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Abstract: 

Introduction:  Analysis of longitudinal ordered categorical efficacy or safety data in 

clinical trials using mixed models is increasingly performed. However, algorithms 

available for maximum likelihood estimation using an approximation of the likelihood 

integral, including LAPLACE approach, may give rise to biased parameter estimates. The 

SAEM algorithm is an efficient and powerful tool in the analysis of continuous/count 

mixed models. The aim of this study is to implement and investigate the performance of 

the SAEM algorithm for longitudinal categorical data. 

 

Methods: The SAEM algorithm is extended for parameter estimation in ordered 

categorical mixed models together with an estimation of the Fisher information matrix 

and the likelihood.  We used Monte Carlo simulations using previously published 

scenarios evaluated with NONMEM. Accuracy and precision in parameter estimation 

and standard error estimates were assessed in terms of relative bias and root mean 

square error. This algorithm was illustrated on the simultaneous analysis of 

pharmacokinetic and discretized efficacy data obtained after single dose of warfarin in 

healthy volunteers.  

 

Results: The new SAEM algorithm is implemented in MONOLIX 3.1 for discrete mixed 

models. The analyses show that for parameter estimation, the relative bias is low for 

both fixed effects and variance components in all models studied. Estimated and 
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empirical standard errors are similar.  The warfarin example illustrates how simple and 

rapid it is to analyze simultaneously continuous and discrete data with MONOLIX 3.1 

 

Conclusions: The SAEM algorithm is extended for analysis of longitudinal categorical 

data. It provides accurate estimates parameters and standard errors. The estimation is 

fast and stable.  
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Introduction:  

Mixed effect analyses are increasingly employed for the analysis of longitudinal efficacy 

or safety categorical data measured in clinical trials (1-5). For this purpose, proportional-

odds model are frequently used. Other models, such as differential-odds model has also 

been proposed (6). Results from these analyses, i.e. models along with parameter 

estimates, are often further utilized for simulation of novel scenarios with respect to 

new dosing schedules or new patient populations. It is also advocated that these models 

should be used as an essential part of drug development programs. Therefore it is 

critical that these parameter estimates are unbiased and reliable.    

We focus here on maximum likelihood estimation. However, as in all nonlinear mixed 

models, the integral of the likelihood function cannot be explicitly solved and various 

approximations are employed to approximate the true likelihood (7). The most 

commonly used approximation is Laplace, available in the software NONMEM.  Bias in 

parameter estimates  for these models with NONMEM VI and SAS v.8 has been studied 

in detail and it has been shown that the use of Laplace approximation may result in 

severely biased estimates, especially when response categories are non-evenly 

distributed within the studied population (8). This is common when analyzing clinical 

data and therefore the importance of using exact evaluations of the likelihood integral 

is further accentuated.  

SAS implements a more exact evaluation of the likelihood using Adaptive Gaussian 

Quadrature . However this approach is time consuming, can be applied to models with 
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limited number of random effects, and is not flexible for the analysis of 

pharmacokinetic/pharmacodynamic data after various repeated dosage regimen (9) 

In recent years, there have been several approaches/algorithms developed for the 

analysis of continuous data which are able to find maximum likelihood estimates 

without a need to compute the likelihood numerically (10, 11) . A stochastic 

approximation version of EM algorithm linked to a Markov Chain Monte Carlo 

procedure has been suggested for maximum likelihood estimation within the non-linear 

mixed effects framework (11, 12). This procedure has been demonstrated to possess 

excellent statistical convergence properties as well as the ability to provide an estimator 

close to the maximum likelihood estimate in only a few iterations (12, 13).  In addition 

to the estimation of the maximum likelihood parameters, the SAEM algorithm also 

provides the user with the estimate of the Fisher Information Matrix, used to assess 

parameter estimate uncertainty. However, there have not been studies reported with 

respect to application of the stochastic algorithms to the analysis of the ordered 

categorical data  

The aims of this study were (i) to extend the SAEM algorithm for estimation of 

parameters in categorical data mixed models, (ii) to evaluate its performance both for 

parameter and standard errors estimation via Monte Carlo simulation study and, (iii) to 

illustrate the performance of the algorithm on a real data example where both 

continuous PK and discrete PD data are simultaneously analyzed. 
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A proportional odds model with individual-specific random effect has been employed 

throughout the exercise to study properties of the new SAEM algorithm. This model has 

been used in the area of PKPD modeling (2, 5, 14) and has been presented in detail 

elsewhere (2, 5, 8, 14).    

