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. We also consider some examples and in particular rigorously solve the gaussian case. We finally discuss convexity of functionals in the Wasserstein space.

Introduction

In this paper, we consider a nonlinear interpolation between several probability measures on R d . By analogy with the Euclidean case where the barycenter of points (x 1 , ..., x p ) with barycentric coordinates (λ 1 , .., λ p ) is obtained as the minimizer of x → p i=1 λ i |xx i | 2 , we propose the same procedure in the Wasserstein space by simply replacing the squared euclidean distance with the squared 2-Wasserstein distance. The notion of barycenter as a minimizer of an averaged squared distance is not new and has already been investigated in depth by Sturm [START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature[END_REF] in the framework of nonpositively curved metric spaces. It turns out however that the Wasserstein space is not nonpositively curved as illustrated by example 7.3.3 in the book of Ambrosio, Gigli and Savaré [START_REF] Ambrosio | gradient flows in metric spaces and in the space of probability measures[END_REF] and that much less is known on existence, uniqueness and properties of barycenters outside of the nonpositively curved case (see however the recent article of Ohta [START_REF] Ohta | Barycenters in Alexandrov spaces of curvature bounded below[END_REF] for the case of Alexandrov spaces of curvature bounded from below ). The properties of barycenters in the Wasserstein space (uniqueness issues in particular) therefore deserve in our opinion to be studied in their own right.

In the case of two probability measures, such an interpolation is already known as the McCann's interpolation [START_REF] Mccann | A convexity principle for interacting gases[END_REF] that led to the concept of displacement convexity that has proved to be a very powerful tool in the theory of gradient flows in the Wasserstein space as explained in [START_REF] Ambrosio | gradient flows in metric spaces and in the space of probability measures[END_REF]. Our interest in interpolating between more than two probability measures by minimizing an averaged sum of squared Wasserstein distances originated from the recent papers in mathematical economics by Carlier and Ekeland [START_REF] Carlier | Matching for teams[END_REF], and Chiappori, McCann and Nesheim [START_REF] Chiappori | Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness[END_REF] who studied matching and hedonic pricing problems by means of optimal transport techniques. Interestingly, such problems also arise in a very different applied setting in image processing for which we refer to the recent paper of Bernot, Delon, Peyré and Rabin [START_REF] Bernot | Wasserstein Barycenter and its Application to Texture Mixing[END_REF].

We will therefore study the following minimization problem inf

ν p i=1 λ i W 2 2 (ν i , ν) (1.1)
where the ν i 's are probability measures with finite second moments, the λ i 's are positive weights summing to 1, and W 2 2 denotes the squared 2-Wasserstein distance. We will establish existence and uniqueness (provided one of the ν i 's vanishes on small sets) of the solution to (1.1), and we will naturally refer to it as the barycenter of the measures ν i 's with weights λ i 's. We will also provide characterization and regularity results, and finally discuss some examples.

In section 2, we introduce a dual problem to (1.1) from which optimality conditions and uniqueness of the barycenter are derived in section 3. Section 4 relates the barycenter problem to the quadratic multi-marginal optimal transport problem considered by Gangbo and Świȩch in [START_REF] Gangbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF]. In Section 5, we establish an L ∞ regularity results for the barycenter. Section 6 is devoted to some examples. Finally, section 7 discusses various convexity properties of functionals of measures.

The primal problem and its dual

The space of continuous functions with at most quadratic growth,

Y := (1 + | . | 2 )C b (R d ) = f ∈ C(R d ) : f 1 + | . | 2 is bounded ,
will be equipped with the norm

f Y := sup x∈R d |f (x)| 1 + |x| 2 .
Let X be the closed subspace of Y given by

X := (1 + | . | 2 )C 0 (R d ) = f ∈ C(R d ) : lim |x|→∞ f (x) 1 + |x| 2 = 0 .
We denote by M(R d ) the space of bounded Radon measures on R d , as usual identified with the dual of C 0 (R d ) (space of continuous functions that vanish at infinity) and by M 1 + (R d ) the set of Radon probability measures on R d . We shall naturally identify the dual of X with

X ′ = {µ ∈ M(R d ) : (1 + |x| 2 )µ ∈ M(R d )}.
Given two probability measures with finite second moments µ and ν (i.e. µ and ν in X ′ ∩ M 1 + (R d )), the 2-Wasserstein distance between µ and ν, W 2 (µ, ν), is defined as the value of the following Monge-Kantorovich optimal transportation problem:

W 2 2 (µ, ν) := inf R d ×R d |x -y| 2 dγ(x, y), γ ∈ Π(µ, ν) (2.1)
where Π(µ, ν) denotes the set of transport plans between µ and ν i.e. the set of probability measures on R d × R d having µ and ν as marginals. Given an integer p ≥ 2, p probability measures ν 1 , ..., ν p in X ′ ∩ M 1 + (R d ) and p real numbers λ 1 , ...λ p such that λ i > 0 and p i=1 λ i = 1, we are interested in the following problem:

(P) inf ν∈X ′ ∩M 1 + (R d ) J(ν) = p i=1 λ i 2 W 2 2 (ν i , ν). (2.2)
In analogy with the Euclidean case, a solution of the previous problem will be called the barycenter of the probabilities ν i with weights λ i .

To study existence and uniqueness of the barycenter, we introduce the dual (this terminology will be justified later on) of (P),

(P * 0 ) sup F (f 1 , ..., f p ) = p i=1 R d S λ i f i dν i : p i=1 f i = 0, f i ∈ X (2.3)
where

S λ f (x) := inf y∈R d λ 2 |x -y| 2 -f (y) , ∀x ∈ R d , f ∈ X, λ > 0.
(2.4)

For i ∈ {1, • • • , p}, we define H i (f ) := - R d S λ i f (x)dν i (x).
Note that S λ f defined as above may take the value -∞. It is easy to check that H i is convex and l.s.c. on Y . By definition, the Legendre-Fenchel transform of H i is

H * i (ν) := sup f ∈X R d f dν -H i (f ) = sup f ∈X R d f dν + R d S λ i f dν i , ∀ν ∈ X ′ .
Since the supremum in (P * 0 ) may not be attained, we consider its "relaxed" problem

(P * ) sup F (f 1 , ..., f p ) : p i=1 f i = 0, f i ∈ Y . Now, let ν ∈ X ′ ∩ M 1 + (R d ), γ i ∈ Π(ν i , ν
) and (f 1 , ..., f p ) ∈ X p which sum to 0. Integrating the inequality

S λ i f i (x i ) + f i (y) ≤ λ i 2 |x i -y| 2
with respect to γ i and summing over i, we have after using that p i=1 f i = 0,

p i=1 R d S λ i f i dν i ≤ p i=1 λ i 2 R d ×R d |x i -y| 2 dγ i (x i , y).
We then deduce that inf(P) ≥ sup(P * ) ≥ sup(P * 0 ).

