come    

Mixed effect analyses are increasingly employed for the analysis of longitudinal efficacy or safety categorical data measured in clinical trials [START_REF] Ito | Exposure-response analysis for spontaneously reported dizziness in pregabalin-treated patient with generalized anxiety disorder[END_REF][START_REF] Mandemaand | Population pharmacodynamic model for ketorolac analgesia[END_REF][START_REF] Zingmark | Population pharmacokinetics of clomethiazole and its effect on the natural course of sedation in acute stroke patients[END_REF][START_REF] Zingmark | Modelling a spontaneously reported side effect by use of a Markov mixed-effects model[END_REF][START_REF] Sheiner | A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data[END_REF]. For this purpose, proportionalodds model are frequently used. Other models, such as differential-odds model has also been proposed [START_REF] Kjellsson | Comparison of proportional and differential odds models for mixed-effects analysis of categorical data[END_REF]. Results from these analyses, i.e. models along with parameter estimates, are often further utilized for simulation of novel scenarios with respect to new dosing schedules or new patient populations. It is also advocated that these models should be used as an essential part of drug development programs. Therefore it is critical that these parameter estimates are unbiased and reliable.

We focus here on maximum likelihood estimation. However, as in all nonlinear mixed models, the integral of the likelihood function cannot be explicitly solved and various approximations are employed to approximate the true likelihood [START_REF] Verbeke | Mixed models for the analysis of categorical repeated measures[END_REF]. The most commonly used approximation is Laplace, available in the software NONMEM. Bias in parameter estimates for these models with NONMEM VI and SAS v.8 has been studied in detail and it has been shown that the use of Laplace approximation may result in severely biased estimates, especially when response categories are non-evenly distributed within the studied population [START_REF] Jonsson | Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED[END_REF]. This is common when analyzing clinical data and therefore the importance of using exact evaluations of the likelihood integral is further accentuated. SAS implements a more exact evaluation of the likelihood using Adaptive Gaussian Quadrature . However this approach is time consuming, can be applied to models with limited number of random effects, and is not flexible for the analysis of pharmacokinetic/pharmacodynamic data after various repeated dosage regimen [START_REF] Fitzmaurice | Longitudinal Data Analysis[END_REF] In recent years, there have been several approaches/algorithms developed for the analysis of continuous data which are able to find maximum likelihood estimates without a need to compute the likelihood numerically [START_REF] Bauer | A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples[END_REF][START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF] . A stochastic approximation version of EM algorithm linked to a Markov Chain Monte Carlo procedure has been suggested for maximum likelihood estimation within the non-linear mixed effects framework [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF][START_REF] Lavielleand | Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software[END_REF]. This procedure has been demonstrated to possess excellent statistical convergence properties as well as the ability to provide an estimator close to the maximum likelihood estimate in only a few iterations [START_REF] Lavielleand | Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software[END_REF][START_REF] Savicand | Performance in population models for count data, part II: a new SAEM algorithm[END_REF]. In addition to the estimation of the maximum likelihood parameters, the SAEM algorithm also provides the user with the estimate of the Fisher Information Matrix, used to assess parameter estimate uncertainty. However, there have not been studies reported with respect to application of the stochastic algorithms to the analysis of the ordered categorical data

The aims of this study were (i) to extend the SAEM algorithm for estimation of parameters in categorical data mixed models, (ii) to evaluate its performance both for parameter and standard errors estimation via Monte Carlo simulation study and, (iii) to illustrate the performance of the algorithm on a real data example where both continuous PK and discrete PD data are simultaneously analyzed.

A proportional odds model with individual-specific random effect has been employed throughout the exercise to study properties of the new SAEM algorithm. This model has been used in the area of PKPD modeling [START_REF] Mandemaand | Population pharmacodynamic model for ketorolac analgesia[END_REF][START_REF] Sheiner | A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data[END_REF][START_REF] Ezzetand | A random effects model for ordinal responses from a crossover trial[END_REF] and has been presented in detail elsewhere [START_REF] Mandemaand | Population pharmacodynamic model for ketorolac analgesia[END_REF][START_REF] Sheiner | A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data[END_REF][START_REF] Jonsson | Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED[END_REF][START_REF] Ezzetand | A random effects model for ordinal responses from a crossover trial[END_REF].