 

 

Methods:  

The proportional odds model with random intercept 

We assume that the response is an ordered categorical variable which takes its values in  

(0,1,…,M). Let yij be the jth observation in the ith individual, i = 1, …, N. In the proportional 

odds model with random intercept, the cumulative probability of  yij being larger or 

equal to m (m=1, …, M), can be defined by the following logistic regression model  

logit 𝑃 𝑦𝑖𝑗 ≥ 𝑚  = 𝛼1 +  …+  𝛼𝑚 +  𝑕(𝛽, 𝑥𝑖𝑗 ) + 𝜂𝑖  Equation 1 

where logit denotes the logit function,  𝛼1 +  …+  𝛼𝑚  specifies the baseline for category 

m (m=1, …, M); h is the function defining predictors or covariate effect, β is a vector of 

fixed effects which is the same across all categories, xij is the predictor vector (e.g. time, 

dose, concentrations) for observation j of individual i and ηi is the random effect  of 

individual i. It is assumed that the random effects are normally distributed with mean 0 

and variance ω2.  
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Implementation of the SAEM algorithm for categorical data models 

The SAEM algorithm described in [7] for continuous data models has been extended to 

the ordered categorical data models in a similar manner as it has been done for the 

count data models (13).  Let 𝜇 =  𝜶𝟏, 𝜶𝟐, … , 𝜶𝑴, 𝜷𝟏, 𝜷𝟐…𝜷𝑳  be the vector of fixed 

effects of the model and  be the variance-covariance matrix of the random effects i  

(in our example,i  is scalar and reduces to the variance ω2 of i). Then, SAEM is an 

iterative procedure where at iteration k, a new set of random effects (k) =(i
(k)) is drawn 

with the conditional distribution 𝑝(𝜂| 𝑦 ;  𝜇 𝑘 ,Ω 𝑘 ). Then, the new population 

parameters  𝜇 𝑘+1 ,Ω 𝑘+1   are obtained by maximizing 𝑄𝑘+1 𝜇, Ω  defined as follows: 

𝑄𝑘+1 𝜇, Ω = 𝑄𝑘 𝜇, Ω +  𝛾𝑘  𝑙 𝑦, 𝜂(𝑘); 𝜇, Ω − 𝑄𝑘 𝜇, Ω   Equation 2 

where 𝑙 𝑦, 𝜂; 𝜇, Ω is the complete log-likelihood 

𝑙 𝑦, 𝜂; 𝜇, Ω =  log 𝑝 𝑦𝑖|𝜂𝑖 ; 𝜇 × 𝑝 𝜂𝑖 ; Ω  

𝑖

 Equation 3 

and where (k) is a decreasing sequence of step sizes. For the numerical experiments 

presented below, we used k = 1 during the first 200 iterations of SAEM and k=1/(k-200) 

during the next 100 iterations.  

An MCMC algorithm was used for the simulation step (see [7,8] for more details). 

 

Estimation of the Fisher information matrix 

Let  ( ) be the set of population parameters to be estimated, and let 𝜽   be the 

maximum likelihood estimate of   computed with SAEM. The Fisher Information 
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matrix is defined as −𝝏𝜽
𝟐𝒍(𝒚; 𝜽 )    where  𝒍(𝒚; 𝜽 ) is the log-likelihood of the 

observations, computed with 𝜽 = 𝜽 . 

Several numerical experiments have shown that linearization of the model for 

estimating the Fisher information matrix (as implemented in MONOLIX 2.4) is 

satisfactory in case of continuous data (15).  

In this case, the linearization of the structural model allows transformation of the non- 

linear model into a Gaussian model, for which one the Fisher information matrix can 

be computed in a closed form. 

