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From discrete to continuous Wardrop

equilibria

J.-B. Baillon∗, G. Carlier†

October 29, 2011

Abstract

The notion of Wardrop equilibrium in congested networks has been
very popular in congested traffic modelling since its introduction in
the early 50’s, it is also well-known that Wardrop equilibria may be
obtained by some convex minimization problem. In this paper, in the
framework of Γ-convergence theory, we analyze what happens when
a cartesian network becomes very dense. The continuous model we
obtain this way is very similar to the continuous model of optimal
transport with congestion of Carlier, Jimenez and Santambrogio [6]
except that it keeps track of the anisotropy of the network.

Keywords: Wardrop equilibria, traffic congestion, Γ-convergence.

1 Introduction

Congested traffic equilibrium models on finite networks have received a lot of
attention since the early 50’s because of applications to road traffic and more
recently to communication networks. In this line of research, the notion
of Wardrop equilibrium plays a central role. Roughly speaking, Wardrop
equilibrium requires that users behave rationally by choosing the shortest
available paths, taking congestion into account i.e. the fact that travel times
increase with the flow. Finding Wardrop equilibria is a fixed-point problem
in nature that presents some analogies with mean-field games theory even-
though it is purely stationary. Soon after the work of Wardrop, it was ob-
served by Beckmann, McGuire and Winsten [2] that the Wardrop condition
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actually is the first-order condition for some some convex minimization prob-
lem. This is a key property both from a theoretical point and for numerical
computations. Unfortunately, the minimization problem has one (flow) vari-
able per admissible path on the network, it may therefore quickly become
untractable for realistic road or communication networks. An alternative
consists in studying the dual problem, this dual formulation has one (time)
variable per arc but it involves the corresponding shortest travelling times
between the nodes, it is therefore nonsmooth and nonlocal. Both primal
and dual formulations of Wardrop equilibria are difficult to solve for large
scale networks and it becomes natural to investigate whether the problem
somehow simplifies passing to the continuous limit in some sense.

The aim of this paper is to study rigorously what happens to Wardrop
equilibria as the network becomes very dense. More precisely, we will con-
sider the case of a two-dimensional cartesian network with small arc length
ε and will study the Γ-convergence of the functionals in the dual problem as
ε goes to 0. We will then obtain an optimization problem posed over certain
continuous metrics variables. This limit problem is the dual of a continuous
problem posed over a set of probability measures over paths which is simi-
lar to the continuous model of optimal transport with congestion of Carlier,
Jimenez and Santambrogio [6] except that it keeps track of the anisotropy of
the network. The optimality conditions for the continuous model of optimal
transport with congestion can naturally be viewed as the continuous coun-
terpart of Wardrop equilibria. We will first address the short-term problem
in which the transport plan i.e. the amount of mass that has to be sent from
each source to each destination is prescribed. We will also consider the long-
term problem in which only the marginals (i.e. the distributions of supply
and demand) are fixed and the transport plan is part of the unknown and has
to be determined by some additional optimality requirement. In the isotropic
continuous long-term case, as shown in Brasco, Carlier and Santambrogio [5],
the Wardrop equilibrium problem reduces to solving some nonlinear elliptic
PDE, a similar approach is possible for the anisotropic case as well but will
not be developed here, we just mention that our Γ-convergence results some-
how motivate the model studied in [6], [5] as a rigorous continuous limit of
the discrete Wardrop problem.

The paper is organized as follows. In section 2, we set some notations, re-
call the definition of Wardrop equilibria and its variational characterization.
The limit functional for the dual problem is identified in section 3 and a pre-
cise Γ-convergence result is stated, its proof is detailed in section 4. In section
5, we establish optimality conditions for the limit problem, these conditions
may naturally be interpreted as a continuous Wardrop equilibrium. Finally,
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in section 6, we extend the previous analysis to the long term variant.

2 The discrete model

2.1 Setting and definition of Wardrop equilibria

Network of characteristic length ε: Given Ω a bounded domain of R
2

with a smooth boundary and ε > 0, we consider as network whose charac-
teristic length is ε:

Ωε := εZ2 ∩ Ω.

We shall denote by (v1, v2, v3, v4) := ((1, 0), (0, 1), (−1, 0), (0,−1)) the
directions of the network (i.e. the vectors of the canonical basis as well as
their opposite) enumerated counterclockwise. In this setting, every arc of the
network is of the form [x, x + εvi] for some x ∈ Ωε and some i ∈ {1, ..., 4}.
Arcs will therefore simply identified to pairs (x, vi). One should think of the
network as being oriented so that [x, x+ εvi] and [x+ εvi, x] really represent
two distinct arcs.