(2.5)

To prove the converse inequality, we first establish the following intermediate result: Lemma 2.1. For every ν ∈ X ′ , one has

H * i (ν) = λ i 2 W 2 2 (ν i , ν) if ν ∈ X ′ ∩ M 1 + (R d ) +∞ otherwise.
Proof. We first prove that

H * i (ν) = +∞ whenever ν ∈ X ′ \M 1 + (R d ). Indeed, if ν is not nonnegative, there exists f ∈ X, f ≤ 0 such that R d f dν > 0.
Then S λ i (tf ) ≥ 0 for every t ≥ 0, and we have

H * i (ν) ≥ sup t≥0 t R d f dν = +∞. But if ν ∈ X ′ is nonnegative and ν(R d ) = 1, say ν(R d ) < 1, using f (x) = -t with t ≥ 0 in H * i (ν), we have H * i (ν) ≥ sup t≥0 t - R d dν + R d dν i = 1 -ν(R d ) sup t≥0 t = +∞. We conclude that H * i (ν) = +∞ whenever ν ∈ X ′ \ M 1 + (R d ). Now let ν ∈ X ′ ∩ M 1 + (R d ).
The well-known Kantorovich duality formula (see for instance [START_REF] Villani | Topics in optimal transportation[END_REF]) reads as:

λ i 2 W 2 2 (ν, ν i ) = sup R d f dν + R d gdν i , f, g ∈ C b , f (x) + g(y) ≤ λ i 2 |x -y| 2 = sup f ∈X R d f dν + R d S λ i f dν i = H * i (ν). (2.6)
This ends the proof.

We then easily deduce the following duality result:

Proposition 2.2. inf(P) = sup(P * 0 ) = sup(P * ). Proof. Thanks to lemma 2.1, we have on the one hand inf(P) = inf

X ′ p i=1 H * i = - p i=1 H * i * (0).
Defining H as the inf-convolution of H 1 ,..., H p ,

H(f ) = p i=1 H i (f ) := inf p i=1 H i (f i ) : f i ∈ X, p i=1 f i = f , ∀f ∈ X,
we have on the other hand sup(P * 0 ) = -H(0).

It is a well-known fact of convex analysis (which can be checked by a straightforward computation) that

H * = p i=1 H i * = p i=1 H * i .
Then inf(P) = -H * * (0) ≥ -H(0) = sup(P * 0 ). Hence, using (2.5), the desired result amounts to prove that H(0) = H * * (0). And since H is convex, it is enough (see [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF], propositions 3.3 and 4.1) to show that H has a continuous affine minorant and is l.s.c. at 0 for the norm topology of X (i.e. the topology induced by that of Y ).To prove that, we rewrite H i as

H i (f i ) = R d sup y∈R d f i (y) - λ i 2 |x -y| 2 dν i (x),
which yields in particular

H i (f i ) ≥ f i (0) - λ i 2 R d |x| 2 dν i (x)
so that

H(f ) ≥ f (0) - p i=1 λ i 2 R d |x| 2 dν i (x) > -∞, ∀f ∈ X which gives a continuous affine minorant for H. Now, let f ∈ Y be such that 4 f Y ≤ p min{λ 1 , ..., λ p }. Choosing f i = f /p in H(f ), we have H(f ) ≤ p i=1 H i f p ≤ p i=1 R d sup y∈R d λ i 4 (1 + |y| 2 ) - λ i 2 |x -y| 2 dν i (x) = p i=1 R d λ i 4 + λ i 2 |x| 2 dν i (x) = 1 4 + p i=1 λ i 2 R d |x| 2 dν i (x).
Note that we have used in the above computations that f (y) ≤ pλ i 4 (1 + |y| 2 ) and p i=1 λ i = 1. We thus proved that the convex function H never takes the value -∞ and is bounded from above in a neighbourhood of 0 in Y . By a standard convex analysis result (see [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF], proposition 2.5), it is therefore continuous at 0. Hence, H(0) = H * * (0) and the result follows.

The next proposition gives existence of an optimizer to the primal problem (P) and its dual (P * ).

Proposition 2.3. Both problems (P) and (P * ) have solutions.

Proof. Let ν n be a minimizing sequence of (P). It is easy (for instance, by using (2.6)) to check that R d |x| 2 dν n (x) is bounded; hence ν n is tight. It then follows from Prokhorov's Theorem (see [START_REF] Dellacherie | Probabilities and Potential[END_REF]) that a (non relabeled) subsequence converges narrowly to some ν ∈ M 1 + (R d ), and it is easy to check that ν ∈ X ′ . Using (2.6), we then immediately get J(ν) ≤ lim inf J(ν n ) = inf(P), which shows that (P) has a minimizer.

Proving the existence of a solution to (P * ) requires some preliminaries. First we show that in (P * ), one can choose the f i such that (S

λ i • S λ i ) f i = f i for all i = 1, • • • , p -1. Indeed, if (f 1 , ..., f p )
is admissible for (P * ), then setting g i := S λ i f i , h i := S λ i g i for all i, it is easy to check that f i ≤ h i , h i ∈ X and S λ i f i = S λ i h i . Now, define ( f 1 , ..., f p-1 ) := (h 1 , ..., h p-1 ) and f p := -p-1 i=1 f i . Since f i ≤ f i for i = 1, ..., p -1, then f p ≤ -p-1 i=1 f i = f p . For i = 1, ..., p -1, we then have S λ i f i = S λ i f i , and since S λp is orderreversing, then S λp f p ≥ S λp f p which shows that F ( f 1 , ..., f p ) ≥ F (f 1 , ...., f p ). This proves that in (P * ), one may assume that f i = S λ i g i with g i = S λ i f i for i = 1, ..., p -1. The relation f i = S λ i g i can equivalently be written as

λ i 2 |y| 2 -f i (y) = sup x∈R d λ i x • y - λ i 2 |x| 2 + g i (x) which implies that λ i 2 |.| 2 -f i is convex for i = 1, ..., p -1.
Finally, we remark that, since the functional F and the constraint of (P * ) are invariant, when one adds constants that sum to 0 to the f i 's, there is no loss of generality in assuming f i (0) = 0 for all i. Now let f n := (f n 1 , .., f n p ) be a maximizing sequence for (P * ) which, as explained before, can be chosen such that f n (0) = 0 and

f n i = S λ i g n i for i = 1, ..., p -1 with g n i := S λ i f n i for i = 1, ..., p. In particular, λ i 2 |.| 2 -f n i is convex for i = 1, .
.., p -1 and every n. Using the fact that f n i (0) = 0 and

g n i := S λ i f n i we then have g n i (x) ≤ λ i 2 |x| 2 . (2.7)
Since f n is a maximizing sequence for (P * ), there exists a constant C 1 such that

p i=1 R d g n i (x)dν i (x) ≥ C 1 , ∀n. (2.8) 
Then (2.7) and (2.8) imply that for all j = 1,