However, this approach cannot be applied for discrete data models. As alternative we 

propose to compute a stochastic approximation of the Fisher Information matrix using 

the Louis formula (see (11) for more details): 

 

 

 

𝜕𝜃
2𝑙 𝑦; 𝜃  = 𝐸 𝜕𝜃

2𝑙 𝛾, 𝜂; 𝜃 ׀𝛾; 𝜃 + 𝑉𝑎𝑟(𝜕𝜃 𝑙 𝛾, 𝜂; 𝜃 ׀𝛾; 𝜃) 

 

Equation 4 

 

The procedure consists in computing first 𝜃  with SAEM then applying the Louis formula 

with  𝜃 = 𝜃 which requires the computation of the conditional expectation and 

conditional variance defined in equation 4. These quantities are estimated by Monte-

Carlo: 300 iterations of MCMC were performed for the numerical experiments. All 
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extensions for SAEM algorithm described here have been implemented in software 

MONOLIX 3.1. 

 

Simulation settings 

The performance of the SAEM algorithm was evaluated via Monte Carlo simulation-. To 

allow a fair comparison with other algorithms, we used identical scenarios as presented 

previously in the paper of Jönsson et al where authors explored performance of Laplace 

and Adaptive Gaussian quadrature algorithms (8). Overall, five different scenarios (A-E) 

were used.  In all scenarios response was a four level categorical variable that takes its 

values in {0,1, 2,3}. Scenarios A-C describe a baseline model 

 

𝑙𝑜𝑔𝑖𝑡 𝑃(𝑦𝑖𝑗 ≥ 𝑚) = 𝑎1 +  …+ 𝑎𝑚 + 𝜂𝑖  ; 1 ≤ 𝑚 ≤ 3 

 

Equation 5 

 with three different distributions of response categories: even (scenario A), moderately 

skewed (scenario B) and skewed (scenario C).  

Scenario D-E included a specific baseline, placebo and drug model through two 

additional  parameters (Eq. 6) 

 

𝑙𝑜𝑔𝑖𝑡 𝑃(𝑦𝑖𝑗 ≥ 𝑚) = 𝑎1 + …+ 𝑎𝑚 + 𝛽1𝑐𝑖𝑗 + 𝛽2𝑑𝑖𝑗 + 𝜂1; 1 ≤ 𝑚 ≤ 3 

 

Equation 6 

The placebo model was implemented as a step function ( 𝑐𝑖𝑗 = 0 𝑖𝑓 𝑗 = 1    and 

𝑐𝑖𝑗 = 1 if 𝑗 = 2,3,4,), while the drug model was implemented as a linear function of the 
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dose (𝑑𝑖𝑗 = 0 𝑖𝑓 𝑗 = 1and 𝑑𝑖𝑗 = 0,7.5,15,30 𝑖𝑓 𝑗 = 1,2,3,4 respectively. The distribution 

of response categories was even (scenario D) and skewed (scenario E). 

Typical parameter values were chosen so as to mimic desired distribution of responses. 

The studied variance range was 0.5 - 40.  

For each scenario, one hundred datasets each containing 1000 individuals were 

simulated with MATLAB. All estimation procedures were performed using MONOLIX 3.1. 

Overview of studied scenarios is shown in Table I.  For more details on the simulation 

design used, reader is kindly asked to refer to the original publication of Jönsson et al 

(8). 

 

Evaluation of the SAEM algorithm and the standard error estimates   

For each scenario, the SAEM algorithm was used with the K=100 simulated datasets 

for computing the K parameter estimates, 𝜽 𝒌 , 𝒌 = 𝟏,…𝑲 . The Fisher information 

matrix was also estimated for each data set, and its inverse was used to compute the 

K standard error estimates, 𝒔𝒆 𝒌, 𝒌 = 𝟏,…𝑲 . The empirical standard errors se*  (i.e. 

the RMSE) were computed by equation 7: 

 

𝒔𝒆∗ =  
𝟏

𝑲
 (𝜽 𝒌  − 𝜽∗)𝟐
𝑲

𝒌=𝟏

 

 

Equation 7 

where  stands for the true parameter value. 



