 .
Indeed, considering the minimization of the cost J (which has the same form as before), one gets, by similar arguments as previously, that any minimizer γ = (ν t ) ⊗ L 1 has to satisfy the statement of theorem 4.3, the only modification being that the adjoint equation now reads as q(s) = ∇ x j(s, x(s)) -∇ x η(s, x(s)) T q(s) -∇ x f (s, x(s)) T q, ν * s ν(s). (4.16)

we necessarily have ν t = δ t for t close to 1. Now, it is natural, in view of the previous considerations to look for an optimal control in the form

ν t = δ 0 if t ∈ (0, t 0 ) δ t if t ∈ (t 0 , 1)
where t 0 ∈ [0, 1] will be determined in such a way that the previous necessary and sufficient optimality conditions hold. For such a family of Dirac masses, a direct computation yields

ν = t 0 δ 0 + L 1 [t 0 ,1] and ν * s =    t -1 0 L 1 [0,t 0 ] if s = 0 and t 0 = 0, δ 0 if s = 0 and t 0 = 0, δ t if s ∈ (t 0 , 1)
(note that ν * s is only defined for ν-a.e. s). Integrating (5.1) on (t 0 , 1] then yields

q(t) = a α + b - a α e α(1-t) , t ∈ (t 0 , 1). 
There are now two cases: either b a ≥ e α -1 αe α (5.3) in which case, q remains positive on (0, 1) and thus t 0 = 0 and ν t = δ t for every t ∈ [0, 1] is optimal. Or (5.3) does not hold; in this case, set

t 0 = 1 - 1 α ln a a -αb ∈ (0, 1).
Now let t ∈ (0, t 0 ), integrating (5.1) between t and t 0 , we simply get q(t) = a(tt 0 ) so that q is negative on (0, t 0 ) and then ν t = δ 0 for t ∈ (0, t 0 ) and ν t = δ t for t ∈ (t 0 , 1) is an optimal control.

A two-dimensional example

Let us now consider the two-dimensional linear-quadratic-like problem that consists in minimizing with respect to the admissible control (ν t ) when the state equations for x and y are ẋ(t) = α x, ν t , ẏ(t) = β y, ν t together with the initial conditions (x(0), y(0)) = (x 0 , y 0 ). The weight functions a and b are continuous (but not necessarily positive). We also assume that α > 0, β > 0 and x 0 > 0, y 0 < 0 which guarantees that x is increasing and positive and y is decreasing and negative. The adjoint equations read as q1 = axα q 1 , ν * s ν, q2 = byα q 2 , ν * s ν, q 1 (1) = q 2 (1) = 0. (5.4)

Furthermore, the maximum principle of theorem 4.3 gives spt ν t ⊂ argmax s∈[0,t] q 1 (t)x(s) + q 2 (t)y(s) .

Since x is increasing and y is decreasing, we thus deduce that: q 1 (t) > 0, q 2 (t) < 0 ⇒ ν t = δ t , q 1 (t) < 0, q 2 (t) > 0 ⇒ ν t = δ 0 . Now, if a(1) > 0 and b(1) > 0, it is easy to deduce from (5.4) and the fact that spt ν * s ⊂ [s, 1] (and that ν({1}) = 0) that q 1 (t) < 0 and q 2 (t) > 0 for t < 1 sufficiently close to 1 and therefore the optimal ν's have to satisfy ν t = δ 0 for t close to 1.

If a and b are everywhere positive, then (5.4) implies q 1 < 0 and q 2 > 0 on [0, 1) so that (not surprisingly) there is only one optimal ν that is ν t = δ 0 for every t. Now let us consider the case where a and b may change sign and let us look for conditions that ensure that q 1 (t) > 0 and q 2 (t) < 0 for t close to 0 so that optimal ν's satisfy ν t = δ t for t close to 0.

Let us assume further that α < 1 and β < 1, then we straightly deduce from the state equation the estimates

x ∞ ≤ x 0 1 -α , y ∞ ≤ |y 0 | 1 -β (5.5) 
using those estimates and the adjoint equation for q 1 , we also get

q 1 ∞ ≤ a ∞ x 0 (1 -α) 2 .
(5.6)

We then get

-q 1 (0) = 1 0 ax dt -α 1 0 q 1 , ν * s dν ≤ 1 0 a + x dt - 1 0 a -x dt + α a ∞ x 0 (1 -α) 2 ≤ x 0 1 1 -α 1 0 a + dt - 1 0 a -dt + α a ∞ (1 -α) 2
so that q 1 (t) < 0 for t close to 0 as soon as

1 0 a -dt > 1 1 -α 1 0 a + dt + α a ∞ (1 -α) 2 .
A similar condition on b ensures that q 2 (t) > 0 for t close to 0.

  x 2 (t) + b(t)y 2 (t) dt

  µ tν t dt which proves(4.11). Under the assumptions of this section, if γ ∈ Γ, γ = (ν t ) ⊗ L 1 = ν ⊗ (ν * s ) solves (3.1) and x = x γ then one has for L 1 -a.e. t

	Theorem 4.3. spt(ν t ) ⊂ argmax s∈[0,t] q(t) • f (s, x(s)) -g(t, s) ,	(4.13)

  • Ax η (.)g(t, .), ν tµ t dt which proves that (4.15) is a sufficient optimality condition. Of course, (4.15) is not necessary in general and is difficult to exploit since it involves every admissible η. However, we shall give a simple example in section 5 where the sufficient condition (4.15) together with the necessary condition of theorem 4.3 actually enables one to compute an optimal control. Remark 4.5. Let us indicate, without giving details, that one may obtain in a similar way as in theorem 4.3 optimality conditions for the optimal control of the slightly more general state equation containing a local term:
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Examples

Scalar case

We start by considering the scalar ODE with memory

where α > 0 is a parameter and (ν t ) is an admissible control. It is clear that if we want to minimize a cost like

Analogously, for a cost like

the best choice is γ = (ν t ) ⊗ L 1 with ν t = δ t for all t ∈ [0, 1], which gives

Take now the cost

with a, b > 0 and with no penalization in the use of memory (i.e. g = 0). The Pontryagin principle of theorem 4.3 gives the adjoint equation

and the necessary condition of optimality spt(ν t ) ⊂ argmax s∈[0,t] αq(t)x γ (s) (5.2) since x γ is increasing, the latter is equivalent to

Thanks to remark 4.4 and the fact that x η is nondecreasing for every admissible η then the conditions (5.1)-(5.2) are in fact sufficient. Since q(1) = b > 0,