• • • , p, R d g n j (x)dν j (x) ≥ C 1 - i =j R d g n i (x)dν i (x) ≥ C 1 - i =j λ i 2 R d |x| 2 dν i (x).
(2.9)

And since the ν i have finite second moments, we deduce from (2.7) and (2.9) that the integrals R d g n i (x)dν i (x) are bounded. Now integrating the inequality

f n i (y) ≤ λ i |x -y| 2 /2 -g n i (x)
with respect to ν i (x) and using the bound on R d g n i (x)dν i (x), we see that there exists a constant C 2 such that

f n i (y) ≤ C 2 (1 + |y| 2 ), ∀i, ∀n, ∀y ∈ R d . (2.10) 
Applying the above inequality to f n p and recalling that f n p = -p-1 i=1 f n i , we also have

p-1 i=1 f n i (y) ≥ -C 2 (1 + |y| 2 ), ∀n, ∀y ∈ R d .
Then we deduce by using again (2.10) that

f n i (y) ≥ -C 2 (1 + |y| 2 ) - j =i f n j (y) ≥ -pC 2 (1 + |y| 2 ), ∀i, ∀n, ∀y ∈ R d .
The subsequent inequality combined with (2.10) show that

f n i is bounded in Y for every i. Since λ i 2 |.| 2 -f n i
is convex for every n and i = 1, ..., p -1, passing to a subsequence if necessary, we may assume that f n converges uniformly on compact subsets to some f = (f 1 , ...f p ) with each f i ∈ Y (indeed, if a sequence of convex functions is bounded on the ball B 2r of center 0 and radius r then it is equi-Lipschitz on the ball B r and one can therefore invoke Ascoli-Arzelà's theorem together with a diagonal extraction argument). Finally, the fact that f solves (P * ) follows from Fatou's Lemma, the positivity of λ i 2 |.| 2g n i and the inequality lim sup

n g n i (x) ≤ inf y∈R d lim sup n λ i 2 |x -y| 2 -f n i (y) = inf y∈R d λ i 2 |x -y| 2 -f i (y) = S λ i f i (x).

Characterization of barycenters

With the results of the previous section at hand, namely, min(P) = max(P * ), our aim now is to further exploit this duality to characterize the barycenters i.e. the solution of (P). Let (f 1 , ..., f p ) be a solution of (P * ). It follows from the previous duality relation that there exists ν ∈ X

′ ∩ M 1 + (R d ) solution of (P * ) such that p i=1 λ i 2 W 2 2 (ν i , ν) = p i=1 R d S λ i f i dν i = p i=1 R d S λ i f i dν i + p i=1 R d f i dν. (3.1)
And since

λ i W 2 2 (ν i , ν)/2 ≥ R d S λ i f i dν i + R d f i dν because of (2.6), then (3.1) is equivalent to λ i 2 W 2 2 (ν i , ν) = R d S λ i f i dν i + R d f i dν, ∀i ∈ {1, ..., p}. (3.2) 
Now, let γ i ∈ Π(ν i , ν) be an optimal transportation plan between ν i and ν (i.e.

γ i ∈ Π(ν i , ν) and W 2 2 (ν i , ν) = R d ×R d |x -y| 2 dγ i (x, y)). We deduce from (3.2) and γ i ∈ Π(ν i , ν) that λ i 2 W 2 2 (ν i , ν) = λ i 2 R d ×R d |x -y| 2 dγ i (x, y) = R d S λ i f i dν i + R d f i dν = R d ×R d S λ i f i (x) + f i (y) dγ i (x, y).

But since by definition of

S λ i f i (x), λ i 2 |x -y| 2 ≥ S λ i f i (x) + f i (y), we get: λ i 2 |x -y| 2 = S λ i f i (x) + f i (y), γ i -a.e. ( 3.3) 
We have already noticed that

S λ i S λ i f i ≥ f i . So (3.3) implies that for γ i -a.e.(x, y), one has f i (y) = λ i 2 |x -y| 2 -S λ i f (x) ≥ S λ i S λ i f i (y), so that f i = S λ i S λ i f i ν-a.e.
. Therefore using the constraint p i=1 f i = 0 of (P * ), we have

p i=1 S λ i S λ i f i ≥ 0, p i=1 S λ i S λ i f i = 0 ν-a.e. (3.4) 
Now, we consider the convex function φ i defined by

λ i φ i (x) := λ i 2 |x| 2 -S λ i f i (x), (3.5) 
and we denote by ∂φ i the graph of its subdifferential, i.e.

∂φ i := (x, y) ∈ R d × R d : φ i (x) + φ * i (y) = x • y , where φ * i denotes the conjugate of φ i , i.e. λ i φ * i (y) := λ i 2 |y| 2 -S λ i S λ i f i (y).
Combining (3.3) and (3.4), we have that the support of γ i is included in ∂φ i , and

p i=1 λ i φ * i (y) ≤ |y| 2 2 , ∀y ∈ R d , with equality ν-a.e. (3.6) 
Moreover, it is easy to check that φ i solves inf

R d φ(x)dν i (x) + R d φ * (y)dν(y) : φ convex l.s.c. . (3.7) 
The previous conditions are of course very related to classical results from optimal transportation theory. To be more precise, let us first recall some definitions.

Definition 3.1. Let µ ∈ X ′ ∩ M 1 + (R d ) and σ be a Borel map R d → R d .
The push-forward of µ through σ is the measure denoted σ♯µ defined by

R d f (y)d σ♯µ (y) = R d f (σ(x))dµ(x), ∀f ∈ C b (R d ). Definition 3.2. A probability measure µ ∈ X ′ ∩ M 1 + (R d
) is said to vanish on small sets if and only if µ(A) = 0 for every Borel set A of R d , having Hausdorff dimension less than or equal to d -1.

Let us now recall the following classical results from optimal transportation theory which initially are due to Brenier and later generalized by Mc-Cann (see [START_REF] Brenier | Polar factorization and monotone rearrangement of vectorvalued functions[END_REF], [START_REF] Mccann | Existence and uniqueness of monotone measurepreserving maps[END_REF] or [START_REF] Villani | Topics in optimal transportation[END_REF]):

Proposition 3.3. Let µ and ν be in X ′ ∩ M 1 + (R d )
, and γ ∈ Π(µ, ν). Then γ is an optimal transportation plan between µ and ν if and only if the support of γ is included in ∂φ for some convex l.s.c. function φ; in this case φ solves inf

R d φ(x)dµ(x) + R d φ * (y)dν(y) : φ convex l.s.c. . (3.8)
If in addition µ vanishes on small sets, then there is a unique optimal transportation plan γ which is of the form γ = (id, ∇φ)♯µ with φ convex. Uniqueness also holds in the sense that if ∇ψ♯µ = ∇φ♯µ = ν and ψ is convex, then ∇ψ = ∇φ µ-almost everywhere.