11 

 

To assess statistical properties of the proposed estimators, for each parameter, 

relative estimation errors 𝑹𝑬𝑬 𝜽 𝒌  , 𝒌 = 𝟏,…𝑲 were computed as shown in equation 

8a, where 𝒙𝒌 = 𝜽𝒌 .  Similarly, for each estimated parameter standard error, relative 

estimation error 𝑹𝑬𝑬 𝒔𝒆 𝒌 , 𝒌 = 𝟏,…𝑲 was computed, as shown in Equation 8a, 

where 𝒙𝒌 = 𝒔𝒆𝒌 . Each REE is expressed as a percentage (%).  From the REEs, relative 

bias (RB), and relative root mean square errors (RRMSE) were computed for each 

parameter in each scenario as shown in Equations 8b-c. 

𝑹𝑬𝑬 𝒙 𝒌 =
𝒙 𝒌 − 𝒙∗

𝜽∗
× 𝟏𝟎𝟎  Equation 8a 

 

𝑹𝑩(𝒙 ) =
𝟏

𝑲
 𝑹𝑬𝑬(𝒙 𝒌)

𝑲

𝒌=𝟏

 

 

Equation 8b 

𝑹𝑹𝑴𝑺𝑬(𝒙 ) =  
𝟏

𝑲
 𝑹𝑬𝑬(𝒙 𝒌)𝟐
𝑲

𝒌=𝟏

 

𝒘𝒉𝒆𝒓𝒆 𝑲 = 𝟏𝟎𝟎 𝒂𝒏𝒅 𝒙 = 𝜽 𝒐𝒓 𝒔𝒆  

Equation 8c 

 

For simplicity in the notations, all these formula are vectorial formula which holds for 

each component of Outcomes of all Monte-Carlo simulation studies exploring both, 

the parameter estimation procedure and estimation of Fisher information matrix, were 

presented as box-plots of relative estimation errors (REE) where bias and imprecision of 

the method, as defined by equation 8b and 8c, can easily be visualized.   
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CPU times needed for estimation of (i) population parameters, (ii) Empirical Bayes 

Estimates (EBEs) which are individual random effects and (iii) standard error 

estimates, were also measured to assess the efficiency of the algorithm and the 

runtime for the analysis.   

 

Illustration on a real data  

 

The well-known real PKPD dataset of warfarin was used to evaluate novel SAEM 

algorithm and its ability to simultaneously analyse continuous and categorical data. The 

data were collected in 33 patients after a single dose of warfarin for 140h post dose. In 

total 251 pharmacokinetic (PK) observations and 232 pharmacodynamic (PD) 

observations (corresponds to inhibition of prothrombin complex synthesis – PCA (%)) 

were available (16, 17). Original PD variable was continuous variable expressed in 

percentages (0 – 100 %); however for our purpose, we categorized the PCA variable into 

three ordered categories: 0 (if PCA is more than 50%), 1 (if PCA is between 33% and 

50%) and 2 (if PCA was less than 33%). Of note, categorization of the continuous 

variable is done for illustration purpose only and it is not recommended to be done in 

the real analysis. The cut-offs chosen, are close to international normalized ration (INR) 

values commonly used in clinical practice to target optimal warfarin therapy. Low INR 

values (< 2) are associated with high risk of having a cloth (corresponding to category 0), 

high INR values (>3) with high risk of bleeding (corresponding to category 2), while 
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targeted value of INR, corresponding to optimal therapy is in between 2 and 3 

(corresponding to category 1).. The raw PKPD data are shown in Figure 1. The PK model 

fitted was one compartment model with first order absorption and a lag time. Effect 

compartment model was used to mimic an effect delay. Proportional odds model with 

random intercept was used to fit ordered categorical response. The drug model was a 

linear function of warfarin concentration.



14 

 

Results: 

Simulation study 

Overall, the estimation procedure with the SAEM algorithm for mixed categorical data 

models, showed satisfactory performance with low bias and high precision. 