Methods:

The proportional odds model with random intercept

We assume that the response is an ordered categorical variable which takes its values in (0,1,…,M). Let y ij be the j th observation in the i th individual, i = 1, …, N. In the proportional odds model with random intercept, the cumulative probability of y ij being larger or equal to m (m=1, …, M), can be defined by the following logistic regression model logit 𝑃 𝑦 𝑖𝑗 ≥ 𝑚 = 𝛼 1 + … + 𝛼 𝑚 + (𝛽, 𝑥 𝑖𝑗 ) + 𝜂 𝑖 Equation 1

where logit denotes the logit function, 𝛼 1 + … + 𝛼 𝑚 specifies the baseline for category m (m=1, …, M); h is the function defining predictors or covariate effect, β is a vector of fixed effects which is the same across all categories, x ij is the predictor vector (e.g. time, dose, concentrations) for observation j of individual i and η i is the random effect of individual i. It is assumed that the random effects are normally distributed with mean 0 and variance ω 2 .

Implementation of the SAEM algorithm for categorical data models

The SAEM algorithm described in [START_REF] Verbeke | Mixed models for the analysis of categorical repeated measures[END_REF] for continuous data models has been extended to the ordered categorical data models in a similar manner as it has been done for the count data models [START_REF] Savicand | Performance in population models for count data, part II: a new SAEM algorithm[END_REF]. Let 𝜇 = 𝜶 𝟏 , 𝜶 𝟐 , … , 𝜶 𝑴 , 𝜷 𝟏 , 𝜷 𝟐 … 𝜷 𝑳 be the vector of fixed effects of the model and  be the variance-covariance matrix of the random effects  i (in our example, i is scalar and reduces to the variance ω 2 of  i ). Then, SAEM is an iterative procedure where at iteration k, a new set of random effects

 (k) =( i (k)
) is drawn with the conditional distribution 𝑝(𝜂| 𝑦 ; 𝜇 𝑘  , Ω 𝑘 ). Then, the new population parameters 𝜇 𝑘+1  , Ω 𝑘+1 are obtained by maximizing 𝑄 𝑘+1 𝜇, Ω defined as follows:

𝑄 𝑘+1 𝜇, Ω = 𝑄 𝑘 𝜇, Ω + 𝛾 𝑘 𝑙 𝑦, 𝜂 during the next 100 iterations.

An MCMC algorithm was used for the simulation step (see [START_REF] Verbeke | Mixed models for the analysis of categorical repeated measures[END_REF][START_REF] Jonsson | Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED[END_REF] for more details).

Estimation of the Fisher information matrix

Let  ( ) be the set of population parameters to be estimated, and let 𝜽 be the The procedure consists in computing first 𝜃 with SAEM then applying the Louis formula with 𝜃 = 𝜃 which requires the computation of the conditional expectation and conditional variance defined in equation 4. These quantities are estimated by Monte-Carlo: 300 iterations of MCMC were performed for the numerical experiments. All extensions for SAEM algorithm described here have been implemented in software MONOLIX 3.1.

Simulation settings

The performance of the SAEM algorithm was evaluated via Monte Carlo simulation-. To Scenario D-E included a specific baseline, placebo and drug model through two additional  parameters (Eq. 6)

𝑙𝑜𝑔𝑖𝑡 𝑃(𝑦 𝑖𝑗 ≥ 𝑚) = 𝑎 1 + … + 𝑎 𝑚 + 𝛽 1 𝑐 𝑖𝑗 + 𝛽 2 𝑑 𝑖𝑗 + 𝜂 1 ; 1 ≤ 𝑚 ≤ 3 Equation 6
The placebo model was implemented as a step function ( 𝑐 𝑖𝑗 = 0 𝑖𝑓 𝑗 = 1 and Typical parameter values were chosen so as to mimic desired distribution of responses.

𝑐 𝑖𝑗 = 1 if 𝑗 = 2,3, 4 
The studied variance range was 0.5 -40.

For each scenario, one hundred datasets each containing 1000 individuals were simulated with MATLAB. All estimation procedures were performed using MONOLIX 3.1.

Overview of studied scenarios is shown in Table I. For more details on the simulation design used, reader is kindly asked to refer to the original publication of Jönsson et al [START_REF] Jonsson | Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED[END_REF]. For simplicity in the notations, all these formula are vectorial formula which holds for each component of Outcomes of all Monte-Carlo simulation studies exploring both, the parameter estimation procedure and estimation of Fisher information matrix, were presented as box-plots of relative estimation errors (REE) where bias and imprecision of the method, as defined by equation 8b and 8c, can easily be visualized.

Evaluation of the SAEM algorithm and the standard error estimates

CPU times needed for estimation of (i) population parameters, (ii) Empirical Bayes

Estimates (EBEs) which are individual random effects and (iii) standard error estimates, were also measured to assess the efficiency of the algorithm and the runtime for the analysis.