Definition 3.4. Let µ and ν be in

X ′ ∩ M 1 + (R d
) such that µ vanishes on small sets. Then the Brenier map transporting µ to ν is the unique (up to µ-a.e. equivalence) map of the form ∇φ with φ convex such that ν = ∇φ♯µ.

Note that although Brenier's map ∇φ is uniquely defined µ-a.e., the potential φ is not (for instance, it is easy to build counter-examples if the support of µ is disconnected).

Thanks to the duality between (P) and (P * ) and the extremality relations between these variational problems, we then deduce the following uniqueness result and characterization of the barycenter: Proposition 3.5. Assume that there is an index i ∈ {1, ...p} such that ν i vanishes on small sets. Then (P) admits a unique solution ν which is given by ν = ∇φ i ♯ν i where φ i is the convex potential defined by (3.5).

Proof. Let ν solve (P), let (φ j ) j=1,...,p be the convex potentials defined by (3.5) (these potentials do not depend on ν but only on a solution to the dual problem (P * )) and let γ i ∈ Π(ν i , ν) be an optimal transport plan between ν i and ν. Thanks to (3.3)-(3.4), we know that the support of γ i is included in the graph of ∂φ i . Since ν i vanishes on small sets, φ i is differentiable ν i -almost everywhere so that γ i = (id, ∇φ i )♯ν i which implies that ν = ∇φ i ♯ν i and this determines ν uniquely. This enables us to define unambiguously barycenters as follows:

Definition 3.6. Given (ν 1 , ..., ν p ) in X ′ ∩ M 1 + (R d
) one of which vanishes on small sets, and given positive reals (λ 1 , ..., λ p ) that sum to 1, the barycenter of (ν 1 , ..., ν p ) with weights (λ 1 , ..., λ p ) is the unique solution of (P). It will be denoted by (bar(ν i , λ i ) i=1,...,p ). Remark 3.7. If all the ν i 's vanish on small sets, defining φ i by (3.5) (with (f 1 , ..., f p ) an arbitrary solution of (P * )) we see that ν = ∇φ i ♯ν i for every i. The condition that ∇φ i ♯ν i does not depend on i then appears as an optimality condition for (P * ).

The following proposition further characterizes the barycenter. Proposition 3.8. Assume that ν i vanishes on small sets for every i = 1, .., p, and let ν ∈

X ′ ∩ M 1 + (R d ).
Then the following conditions are equivalent:

1. ν solves (P).

2. ν = ∇φ i ♯ν i for every i, where φ i is defined by (3.5).

3. There exist convex potentials ψ i such that ∇ψ i is Brenier's map transporting ν i to ν, and a constant C such that

p i=1 λ i ψ * i (y) ≤ C + |y| 2 2
, ∀y ∈ R d , with equality ν-a.e.

(3.9)

Proof. The equivalence between 1. and 2. follows from proposition 3.5. Next we prove that 1. is equivalent to 3. Indeed, if 1. holds, then it is enough to take ψ i = φ i where φ i is defined by (3.5); then (3.9) directly follows from (3.6). Finally, if 3. is satisfied (with C = 0, say), then (3.9) together with the Kantorovich duality formula gives

p i=1 λ i 2 W 2 2 (ν i , ν) = p i=1 λ i R d |x| 2 2 -ψ i (x) dν i (x). Now let µ ∈ X ′ ∩ M 1 + (R d ).
Using the inequality x • y ≤ ψ i (x) + ψ * i (y), i.e.

λ i |x| 2 2 -λ i ψ i (x) + λ i |y| 2 2 -λ i ψ * i (y) ≤ λ i 2 |x -y| 2 ,
we have after integration

λ i 2 W 2 2 (ν i , µ) ≥ λ i R d |x| 2 2 -ψ i (x) dν i (x) + λ i R d |y| 2 2 -ψ * i (y) dµ(y).
Summing these inequalities over i, and using (3.9), we get

p i=1 λ i 2 W 2 2 (ν i , µ) ≥ p i=1 λ i R d |x| 2 2 -ψ i (x) dν i (x) + R d |y| 2 2 - p i=1 λ i ψ * i (y) dµ(y) ≥ p i=1 λ i R d |x| 2 2 -ψ i (x) dν i (x) = p i=1 λ i 2 W 2 2 (ν i , ν)
which proves that ν solves (P).

Remark 3.9. If ν and the potentials ψ i satisfy the third statement of the previous proposition, then the support of ν-almost every point is included in the contact set where the convex function ϕ := p i=1 λ i ψ * i agrees with its quadratic majorant C + |.| 2 2 . Since these two functions are continuous, this implies that the support of ν, Supp(ν) is actually included in this contact set. Now let us remark that at such a contact point x, we have

p i=1 λ i ∂ψ * i (x) = { p i=1 λ i q i , q i ∈ ∂ψ * i (x)} ⊂ ∂ϕ(x) ⊂ {x}
so that each potential ψ * i is differentiable at x. The potentials ψ * i are therefore differentiable on Supp(ν) and satisfy on this set the relation

p i=1 λ i ∇ψ * i = id . (3.10)
We also remark that if (3.10) holds everywhere for Brenier's maps ∇ψ i transporting ν i to ν, then ν is optimal for (P).

Multi-marginal formulation

Our aim in this section is to prove that (P) is equivalent to a linear programming problem of multi-marginal optimal transportation type similar to the one solved by Gangbo and Świȩch in [START_REF] Gangbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF].

For every x := (x 1 , ..., x p ) ∈ (R d ) p , we define

T (x) := p i=1 λ i x i . (4.1)
Of course the Euclidean barycenter T (x) is characterized by the property

p i=1 λ i |x i -T (x)| 2 = inf y∈R d p i=1 λ i |x i -y| 2 . (4.2)
Let us now introduce the multi-marginal optimal transportation problem inf

(R d ) p p i=1 λ i 2 |x i -T (x)| 2 dγ(x 1 , ...x p ), γ ∈ Π(ν 1 , ..., ν p ) (4.3)
where Π(ν 1 , ..., ν p ) is the set of probability measures on (R d ) p having ν 1 , ..., ν p as marginals. Developing the squares in (4.3), it is easy to see that (4.3) is equivalent to

(Q) sup (R d ) p 1≤i<j≤p λ i λ j x i • x j dγ(x 1 , ...x p ), γ ∈ Π(ν 1 , ..., ν p ) . (4.4)
The previous multi-marginal problem (Q) has been solved by Gangbo and Świȩch in [START_REF] Gangbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF]. As usual, a key tool is the dual problem