Convergence was 100% for both parameter and standard error estimation. For 

parameter estimation, the absolute value of relative bias was less than 7.9% and 8.13% 

for fixed effects and the random effect variances and RRMSE was less than 27% and 

30% for fixed effects and the random effect variances over all tested scenarios. For 

standard error estimation, the absolute value of relative bias was less than 3.4% and 

5.8% for fixed effects and random effect variances and RRMSE was less than 2.3% and 

5.6% for fixed effects and random effect variances. The random effect variances, shown 

to be severely biased when estimated with Laplace method implemented in NONMEM 

(8) (8), were precisely estimated with SAEM, exhibiting relative bias ranging from 0.03% 

– 8.13% across all studied scenarios. Detailed results for each scenario are listed below. 

The distribution of REE for all scenarios and all parameter and standard error estimates 

are shown in Figure 2A-E. The numerical results showing accuracy and precision for 

parameter estimation, measured as relative bias and relative root mean square error, 

are shown in Table II. The numerical results showing accuracy and precision for relative 

standard error estimation, measured as bias and root mean square error, are shown in 

Table III indicating low bias (<5.78%) and high precision (RRMSE<7.42) 
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The average CPU (Central Processing Unit) time per run over all scenarios was  29.6 s for 

parameter estimation, and 6.5 s for standard error estimation, with Matlab/C++ 

implementation of the algorithm, when ran on laptop DELL D830 2.40GHz configuration. 

Median CPU times for parameter, EBEs and standard error estimation are given in 

Table IV, for all studied scenarios. 

 

Illustration of a real data 

With respect to the warfarin real data example, both parameter and standard error 

estimation was successful. Estimation procedure was completed in less than 2 minutes, 

for the model containing 8 typical parameters, 6 variances and 2 residual error 

parameters. The example of the model implementation in MONOLIX 3.1 is shown in 

Figure 3. The output of MONOLIX run representing parameter estimates and respective 

standard errors is shown in Figure 4. Figure 5 shows change over time of probability of 

each response category, based on the simulations from the final model.  
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Discussion 

The new SAEM algorithm has been developed, implemented and evaluated for 

application to categorical data models in the non-linear mixed effects framework.  Five 

different scenarios using proportional odds model were evaluated, including those with 

non-even distribution of response categories.  The algorithm was also implemented for 

computation of Fisher Information matrix in order to assess the uncertainty estimate.  

The SAEM algorithm performed well under all tested model scenarios resulting in 

accurate and precise estimation of all parameters. Variances of scenarios with non-even 

distribution of response categories were accurately and precisely estimated, which was 

not reported previously in analysis with LAPLACE method (8). The explanation for 

previously observed biases with LAPLACE was related to the poor approximation of 

the likelihood integral. Similarly to FOCE (first order conditional estimation 

approximation), LAPLACE approximation likelihood estimation computes and it 

involves linearization of the likelihood function by means of estimating EBEs at each 

iteration step. Whenever the estimated EBE distribution does not reflect the true 

random effect distribution, the method is expected to perform poorly. Reason for 

deviations of EBE distribution from the true random effect distribution is due to 

shrinkage phenomenon.  Whenever data are sparse, which may be due to design, 

variability or the model itself, individual random effects will shrink toward zero and 

empirical variance of EBE will be smaller than the corresponding estimated Ω.  

Shrinkage in EBE leads to linearization around zero for the random effects, close to a FO 
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method, which is known to be biased (18, 19).  Additionally, random effects enter 

models in a non-linear fashion; therefore these are most likely to suffer from the poor 

integral approximation, which was indeed observed in the previous work with severely 

biased variances  (8). Gaussian quadrature method, as implemented in SAS, performed 

better than LAPLACE due to better numerical approximation of the likelihood integral , 

therefore EBE shrinkage influence was less pronounced compared to the LAPLACE 

approximation (8). Similar pattern was also observed when performance of these 

estimation methods was evaluated  for count data (20). Of note, it has been reported 

that this Gaussian Quadrture may become unstable and time consuming for more 

complex type of problems (7, 21). 

The SAEM algorithm does not involve any likelihood estimation conditioned on EBEs 

or any approximation of the model in computation of the likelihood integral and 

therefore does not suffer from any related biases.   SAEM simulates large number of 

individual parameters using not only conditional modes, but also conditional variances 

at the current iteration. These conditional variances are large; therefore EBE shrinkage 

is not a problem under these circumstances.   