Illustration on a real data

The well-known real PKPD dataset of warfarin was used to evaluate novel SAEM algorithm and its ability to simultaneously analyse continuous and categorical data. The data were collected in 33 patients after a single dose of warfarin for 140h post dose. In total 251 pharmacokinetic (PK) observations and 232 pharmacodynamic (PD) observations (corresponds to inhibition of prothrombin complex synthesis -PCA (%))

were available [START_REF] O'reillyand | Studies on coumarin anticoagulant drugs. Initiation of warfarin therapy without a loading dose[END_REF][START_REF] O'reilly | Studies on the Coumarin Anticoagulant Drugs: The Pharmacodynamics of Warfarin in Man[END_REF]. Original PD variable was continuous variable expressed in percentages (0 -100 %); however for our purpose, we categorized the PCA variable into three ordered categories: 0 (if PCA is more than 50%), 1 (if PCA is between 33% and 50%) and 2 (if PCA was less than 33%). Of note, categorization of the continuous variable is done for illustration purpose only and it is not recommended to be done in Results:

Simulation study

Overall, the estimation procedure with the SAEM algorithm for mixed categorical data models, showed satisfactory performance with low bias and high precision.

Convergence was 100% for both parameter and standard error estimation. For parameter estimation, the absolute value of relative bias was less than 7.9% and 8.13%

for fixed effects and the random effect variances and RRMSE was less than 27% and 30% for fixed effects and the random effect variances over all tested scenarios. For standard error estimation, the absolute value of relative bias was less than 3.4% and 5.8% for fixed effects and random effect variances and RRMSE was less than 2.3% and 5.6% for fixed effects and random effect variances. The random effect variances, shown to be severely biased when estimated with Laplace method implemented in NONMEM (8) (8), were precisely estimated with SAEM, exhibiting relative bias ranging from 0.03% -8.13% across all studied scenarios. Detailed results for each scenario are listed below.

The distribution of REE for all scenarios and all parameter and standard error estimates are shown in Figure 2A-E 

Illustration of a real data

With respect to the warfarin real data example, both parameter and standard error estimation was successful. Estimation procedure was completed in less than 2 minutes, for the model containing 8 typical parameters, 6 variances and 2 residual error 

Discussion

The new SAEM algorithm has been developed, implemented and evaluated for application to categorical data models in the non-linear mixed effects framework. Five different scenarios using proportional odds model were evaluated, including those with non-even distribution of response categories. The algorithm was also implemented for computation of Fisher Information matrix in order to assess the uncertainty estimate.

The SAEM algorithm performed well under all tested model scenarios resulting in accurate and precise estimation of all parameters. Variances of scenarios with non-even distribution of response categories were accurately and precisely estimated, which was not reported previously in analysis with LAPLACE method (8). Shrinkage in EBE leads to linearization around zero for the random effects, close to a FO method, which is known to be biased [START_REF] Karlssonand | Diagnosing model diagnostics[END_REF][START_REF] Savicand | Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions[END_REF]. Additionally, random effects enter models in a non-linear fashion; therefore these are most likely to suffer from the poor integral approximation, which was indeed observed in the previous work with severely biased variances [START_REF] Jonsson | Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED[END_REF]. Gaussian quadrature method, as implemented in SAS, performed better than LAPLACE due to better numerical approximation of the likelihood integral , therefore EBE shrinkage influence was less pronounced compared to the LAPLACE approximation (8). Similar pattern was also observed when performance of these estimation methods was evaluated for count data [START_REF] Plan | Performance in population models for count data, part I: maximum likelihood approximations[END_REF]. Of note, it has been reported that this Gaussian Quadrture may become unstable and time consuming for more complex type of problems (7, 21).

The SAEM algorithm does not involve any likelihood estimation conditioned on EBEs

or any approximation of the model in computation of the likelihood integral and therefore does not suffer from any related biases. SAEM simulates large number of individual parameters using not only conditional modes, but also conditional variances at the current iteration. These conditional variances are large; therefore EBE shrinkage is not a problem under these circumstances.

Of note, small significant bias was observed in Scenario D for estimation of β 1 parameter, which is magnitude of treatment effect. This bias is most likely related to the small number of observations per subject as it disappeared when the number of observations per subject was increased.

The SAEM algorithm provides estimation of both the likelihood and Fisher information matrix, without linearization of the model. This is a favorable property of the algorithm, which leads to accurate and unbiased parameter and standard error estimates. The importance of unbiased standard error estimates has seldom been the topic of discussion. Standard errors are utilized in different aspects of pharmacometrics -they are an important aspect of prospective simulations, determination of the optimal study design, Wald test and exploration of competing study design scenarios .The SAEM algorithm appeared to satisfy requisite precision and unbiased estimates of parameter uncertainty.