(Q * ) inf p i=1 R d g i dν i , p i=1 g i (x i ) ≥ 1≤i<j≤p λ i λ j x i • x j , ∀x ∈ (R d ) p .
(4.5) As the classical optimal transportation problem with quadratic cost is solved by Brenier, (Q) and (Q * ) have a very special structure that we next discuss heuristically. Firstly, in (Q * ), one can restrict to potentials that satisfy

g i (x i ) = sup (x j ) j =i 1 2 1≤k =j≤p λ k λ j x k • x j - j =i g j (x j ) (4.6)
which, in particular, implies the convexity of the potentials g i 's. Secondly, the duality relation between (Q) and (Q * ) expresses that, γ solves (Q) and (g 1 , ..., g p ) solves (Q * ) if and only if

p i=1 g i (x i ) = 1 2 1≤i =j≤p λ i λ j x i • x j , γ-a.e.. (4.7) 
Finally, if, in addition the potentials g i 's are differentiable γ-a.e., then one can deduce from (4.6) and (4.7) that for γ-a.e. x = (x 1 , ..., x d ), one has

∇g i (x i ) = λ i j =i λ j x j
which can be rewritten as

∇ λ i 2 | . | 2 + g i λ i (x i ) = p j=1 λ j x j = ∇ λ 1 2 | . | 2 + g 1 λ 1 (x 1 )
or in a more explicit way

x i = ∇ λ i 2 | . | 2 + g i λ i * • ∇ λ 1 2 | . | 2 + g 1 λ 1 (x 1 ).
This (formally) yields that the optimal γ is in fact supported by the graph of a map of the form x 1 → (x 1 , ∇u * 2 (∇u 1 (x 1 )), ..., ∇u * p (∇u 1 (x 1 ))) for some potentials u i such that u i -λ i | . | 2 /2 is convex. The previous discussion being informal, we refer to the paper of Gangbo and Świȩch [START_REF] Gangbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF] for the details. Here, we simply summarize their main results as follows: Theorem 4.1. Assume that ν i vanishes on small sets for i = 1, .., p. Then (Q) admits a unique solution γ ∈ Π(ν 1 , ..., ν p ). Moreover, γ is of the form γ = (T 1 1 , ...., T 1 p )♯ν 1 with T 1 i = ∇u * i • ∇u 1 for i = 1, ..., p where the u i 's are strictly convex potentials defined by

u i (x) := λ i 2 |x| 2 + g i (x) λ i , ∀x ∈ R d (4.8)
and (g 1 , ..., g p ) are convex potentials that solve (Q * ).

In the sequel, we will refer to the maps T 1 i of the previous theorem as the Gangbo-Świȩch maps between ν 1 and ν i . Note that the Gangbo-Świȩch maps a priori depend on the whole collections of the ν i 's and the weights λ i 's. These maps are transport maps in the sense that T 1 i ♯ν 1 = ν i . Of course, by permuting the indices, one can similarly define the Gangbo-Świȩch maps T j i := ∇u * i • ∇u j between a reference measure ν j and ν i . The next result gives the precise relationship between our initial barycenter problem (P) and the multi-marginals problem (Q). Proposition 4.2. Assume that ν i vanishes on small sets for i = 1, .., p. Then the solution of (P) is given by ν = T ♯γ, where T is defined by (4.1) and γ is the solution of (Q).

Proof. For every i ∈ {1, ..., p} denote by π i the i-th canonical projection from (R d ) p to R d (i.e. π i (x) = x i ) and define γ i := (π i , T )♯γ. By construction,

γ i ∈ Π(ν i , ν). Then W 2 2 (ν i , ν) ≤ (R d ) p |x i -T (x)| 2 dγ(x),
and thus,

p i=1 λ i 2 W 2 2 (ν i , ν) ≤ (R d ) p p i=1 λ i 2 |x i -T (x)| 2 dγ(x). (4.9) Now let µ ∈ X ′ ∩ M 1 + (R d ) and η i ∈ Π(ν i , µ) for i = 1, ..., p.
By the disintegration theorem (see [START_REF] Dellacherie | Probabilities and Potential[END_REF]), we can write η i = η y i ⊗ µ for a Borel family of (conditional) probability measures (η y i ) y∈R d which precisely means that

R d ×R d f (x i , y)dη i (x i , y) = R d R d f (x i , y)dη y i (x i ) dµ(y), ∀f ∈ C 0 b (R d ×R d ). Now, let us define η ∈ M 1 + ((R d ) p+1 ) by (R d ) p+1 f (x, y)dη(x, y) = R d (R d ) p
f (x, y)dη y 1 (x 1 )...dη y p (x p ) dµ(y)

for every test-function f ∈ C b ((R d ) p+1 ). Let θ ∈ M 1 + ((R d ) p ) be the canonical projection of η on (R d ) p i.e. (R d ) p f (x)dθ(x) = R d (R d ) p f (x)dη y 1 (x 1 )...dη y p (x p ) dµ(y), ∀f ∈ C 0 b ((R d ) p ).
By construction, θ ∈ Π(ν 1 , ..., ν p ). Using (4.2) and the fact that γ solves (4.3), we then obtain

p i=1 λ i 2 R d ×R d |x i -y| 2 dη i (x i , y) = (R d ) p+1 p i=1 λ i 2 |x i -y| 2 dη(x, y) ≥ (R d ) p+1 p i=1 λ i 2 |x i -T (x)| 2 dη(x, y) = (R d ) p p i=1 λ i 2 |x i -T (x)| 2 dθ(x) ≥ (R d ) p p i=1 λ i 2 |x i -T (x)| 2 dγ(x).
Since in the previous inequality, the η i 's are arbitrary transport plans between ν i and µ, we conclude with (4.9).

Combining Theorem 4.1 and Proposition 4.2, we see that the barycenter of the (ν i , λ i )'s is also characterized by

ν := p i=1 λ i T 1 i ♯ν 1 = p i=1 λ i T j i ♯ν j (4.10)
where the T j i are the Gangbo-Świȩch maps between ν j and ν i which are given by T j i = ∇u * i • ∇u j , where the u j 's are strictly convex potentials defined by (4.8). As an immediate consequence, we deduce that the support of the barycenter bar((ν i , λ i ) i ) is included in p i=1 λ i Supp(ν i ). Let us also remark that the center of mass of bar((

ν i , λ i ) i ) is p i=1 λ i R d xdν i (x).

Regularity of the barycenter

The relation between the barycenter and the Gangbo-Świȩch maps easily enables us to obtain a regularity result on the barycenter.