Of note, small significant bias was observed in Scenario D for estimation of β1 

parameter, which is magnitude of treatment effect. This bias is most likely related to 

the small number of observations per subject as it disappeared when the number of 

observations per subject was increased. 
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The SAEM algorithm provides estimation of both the likelihood and Fisher information 

matrix, without linearization of the model. This is a favorable property of the algorithm, 

which leads to accurate and unbiased parameter and standard error estimates.  The 

importance of unbiased standard error estimates has seldom been the topic of 

discussion. Standard errors are utilized in different aspects of pharmacometrics – they 

are an important aspect of prospective simulations, determination of the optimal study 

design, Wald test and exploration of competing study design scenarios .The SAEM 

algorithm appeared to satisfy requisite precision and unbiased estimates of parameter 

uncertainty.   

In the previous analysis reported by Jönsson et al (8) authors concluded that CPU time 

was not too burdensome and estimations were generally fast for methods investigated. 

This was similarly observed with the new SAEM algorithm, with the median time for 

parameter estimation being less than half a minute. This is somewhat slower than 

reported times with LAPLACE (9.87 – 17.1 s) and in the lower range of the reported 

times with Gaussian Quadrature (5.92 – 165 s), for different GQ methods for scenario 

D and E). Of note, LAPLACE and GQ runs were performed on the computer with 

slightly faster processor (Pentium 2.8  GHz vs Intel 2.40 GHz for SAEM). All studied 

models converged successfully (100%), for both parameter estimation and standard 

error estimation with average CPU time being measured in seconds.  

The SAEM algorithm is easily applied for simultaneous modeling of continuous and 

discrete data and the most common application of this feature is in development of the 
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PKPD models, with discrete PD variable. This case was also illustrated in our example 

with warfarin data.  The advantages of simultaneous over sequential PKPD analysis has 

been demonstrated previously (22, 23), however to our knowledge such an analysis 

when PD variable is discrete has never been reported in the literature, even though 

simultaneous modeling of continuous and discrete data is possible with NONMEM VI.  

The reason for that is that LAPLACE algorithm often becomes unstable whenever the 

model structure is more complex.  The new SAEM algorithm as implemented in 

MONOLIX offer simple model coding and fast and stable estimation procedure.   

The SAEM algorithm, which forms the core of MONOLIX is a freeware available at 

http://www.monolix.org and is based on thoroughly evaluated and documented 

thorough statistical theory. Monolix is an ongoing project implementing new statistical 

developments in a dynamic environment. The new version of MONOLIX program 

includes the extension of the algorithm for the analysis ordered categorical data as well 

as for count data(13). 

 

Conclusions 

In conclusion, SAEM algorithm has been extended for the analysis of ordered categorical 

data. The parameters and standard errors are precisely and accurately estimated. The 

estimation procedure is stable and fast. Algorithm is easily extended for simultaneous 

modelling of continuous and discrete data.  

http://www.monolix.org/
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Table legend 

Table I.  Original study design and simulation settings. Distribution of response categories for 

originally simulated data sets and true parameter values used in simulations are presented.  

 

Table II. Relative bias and relative root mean square error (in %) for parameter estimates for all 

studied scenarios.  These results correspond to the visual ones shown in the left panel of 

Figures 2a-e. 

 

Table III.  Relative bias and relative root mean square error (in %) for standard error estimates 

for all studied scenarios.  These results correspond to the visual ones shown in the right panel 

of Figures 2a-e. 

 

Table IV.  Median CPU time for parameter, EBE and standard error estimations for all studied 

scenarios.   
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Figure legend: 

 

Figure 1.  Observed pharmacokinetic (left panel) and pharmacodynamic (right panel) data of 

warfarin. The categorization of the continuous PD variable (PCA) is visualized with the horizontal 

lines representing cut-off values.  

 

Figure 2A-E. Distribution of relative estimation error (REE) for all parameters (left panel) and 

standard errors (right panel) across all the models. The errors (y-axes) are given as percentages 

(%). 