In the previous analysis reported by Jönsson et al [START_REF] Jonsson | Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED[END_REF] authors concluded that CPU time was not too burdensome and estimations were generally fast for methods investigated. The SAEM algorithm is easily applied for simultaneous modeling of continuous and discrete data and the most common application of this feature is in development of the PKPD models, with discrete PD variable. This case was also illustrated in our example with warfarin data. The advantages of simultaneous over sequential PKPD analysis has been demonstrated previously [START_REF] Zhang | Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance[END_REF][START_REF] Zhang | Simultaneous vs. sequential analysis for population PK/PD data II: robustness of methods[END_REF], however to our knowledge such an analysis when PD variable is discrete has never been reported in the literature, even though simultaneous modeling of continuous and discrete data is possible with NONMEM VI.

The reason for that is that LAPLACE algorithm often becomes unstable whenever the model structure is more complex. The new SAEM algorithm as implemented in MONOLIX offer simple model coding and fast and stable estimation procedure.

The SAEM algorithm, which forms the core of MONOLIX is a freeware available at http://www.monolix.org and is based on thoroughly evaluated and documented thorough statistical theory. Monolix is an ongoing project implementing new statistical developments in a dynamic environment. The new version of MONOLIX program includes the extension of the algorithm for the analysis ordered categorical data as well as for count data [START_REF] Savicand | Performance in population models for count data, part II: a new SAEM algorithm[END_REF].

Conclusions

In conclusion, SAEM algorithm has been extended for the analysis of ordered categorical data. The parameters and standard errors are precisely and accurately estimated. The estimation procedure is stable and fast. Algorithm is easily extended for simultaneous modelling of continuous and discrete data. 
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  allow a fair comparison with other algorithms, we used identical scenarios as presented previously in the paper of Jönsson et al where authors explored performance of Laplace and Adaptive Gaussian quadrature algorithms (8). Overall, five different scenarios (A-E) were used. In all scenarios response was a four level categorical variable that takes its values in {0,1, 2,3}. Scenarios A-C describe a baseline model 𝑙𝑜𝑔𝑖𝑡 𝑃(𝑦 𝑖𝑗 ≥ 𝑚) = 𝑎 1 + … + 𝑎 𝑚 + 𝜂 𝑖 ; 1 ≤ 𝑚 ≤ 3 Equation 5 with three different distributions of response categories: even (scenario A), moderately skewed (scenario B) and skewed (scenario C).

  ,), while the drug model was implemented as a linear function of the dose (𝑑 𝑖𝑗 = 0 𝑖𝑓 𝑗 = 1and 𝑑 𝑖𝑗 = 0,7.5,15,30 𝑖𝑓 𝑗 = 1,2,3,4 respectively. The distribution of response categories was even (scenario D) and skewed (scenario E).

For𝑹𝑩

  each scenario, the SAEM algorithm was used with the K=100 simulated datasets for computing the K parameter estimates, 𝜽 𝒌 , 𝒌 = 𝟏, … 𝑲 . The Fisher information matrix was also estimated for each data set, and its inverse was used to compute the K standard error estimates, 𝒔𝒆 𝒌 , 𝒌 = 𝟏, … 𝑲 . The empirical standard errors se* (i.e. the RMSE) were computed by equation 7:   stands for the true parameter value. To assess statistical properties of the proposed estimators, for each parameter, relative estimation errors 𝑹𝑬𝑬 𝜽 𝒌 , 𝒌 = 𝟏, … 𝑲 were computed as shown in equation 8a, where 𝒙 𝒌 = 𝜽 𝒌 . Similarly, for each estimated parameter standard error, relative estimation error 𝑹𝑬𝑬 𝒔𝒆 𝒌 , 𝒌 = 𝟏, … 𝑲 was computed, as shown in Equation 8a, where 𝒙 𝒌 = 𝒔𝒆 𝒌 . Each REE is expressed as a percentage (%). From the REEs, relative bias (RB), and relative root mean square errors (RRMSE) were computed for each parameter in each scenario as shown in Equations 8b-c. 𝑹𝑬𝑬 𝒙 𝒌 = 𝒙 𝒌 -𝒙 * 𝜽 * × 𝟏𝟎𝟎 Equation 8a 𝟏𝟎𝟎 𝒂𝒏𝒅 𝒙 = 𝜽 𝒐𝒓 𝒔𝒆 Equation 8c

the real analysis.