Theorem 5.1. Let (ν 1 , ..., ν p ) in X ′ ∩ M 1 + (R d ) vanish on small sets and let (λ 1 , ..., λ p ) be positive reals that sum to 1. Also, assume that ν 1 ∈ L ∞ (i.e. is absolutely continuous and has a bounded density with respect to the Lebesgue measure) and define ν := bar((ν i , λ i )). Then ν ∈ L ∞ and more precisely:

ν L ∞ ≤ 1 λ d 1 ν 1 L ∞ . (5.1)
Proof. By proposition 4.2, ν = T ♯ν 1 where

T = p i=1 λ i ∇u * i • ∇u 1 = λ 1 id + p i=2 λ i ∇u * i • ∇u 1
and the potentials u i are defined as in the previous section, in particular each u i is strictly convex and more precisely u i -λ i 2 |.| 2 is convex so that one has in the sense of distributions

D 2 u i ≥ λ i id, (5.2) 
(given two symmetric matrices A and B, the notation A ≥ B means, as usual, that A -B is semi-definite positive). Since u i -λ i 2 |.| 2 is convex, u * i is C 1 and for every p and q in R d , since p ∈ ∂u i (∇u * i (p)) and q ∈ ∂u i (∇u * i (q)), we have

(∇u * i (p)) -∇u * i (q)) • (p -q) ≥ λ i |∇u * i (p)) -∇u * i (q)| 2 which shows that ∇u * i is λ -1 i -Lipschitz, so that u * i ∈ C 1,1
, and

D 2 u * i ≤ 1 λ i id . (5.3) 
For ε > 0, we regularize u 1 as follows:

u ε 1 := ρ ε ⋆ v ε 1 where ρ ε := ε -d ρ(./ε), ρ ∈ C ∞ c , ρ ≥ 0, ρ = 1 and Supp(ρ) ⊂ B 1 ,

and we define v ε

1 as the usual Moreau-Yosida regularization by infimal-convolution:

v ε 1 := u * 1 + ε 2 |.| 2 * .
By construction, u ε 1 is smooth and strictly convex, and by the same arguments as above, we precisely have

ε id ≤ D 2 (u ε 1 ) * ≤ 1 λ 1 + ε id, ε -1 id ≥ D 2 u ε 1 ≥ λ 1 1 + λ 1 ε id . (5.4) 
Moreover, it is classical to check that ∇u ε 1 converges to ∇u 1 in L 1 loc . We can now define the Lipschitz map

T ε = λ 1 id + p i=2 λ i ∇u * i • ∇u ε 1
and the image measure

ν ε := T ε ♯ν 1 . We first claim that T ε is injective. Indeed, if 0 = T ε (x)-T ε (y)
, taking the scalar product with ∇u ε 1 (x)-∇u ε 1 (y) and using the monotonicity of ∇u * i , we get

0 = λ 1 (x -y) • (∇u ε 1 (x) -∇u ε 1 (y)) + p i=2 λ i ∇u * i (∇u ε 1 (x)) -∇u * i (∇u ε 1 (y)) • (∇u ε 1 (x) -∇u ε 1 (y)) ≥ λ 2 1 1 + λ 1 ε |x -y| 2
which proves that x = y. The same argument applies to show that T is also injective when restricted to the set of points where u 1 is differentiable. Since ∇u ε 1 is a smooth diffeomorphism with Jacobian bounded away from zero, and since the maps ∇u * i are Lipschitz, the singular set S of points x such that p i=2 λ i ∇u * i fails to be differentiable at ∇u ε 1 (x) is Lebesgue negligible. For x / ∈ S, by the usual chain rule, we have

DT ε (x) = λ 1 id + p i=2 λ i D 2 u * i (∇u ε 1 (x))D 2 u ε 1 (x)
which we rewrite as λ 1 id +AB where both matrices A := D 2 u * i (∇u ε 1 (x)) and B := D 2 u ε 1 (x) are symmetric and positive definite. Now, we claim that this implies det DT ε (x) = det(λ 1 id +AB) ≥ λ d 1 .

(5.5)

Indeed, if z ∈ R d and µ ∈ R, we have ABz = µz if and only if (B 1/2 AB 1/2 )B 1/2 z = µB 1/2 z.
So AB has a basis of eigenvectors (because B 1/2 AB 1/2 has one and B 1/2 is invertible) and all its eigenvalues are positive since they are eigenvalues of the definite positive matrix B 1/2 AB 1/2 . Hence λ 1 id +AB has a basis of eigenvectors and all its eigenvalues are larger than λ 1 , which proves (5.5). By standard results (see for instance lemma 5.5.3 in [START_REF] Ambrosio | gradient flows in metric spaces and in the space of probability measures[END_REF]), we obtain that ν ε ∈ L ∞ and

ν ε L ∞ ≤ 1 λ d 1 ν 1 L ∞ .
We easily deduce (5.1) by remarking that for some sequence ε n converging to 0, ν εn converges narrowly to ν because T εn converges a.e. to T .

Remark 5.2. In the previous L ∞ estimate, it is actually not necessary to require that all the measures ν i vanish on small sets; this assumption just allowed us to use results of [START_REF] Gangbo | Optimal maps for the multidimensional Monge-Kantorovich problem[END_REF]. Indeed, if we simply assume that ν 1 ∈ L ∞ vanishes on small sets, it follows from proposition 3.5 that ν = bar(ν i , λ i ) i is uniquely defined. Moreover it is easy to check that if we approximate (ν i ) i=2,..,p by measures that vanish on small sets, the barycenter of the approximations converges narrowly to ν. We thus recover the estimate (5.1) by approximation.

Examples

6.1 The case d = 1

In the unidimensional space case, d = 1, the description of the barycenter is quite simple and this is (roughly speaking) due to the fact that gradient of convex functions are simply nondrecreasing functions, and this property is stable by composition. Let ν 1 , ..., ν p be nonatomic probability measures on the real line that have finite second moments, and let λ 1 , ..., λ p be positive reals that sum to 1. From formula (4.10), the barycenter ν := bar(ν i , λ i ) i is given by ν

= i=1 λ i T 1 i ♯ν 1
where T 1 i is the Gangbo-Świȩch map between ν 1 and ν i . Therefore, T 1 i is a nondecreasing map that pushes ν 1 forward to ν i . There is only one such map, and that is of course the Brenier map which is given by the usual rearrangement or quantile-like formula andF -1 i denotes the generalized inverse of F i , F -1 i (t) := inf{α : F i (α) ≥ t}. Therefore, bar(ν i , λ i ) i is simply obtained as the image of ν 1 by the linearly interpolated transport map i λ i T 1 i . Of course, one also has

T 1 i := F -1 i • F 1 , where F i is the cumulative function of F i i.e. F i (α) = ν i ((-∞, α]),
ν = i=1 λ i T j i ♯ν j
where T j i is Brenier's map between ν j and ν i . The fact that the resulting measure does not depend on j is very specific to the unidimensional case and does not hold in general in higher dimensions.