 

Figure 3.  Implementation of the simultaneous analysis of continuous and discrete data in 

MONOLIX for the warfarin dataset. Pharmacokinetics is described with one compartment model 

with first order absorption and a lag time. Effect compartment model is used to mimic the effect 

delay. Proportional odds model is used to fit ordered categorical PD variable.    

 

Figure 4. MONOLIX output for real data example. Parameter estimates are shown along with 

their standard error estimates.  

 

Figure 5. Probability change over time for each warfarin response category, based on the 

simulations from the final model 
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Table I  

Scenario 1  2  3 1 2 ω
2
 

Proportions 
0/1/2/3 (%) 

A 
(baseline) 

1.85 -1.85 -1.85 - - 4 
25/25/25/25 2.47 -2.46 -2.42 - - 10 

4.46 -4.44 -4.41 - - 40 

B 
(baseline) 

-2.45 -1.375 -1.50 - - 4 
82.5/10/5/2.5 -3.34 -1.84 -1.99 - - 10 

-6.02 -3.28 -3.55 - - 40 

C 
(baseline) 

-2.383 -0.775 -0.965 - - 0.5 

90/5/3/2 
-2.865 -0.877 -1.05 - - 2 
-3.39 -1.01 -1.19 - - 4 
-4.59 -1.35 -1.58 - - 10 
-8.25 -2.43 -2.86 - - 40 

D 
(baseline 

placebo+drug) 
1.85 -1.85 -1.85 0.483 0.046 4 25/25/25/25 

E 
(baseline 

placebo+drug) 

-3.538 -0.447 -1.02 1.318 0.024 0.5 
96.5/1.2/1.4/0.9 -4.882 -0.548 -1.183 1.548 0.030 4 

-11.815 -1.322 -2.962 3.851 0.072 40 
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Table II  

Simulation Parameter estimates: Relative bias (%) 
Relative RMSE (%)  

Scenario 

      




A 

4 
-0.30 -0.09 -0.43 - - -0.11 
4.45 2.88 2.82 - - 7.89 

10 
-0.08 -0.23 -0.08 - - -0.23 
5.14 3.36 5.14 - - 3.36 

40 
0.69 -0.12 0.41 - - -0.03 
5.78 3.71 3.68 - - 8.11 

B 

4 
0.11 0.20 0.26 - - -0.42 
4.10 5.29 6.99 - - 11.39 

10 
0.18 0.54 -0.47 - - 0.12 
5.53 5.22 7.01 - - 10.82 

40 
1.63 -0.03 0.49 - - 3.01 
7.41 5.80 8.03 - - 13.29 

C 

0.5 
-0.21 1.15 -2.46 - - -8.13 
3.00 7.25 9.27 - - 30.34 

2 
-0.59 0.86 -0.49 - - -3.41 
3.75 7.78 8.43 - - 16.79 

4 
-0.04 1.29 -0.84 - - -0.44 
4.24 7.48 9.76 - - 14.39 

10 
1.28 0.43 0.49 - - 3.18 
5.56 6.38 10.10 - - 14.45 

40 
2.04 1.54 1.11 - - 4.94 
7.93 7.86 9.39 - - 17.68 

D 4 
-0.08 0.66 0.70 7.95 -0.84 1.16 
5.41 3.23 3.34 20.83 10.46 8.13 

E 

0.5 
-2.05 -1.31 -1.16 0.11 5.52 -7.46 
5.77 7.99 6.64 14.75 23.37 29.82 

4 
-0.21 -0.94 0.79 -2.74 2.62 2.40 
5.66 9.72 6.75 14.98 24.06 14.64 

40 
0.84 2.73 -0.44 -1.91 6.93 3.73 
6.90 9.27 7.77 10.86 27.45 15.95 
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Table III 

Simulation Standard error estimates: 
Relative bias (%) 
Relative RMSE (%)  

Scenario 

 se() se() se() se() se() se()