Traveling times and congestion: The mass commuting on arc (x, vi)
will be denoted by mε

i (x) and the traveling time of arc (x, vi) will be denoted
by tεi (x). Due to congestion, traveling time and mass are related for every
arc (x, vi) by the relation:

tεi (x) = gε
i (x,m

ε
i (x)) (2.1)

where the gε
i are some given nonnegative functions that depend on the arc

itself but also in a nondecreasing way (this is congestion) on the mass mε
i (x)

that commutes on (x, vi). The collection of all arc-masses mε
i (x) will be

denoted mε.
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Remark 2.1. In this model, we do not consider the case where some time is
also spent at the nodes x. This extension could be treated as well simply by
considering some extra arcs. We might also allow the functions gε

i to take
the value +∞ modelling forbidden arcs or saturation effects but for the sake
of simplicity we will only study the case where the travelling times are finite.

Consider two neighboring nodes x and x′ with x′ = x+ εvi and vj = −vi,
the time to go from x to x′ only depends only on the mass mε

i (x) that uses
the arc (x, vi) whereas the time to go from x′ to x depends only on the mass
mε

j(x
′).

Transport plan: A transport plan is also given as a collection of non-
negative masses γε(x, y), (x, y) ∈ Ωε × Ωε. For each pair (x, y) ∈ Ωε × Ωε

(viewed as a source/destination pair), γε(x, y) represents the amount of mass
that has to be sent from the source x to the target y. Of course, if all the
masses γε(x, y) are zero, no mass at all will travel along the network.

Paths: A path is a finite collection of successive nodes. A generic path
σ is therefore of the form (x0, x1, ..., xL) ∈ ΩL+1

ε where σ(0) := x0 ∈ Ωε and
σ(k + 1) − σ(k) := xk+1 − xk ∈ ε{v1, ..., v4} for k = 0, ..., L − 1. For such
a path σ(0) is the origin of σ, εL is the (flat) length of σ and σ(L) is the
terminal point of σ. We shall use the notation (x, vi) ⊂ σ if there is a k
between 0 and L − 1 such that σ(k) = x and σ(k + 1) − σ(k) = εvi. Since
commuting time on each arc is nonnegative, we shall restrict ourselves to the
Cε set of loop-free paths, this set is finite and may be partitioned as

Cε =
⋃

(x,y)∈Ωε×Ωε

Cε
x,y

where Cε
x,y is the set of loop-free paths having x as origin and y as terminal

point. The mass traveling on the path σ ∈ Cε (therefore starting from the
origin of σ and stopping at the terminal point of σ) will be denoted wε(σ).
The collection of all path-masses wε(σ) will be denoted wε. Given arc-masses
mε, the travel time of a path σ ∈ Cε is given by

τ ε
mε(σ) :=

∑

(x,vi)∈σ

gε
i (x,m

ε
i (x)).

Equilibria: To sum up, the data of the model are thus the masses γε(x, y)
and the congestion functions gε

i . The unknowns are the arc-massesmε
i (x) and

path-masses wε(σ) that should be determined by some equilibrium require-
ments. First of all, arc-masses and path-masses, should be nonnegative. In
addition, arc-masses, path-masses and the data γε are related by the follow-
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ing conditions which both express mass conversation:

γε(x, y) :=
∑

σ∈Cε
x,y

wε(σ), ∀(x, y) ∈ Ωε × Ωε (2.2)

and
mε

i (x) =
∑

σ∈Cε : (x,vi)⊂σ

wε(σ). (2.3)

The last ingredient to define equilibria is the requirement that only shortest
paths (given the congestion pattern created by arc and path-masses) should
actually be used. This leads to the concept of Wardrop equilibirum ([9]) that
is defined precisely as follows:

Definition 2.2. A Wardrop equilibrium is a configuration of nonnegative
arc-masses mε : (x, i) 7→ (mε

i (x)) and of nonnegative path-masses wε : σ 7→
wε(σ), that satisfy the mass conservation conditions (2.2) and (2.3) and such
that for every (x, y) ∈ Ωε × Ωε and every σ ∈ Cε

x,y, if wε(σ) > 0 then

τ ε
mε(σ) ≤ τ ε

mε(σ′), ∀σ′ ∈ Cε
x,y.