The case p = 2

In the case of two measures ν 0 and ν 1 (regular enough), and t ∈ (0, 1), it is reasonable to expect that the barycenter of (ν 0 , (1-t)) and (ν 1 , t) is McCann's interpolant [START_REF] Mccann | A convexity principle for interacting gases[END_REF] 

ν t := ((1 -t)id + t∇φ)♯ν 0 = (tid + (1 -t)∇φ * )♯ν 1
where ∇φ is Brenier's map between ν 0 and ν 1 . This is indeed an easy consequence of the triangle inequality but we would like to take advantage of this simple case to illustrate the duality characterization of proposition 3.8. To show that ν t satisfies the optimality condition of proposition 3.8 it is enough to prove that

(1 -t)f t + tg t = 1 2 |.| 2 + C (6.1)
where C is constant, and ∇f t and ∇g t are respectively Brenier's maps between ν t and ν 0 , and ν t and ν 1 , i.e.,

f t = (1 -t) 2 |.| 2 + tφ * , g t = t 2 |.| 2 + (1 -t)φ * * .
To prove the identity (6.1) (with C = 0 in fact), we first write

-f t (p) = inf x∈R d {(1 -t) |x| 2 2 -p • x + tφ(x)}
which, thanks to the Fenchel-Rockafellar duality theorem, can be rewritten as

-f t (p) = sup z∈R d {-tφ * (-z/t) - 1 2(1 -t) |p + z| 2 }. Therefore -(1 -t)f t (p) = sup y∈R d {-t(1 -t)φ * (y) - 1 2 |p -ty| 2 } = - 1 2 |p| 2 + t sup y∈R d {p • y -( t 2 |y| 2 + (1 -t)φ * (y))} = - 1 2 |p| 2 + tg t (p).
We thus conclude that the set of barycenters of ν 0 and ν 1 is nothing but the geodesic curve t ∈ [0, 1] → ν t given by McCann's interpolation [START_REF] Mccann | A convexity principle for interacting gases[END_REF].

The gaussian case

Let us now consider the case where for i = 1, ..., p, ν i = N (0, S i ) i.e. ν i is a gaussian measure with mean 0 and covariance matrix S i . We assume that each S i is positive definite and, given weights λ i > 0 that sum to 1, we consider again the barycenter problem (2.2). This gaussian case was already considered by Knott and Smith [START_REF] Knott | On a generalization of cyclic-monotonicity and distances among random vectors[END_REF] who suggested an almost explicit construction for the barycenter (which turns out to be gaussian as well).

But the existence and uniqueness of the barycenter was not proved in their paper. The following theorem addresses these issues and also gives an explicit construction of the barycenter in this case.

Theorem 6.1. In the gaussian framework of this paragraph, there is a unique solution ν to (2.2). Moreover, ν = N (0, S) where S is the unique positive definite root of the matrix equation

p i=1 λ i S 1/2 S i S 1/2 1/2 = S. (6.2) 
Proof.

Step 1: existence of a solution to (6.2). Let α i and β i denote respectively the smallest and largest eigenvalue of S i , and α and β be such that

β ≥ p i=1 λ i β i 2 ≥ p i=1 λ i √ α i 2 ≥ α.
Let K α,β be the (convex and compact) set of symmetric matrices S such that βI ≥ S ≥ αI. For S ∈ K α,β , define

F (S) := p i=1 λ i S 1/2 S i S 1/2 1/2 .
It is easy to see that

βI ≥ p i=1 λ i ββ i I ≥ F (S) ≥ p i=1 λ i √ αα i I ≥ αI, ∀S ∈ K α,β .
Then F is a self-map of K α,β . It is also continuous on K α,β . The existence of a solution to (6.2) in K α,β then directly follows from Brouwer's fixed-point theorem.

Step 2: sufficiency. Set ν := N (0, S) where S is a positive definite solution of (6.2). The optimal transport between ν and ν i is then the linear map

T i = S 1/2 i S 1/2 i SS 1/2 i -1/2 S 1/2 i . 2 probability measures ν 1 , • • • , ν p in X ′ ∩ M 1 + (R d
) and any p positive real numbers λ 1 , • • • , λ p that sum to 1, we have

F (bar(ν i , λ i ) i=1,••• ,p ) ≤ p i=1 λ i F (ν i ), (7.1) 
where bar(ν i , λ i ) i=1,••• ,p denotes the barycenter of the probability measures ν i with the weights λ i .

To compare the convexity along barycenters with McCann's displacement convexity, let us first recall the definition of displacement convexity as introduced in [START_REF] Mccann | A convexity principle for interacting gases[END_REF].

Definition 7.2. A functional F : X ′ ∩ M 1 + (R d ) → R is said to be dis- placement convex in the Wasserstein space X ′ ∩ M 1 + (R d ), if given any two probability measures ν 0 and ν 1 in X ′ ∩ M 1 + (R d ), the function [0, 1] ∋ t → F (ν t ) ∈ R is convex; here ν t is McCann's interpolant between ν 0 and ν 1 given by ν t = ((1 -t)id + tT ) ♯ν 0 , where T = ∇φ is Brenier's map transporting ν 0 to ν 1 .
The following proposition shows that the convexity along barycenters generalizes McCann's displacement convexity.

Proposition 7.3. If a functional F : X ′ ∩ M 1 + (R d ) → R is convex along barycenters, then it is displacement convex. Proof. Let ν 0 , ν 1 ∈ X ′ ∩M 1 + (R d ) and t ∈ [0, 1]
. From section 6.2, we have that the barycenter of ν 0 and ν 1 with weights λ 0 = 1t and λ 1 = t respectively, is McCann's interpolant ν t . Then if F is convex along barycenters, then (7.1) implies that

F (ν t ) ≤ (1 -t)F (ν 0 ) + tF (ν 1 ),
which proves the displacement convexity of F .

Contrarily to the Euclidean case, definitions 7.1 and 7.2 may not be equivalent, except in dimension d = 1 (see proposition below). But they are related to a third notion of convexity, that is the convexity along generalized geodesics joining any two probability measures ν 1 and ν 2 with base a probability measure ν (see [START_REF] Ambrosio | gradient flows in metric spaces and in the space of probability measures[END_REF]). In fact, the convexity along generalized geodesics is the strongest among these three notions of convexity, while McCann's displacement convexity is the weakest. Before justifying this statement, let us first recall the definition of generalized geodesics and its corresponding convexity, as presented in [START_REF] Ambrosio | gradient flows in metric spaces and in the space of probability measures[END_REF].

Definition 7.4. Let ν 1 , ν 2 , ν ∈ X ′ ∩ M 1 + (R d ).
Denote by T i = ∇φ i Brenier's map transporting ν to ν i for i = 1, 2. Then the generalized geodesic joining ν 1 and ν 2 with base ν is the interpolated curve

[ν 1 , ν 2 ] ν t := ((1 -t)T 1 + tT 2 ) ♯ν, t ∈ [0, 1]. (7.2)
Moreover, a functional F :

X ′ ∩ M 1 + (R d ) →
R is said to be convex along generalized geodesics, if given any three probability measures ν 1 , ν 2 , ν ∈ X ′ ∩ M 1 + (R d ), we have F ([ν 1 , ν 2 ] ν t ) ≤ (1t)F (ν 1 ) + tF (ν 2 ), (7.3) where [ν 1 , ν 2 ] ν t is defined as above. The definition of convexity along generalized geodesics could as well be given with any finite number of probability measures. Indeed, we have: and ∇Φ i is Brenier's map transporting ν to ν i .