  The cut-offs chosen, are close to international normalized ration (INR) values commonly used in clinical practice to target optimal warfarin therapy. Low INR values (< 2) are associated with high risk of having a cloth (corresponding to category 0), high INR values (>3) with high risk of bleeding (corresponding to category 2), while targeted value of INR, corresponding to optimal therapy is in between 2 and 3 (corresponding to category 1).. The raw PKPD data are shown in Figure 1. The PK model fitted was one compartment model with first order absorption and a lag time. Effect compartment model was used to mimic an effect delay. Proportional odds model with random intercept was used to fit ordered categorical response. The drug model was a linear function of warfarin concentration.
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 3 Figure 3. The output of MONOLIX run representing parameter estimates and respective

  The explanation for previously observed biases with LAPLACE was related to the poor approximation of the likelihood integral. Similarly to FOCE (first order conditional estimation approximation), LAPLACE approximation likelihood estimation computes and it involves linearization of the likelihood function by means of estimating EBEs at each iteration step. Whenever the estimated EBE distribution does not reflect the true random effect distribution, the method is expected to perform poorly. Reason for deviations of EBE distribution from the true random effect distribution is due to shrinkage phenomenon. Whenever data are sparse, which may be due to design, variability or the model itself, individual random effects will shrink toward zero and empirical variance of EBE will be smaller than the corresponding estimated Ω.

This was similarly observed

  with the new SAEM algorithm, with the median time for parameter estimation being less than half a minute. This is somewhat slower than reported times with LAPLACE (9.87 -17.1 s) and in the lower range of the reported times with Gaussian Quadrature (5.92 -165 s), for different GQ methods for scenario D and E). Of note, LAPLACE and GQ runs were performed on the computer with slightly faster processor (Pentium 2.8 GHz vs Intel 2.40 GHz for SAEM). All studied models converged successfully (100%), for both parameter estimation and standard error estimation with average CPU time being measured in seconds.
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Figure 3 .
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maximum likelihood estimate of  computed with SAEM. The Fisher Information matrix is defined as -

  𝝏 𝜽 𝟐 𝒍(𝒚; 𝜽 ) where 𝒍(𝒚; 𝜽 )

is the log-likelihood of the observations, computed with 𝜽 = 𝜽 . Several numerical experiments have shown that linearization of the model for estimating the Fisher information matrix (as implemented in MONOLIX 2.4) is satisfactory in case of continuous data (15). In this case, the linearization of the structural model allows transformation of the non- linear model into a Gaussian model, for which one the Fisher information matrix can be computed in a closed form. However

  

, this approach cannot be applied for discrete data models. As alternative we propose to compute a stochastic approximation of the Fisher Information matrix using the Louis formula (see

[START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF] 

for more details): 𝜕 𝜃 2 𝑙 𝑦; 𝜃 = 𝐸 𝜕 𝜃 2 𝑙 𝛾, 𝜂; 𝜃 ;𝛾| 𝜃 + 𝑉𝑎𝑟(𝜕 𝜃 𝑙 𝛾, 𝜂; 𝜃 ;𝛾| 𝜃) Equation 4

for parameter, EBEs and standard error estimation are given in Table IV, for all studied scenarios.

  . The numerical results showing accuracy and precision for parameter estimation, measured as relative bias and relative root mean square error, are shown in Table II. The numerical results showing accuracy and precision for relative standard error estimation, measured as bias and root mean square error, are shown in

	The average CPU (Central Processing Unit) time per run over all scenarios was 29.6 s for
	parameter estimation, and 6.5 s for standard error estimation, with Matlab/C++
	implementation of the algorithm, when ran on laptop DELL D830 2.40GHz configuration.
	Median CPU times
	Table III indicating low bias (<5.78%) and high precision (RRMSE<7.42)

Table legend Table I .

 legendI Original study design and simulation settings. Distribution of response categories for originally simulated data sets and true parameter values used in simulations are presented.

Table II .

 II Relative bias and relative root mean square error (in %) for parameter estimates for all studied scenarios. These

results correspond to the visual ones shown in the left panel of Figures 2a-e.Table III . Relative bias and relative root mean square error (in %) for standard error estimates for all studied scenarios. These results correspond to the visual ones shown in the right panel of Figures 2a-e. Table IV. Median CPU time for parameter, EBE and standard error estimations for all studied scenarios.

 III 

Acknowledgments

Radojka Savic was financially supported by a Postdoc grant from the Swedish Academy of Pharmaceutical Sciences (Apotekarsocieteten). We thank MONOLIX team, Hector Mesa and Kaelig Chatel for their help with implementation of the algorithm in the MONOLIX software. We also thank two anonymous reviewers for their valuable comments on the manuscript.