A 

4 
0.00 0.13 0.18 - - -0.67 
0.14 0.15 0.20 - - 0.87 

10 
-0.23 -0.25 0.17 - - -1.28 
0.30 0.27 0.20 - - 1.43 

40 
-0.30 -0.10 -0.02 - - -0.51 
0.39 0.24 0.19 - - 0.93 

B 

4 
0.35 -0.36 0.01 - - -0.69 
0.44 0.42 0.46 - - 1.39 

10 
-0.29 -0.26 -0.10 - - -0.40 
0.49 0.36 0.49 - - 1.40 

40 
-0.73 -0.53 -0.61 - - -1.56 
0.96 0.66 1.01 - - 2.34 

C 

0.5 
-0.17 -0.12 -0.09 - - -4.19 
0.43 0.37 0.69 - - 6.98 

2 
0.02 -0.73 0.70 - - -2.03 
0.35 0.82 0.98 - - 3.06 

4 
0.01 -0.46 -0.77 - - -1.56 
0.32 0.59 1.1 - - 2.19 

10 
-0.50 0.52 -1.23 - - -2.01 
0.68 0.66 1.43 - - 2.76 

40 
-1.58 -0.91 -0.28 - - -4.27 
1.73 1.09 1.01 - - 4.99 

D 4 
-0.02 0.06 -0.36 -0.08 1.27 -0.79 
0.14 0.11 0.37 0.28 1.29 0.97 

E 

0.5 
-1.69 -0.03 0.33 -1.79 -2.48 -5.78 
1.91 0.39 0.51 2.62 2.61 7.42 

4 
-0.73 -1.06 0.64 -0.11 3.37 -1.73 
0.89 1.18 0.77 0.99 3.64 2.52 

40 
-1.27 -0.63 -0.36 -0.35 -0.43 -2.36 
1.43 0.84 0.66 1.09 2.35 3.39 
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Table IV 

Median CPU time (s)a 

Scenario  2 Parameters EBE Standard errors 

A 
4 29.3 12.0 5.2 

40 27.9 11.2 5.1 

B 
4 28.5 11.4 5.4 

40 29.0 11.0 5.1 

C 
0.5 28.6 11.2 5.5 

40 28.7 11.4 5.2 

D 4 30.8 7.4 8.4 

E 

0.5 33.1 7.8 8.2 

4 30.1 9.5 8.3 

40 30.0 11.4 8.2 
a Laptop DELL D830 2.40GHz configuration was used with Matlab/C++ implementation 

of SAEM 
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Figure 1 
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Figure  2A 
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Figure 2B 
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Figure 2C 
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Figure 2D 
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Figure 2E 
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Figure 3 

$PROBLEM  

oral 1 with lag-time, effect compartment and ordered categorical data 

  
$MODEL 
COMP = (Qc) 
COMP = (Qe) 

  
$PSI  

Tlag ka V Cl ke0 alpha1 alpha2 beta 

  
$PK 
KA1 = ka 
ALAG1=Tlag 
k=Cl/V 

  
$ODE 
LINEAR 
DDT_Qc  = -k*Qc  
DDT_Qe  = ke0*Qc-ke0*Qe 

  
Cc=Qc/V 
Ce=Qe/V 

  
$CATEGORICAL(0,2) 
LOGIT1(Y>=2)=  alpha1 + beta*Ce  
LOGIT1(Y>=1)=  alpha1 + alpha2 + beta*Ce  

  
$OUTPUT 
OUTPUT1 = Cc 
OUTPUT2 = LL1 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 

 

 
Figure 4 
 

Estimation of the population parameters 

 

 

                       parameter   s.e. (s.a.)     r.s.e.(%)   

Tlag            :          0.9        0.19           21 

ka              :         1.45        0.54           37 

V               :         7.96        0.33            4 

Cl              :        0.132      0.0067            5 

ke0             :       0.0179       0.001            6 

alpha1          :        -10.5         1.6           15 

alpha2          :         5.41        0.92           17 

beta            :          4.5        0.56           12 

 

omega2_Tlag     :        0.252        0.15           59 

omega2_ka       :        0.689        0.46           66 

omega2_V        :       0.0478       0.013           28 

omega2_Cl       :       0.0797       0.021           26 

omega2_ke0      :       0.0229        0.02           87 

omega2_alpha1   :         8.74         4.3           49 

 

a               :        0.231       0.047           20 

b               :       0.0632      0.0092           15 
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Figure 5. 
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