Proof. The proof is done by induction on the number p of probability measures. We start with three measures ν 1 , ν 2 , ν 3 in X ′ ∩ M 1 + (R d ) with respective weights λ 1 , λ 2 , λ 3 such that 3 i=1 λ i = 1. We have that 3 i=1 λ i ∇Φ i = λ 12 ∇Φ 12 + λ 3 ∇Φ 3 , where λ 12 = λ 1 + λ 2 , and Φ 12 = λ 1 λ 12 Φ 1 + λ 2 λ 12 Φ 2 is convex. Since λ 12 + λ 3 = 1 = (λ 1 /λ 12 ) + (λ 2 /λ 12 ), then using (7.5) and (7.3), we have where ν1 := ∇u 1 ♯ν 1 , the u i are strictly convex on R d , and the T 1 i = ∇u * i •∇u 1 satisfy T 1 i ♯ν 1 = ν i . So if F is convex along generalized geodesics, then using (7.4) and (7.5), we conclude that 

F [ν 1 , ν 2 , ν 3 ] ν
λ i F (ν i ),
that is the convexity of F along barycenters. Next assume that d = 1, and consider ν, ν 0 , ν 1 ∈ X ′ ∩ M 1 + (R). Then Brenier's map transporting ν to ν i is Φ ′ i , where Φ i is nondecreasing for i = 0, 1. So T = Φ ′ 1 •(Φ ′ 0 ) -1 is nondecreasing and T ♯ν 0 = ν 1 , so that T is Brenier's map transporting ν 0 to ν 1 . Therefore, the generalized geodesic joining ν 0 and ν 1 with base ν coincides with McCann's geodesic, since

[ν 0 , ν 1 ] ν t = [(1 -t)Φ ′ 0 + tΦ ′ 1 ] ♯ (Φ ′ 0 ) -1 ♯ν 0 = [(1 -t)id + tT ] ♯ν 0 .
Hence if F is displacement convex, we have

F ([ν 0 , ν 1 ] ν t ) = F ([(1 -t)id + tT ] ♯ν 0 ) ≤ (1 -t)F (ν 0 ) + tF (T ♯ν 0 ) = (1 -t)F (Φ ′ 0 ♯ν) + tF (Φ ′ 1 ♯ν) ,
which shows that F is convex along generalized geodesics.

Proposition 7 . 5 .

 75 A functional F : X ′ ∩ M 1 + (R d ) → R is convex along generalized geodesics if and only if, given any p ≥ 2 probability measures ν 1 , • • • , ν p ∈ X ′ ∩ M 1 + (R d ), any p positive real numbers λ 1 , • • • , λ p that sum to 1, and a reference measure ν ∈ X ′ ∩ M 1 + (R d ), we have F [ν 1 , • • • , ν p ] ν λ i ≤ p i=1 λ i F (ν i ) (7.4)where[ν 1 , • • • , ν p ] ν λ i := p i=1λ i ∇Φ i ♯ν (7.5)

λ 12 λ 1 λ 12 F (∇Φ 1 ♯ν) + λ 2 λ 12 F 3 i=1λλ i ∇u * i ♯ν 1

 121231 λ i = F ((λ 12 ∇Φ 12 + λ 3 ∇Φ 3 ) ♯ν) ≤ λ 12 F (∇Φ 12 ♯ν) + λ 3 F (∇Φ 3 ♯ν) ≤ (∇Φ 2 ♯ν) + λ 3 F (∇Φ 3 ♯ν) = i F (∇Φ i ♯ν) = 3 i=1 λ i F (ν i ).(7.4) then readily follows by an induction argument on p.The next proposition shows that convexity along barycenters is intermediate to the other two notions of convexity.Proposition 7.6. If F : X ′ ∩ M 1 + (R d ) →R is convex along generalized geodesics, then it is convex along barycenters (and therefore displacement convex because of proposition 7.3). Moreover if d = 1, then displacement convexity implies convexity along generalized geodesics; hence in this case, these three notions of convexity are equivalent.Proof. Let ν 1 , • • • , ν p ∈ X ′ ∩ M 1 + (R d ),and consider the barycenter bar(ν i , λ i ) i=1,••• ,p of these measures with respective weights λ 1 , • • • , λ p . From the multi-marginal characterization (4.10) of barycenters, we have bar(ν i , λ i ) i=1,••• ,p = p i=1 λ i ∇u * i • ∇u 1 ♯ν 1 = p i=1

F

  ((bar(ν i , λ i ) i=1,••• ,p ) ≤ p i=1 λ i F (∇u * i ♯ν 1 ) = p i=1 λ i F T 1 i ♯ν 1 = p i=1
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Let us now prove that p i=1 λ i T i = I that we already know, from proposition 3.8, to be a sufficient condition for ν to solve (2.2). Set K i = S 1/2 i and K := S 1/2 . Using the identity

which proves that ν is optimal.

Step 3: We already know that (2.2) admits a unique solution and from the previous step, we have for any positive definite solution S of (6.2), N (0, S) solves (2.2). This proves that (6.2) has a unique positive definite solution.

The crucial role played by the nonlinear matrix equation (6.2) and the sufficiency step in the proof above is due to Knott and Smith [START_REF] Knott | On a generalization of cyclic-monotonicity and distances among random vectors[END_REF]. But the authors left open the existence and uniqueness issues for (6.2); indeed the fact that barycenters of gaussians are also gaussians was not proved in their paper. Let us point out here that Rüschendorf and Uckelman proved in [START_REF] Rüschendorf | On the n-coupling problem[END_REF] existence of a solution to (6.2) by a completely different argument than Brouwer's fixed point, but they did not study its uniqueness.

Convex functionals

Here we extend the notion of displacement convexity introduced by McCann [START_REF] Mccann | A convexity principle for interacting gases[END_REF] for two probability measures, to any finite number of probability measures. For simplicity, we assume from now on that all probability measures are absolutely continuous with respect to the Lebesgue measure. Also, the space X ′ ∩ M 1 + (R d ) will be equipped with the Wasserstein metric (2.1); it will then be called the Wasserstein space.

We end this section by remarking that the three basic examples of functionals, i.e. the internal energy, the potential energy and the interaction energy, are convex along barycenters, since they are all convex along generalized geodesics in X ′ ∩ M 1 + (R d ) as shown by Ambrosio, Gigli and Savaré in [START_REF] Ambrosio | gradient flows in metric spaces and in the space of probability measures[END_REF], propositions 9.3.2, 9.3.5 and 9.3.9. In the next statement, we identify the absolutely continuous probability measures belonging to X ′ with their density functions that we denote by ρ.

Proposition 7.7. Let F : [0, ∞) → R be continuous on [0, ∞), and V, W : R d → R be continuous on R d , with W being an even function.

1. If F (0) = 0 and (0, ∞) ∋ t → t d F (t -d ) is convex and nonincreasing, then the internal energy

W (xy)ρ(x)ρ(y) dx dy is convex along generalized geodesics in X ′ ∩ M 1 + (R d ). Therefore, all these functionals are convex along barycenters in the Wasserstein space X ′ ∩ M 1 + (R d ).