2.2 Variational characterizations of equilibria

A few years after Wardrop introduced his equilibrium concept for congested
networks, it was realized by Beckmann, McGuire and Winsten [2] that Wardrop
equilbiria have a variational characterization. More precisely, a flow config-
uration (wε,mε) is an equilibrium if and only if it minimizes

∑

x∈Ωε

4∑

i=1

Gε
i (x,m

ε
i (x)) where Gε

i (x,m) :=

∫ m

0

gε
i (x, α)dα (2.4)

subject to nonnegativity constraints and the mass conservation conditions
(2.2)-(2.3). Note that this is a convex program (since the functions gε

i are
nondecreasing with respect to mass) so that existence results and numeri-
cal schemes can easily be derived from this variational formulation. Note
however that this problem uses the whole path flow configuration wε and
enumerating all such paths flows becomes extremely costly as soon as the
network becomes dense, that prevents in practice the use of this formulation
for realistic congested networks. This explains why one may often prefer to
work with the dual formulation which reads as:

inf
tε∈R

4#Ωε
+

∑

x∈Ωε

4∑

i=1

Hε
i (x, t

ε
i (x)) −

∑

(x,y)∈Ωε
2

γε(x, y)T ε
tε(x, y) (2.5)
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where tε ∈ R
4#Ωε

+ should be understood as tε = (tεi (x))(x,i)∈Ωε×{1,··· ,4},H
ε
i (x, .) :=

(Gε
i (x, .))

∗ is the Legendre Transform of Gε
i (x, .) that is

Hε
i (x, t) := sup

m≥0
{mt−Gε

i (x,m)}, ∀t ∈ R+ (2.6)

and T ε
tε is the minimal length functional:

T ε
tε(x, y) := min

σ∈Cε
x,y

∑

(x,vi)⊂σ

tεi (x). (2.7)

In the dual formulation (2.5) (of course again a convex program), we only
have 4#Ωε = O(ε−2) variables which is much better than having one variable
per path but is still huge for small ε. Note however that the price to pay
in working with (2.5) is the term that depends on T ε

tε since it is nonsmooth,
nonlocal and might be complicated to optimize, it is not unrealistic however
to expect that passing to the continuous limit will actually simplify the struc-
ture because one will then be allowed to use the theory of Hamilton-Jacobi
equations. The connection between this dual formulation and Wardrop equi-
libria (i.e. the minimization of (2.4) under the constraints (2.2)-(2.3)) is that
whenever (mε,wε) is a Wardrop equilbrium then tε := (gε

i (x,m
ε
i (x)) solves

(2.5), in other words solving (2.5) amounts to find the equilibrium travelling
times (and thus also the corresponding arc-masses mε

i (x) by inverting the
relation tεi (x) = gε

i (x,m
ε
i (x))). We refer to the recent paper of Baillon and

Cominetti [1] for more details, references and an extension of the model to a
Markovian setting.

3 The Γ-convergence result

3.1 Scaling and assumptions

Of course, if one wants to be able to pass to the continuous limit, ε →
0+ in the Wardrop equilibrium problem, some structural assumptions have
to be made on the ε-dependence of the data. The first assumption is the
convergence of the transport plans γε, namely we assume that there exists a
finite nonnegative measure γ on Ω ×Ω to which γε weakly star converges in
the sense that the family of discrete measures

∑
(x,y)∈Ωε

2 γε(x, y)δ(x,y) weakly
star converges to γ:

lim
ε→0+

∑

(x,y)∈Ωε
2

γε(x, y)ϕ(x, y) =

∫

Ω×Ω

ϕdγ, ∀ϕ ∈ C(Ω × Ω). (3.1)
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Our second assumption concerns the form of the congestion functions tεi that
we assume to be of the form

gε
i (x,m) = εgi

(
x,
m

ε

)
, ∀ε > 0, (x, i) ∈ Ωε × {1, ..., 4} (3.2)

where gi is a given continuous, nonnegative function on Ω × R+, that is
nondecreasing in its second argument. This assumption is natural in terms
of scaling, it means that the travelling time on an arc of length ε is of order
ε and depends on the flow per unit of length i.e. m/ε.

Under assumption (3.2), the functions Gε
i and Hε

i that appear in the
primal and dual variational characterizations of Wardrop equilibria are thus
given by

Gε
i (x,m) = ε2Gi

(
x,
m

ε

)
where Gi(x,m) :=

∫ m

0

gi(x, α)dα (3.3)

and

Hε
i (x, t) = ε2Hi

(
x,
t

ε

)
where Hi(x, .) = (Gi(x, .))

∗ (3.4)

i.e. for every ξ ∈ R+:

Hi(x, ξ) = sup
m∈R+

{mξ −Gi(x,m)}.

Note also that the previous assumptions imply thatHi(x, .) is actually strictly
convex. In view of (2.5) and (3.4) it is natural to rescale the arc-times tε by
defining the time per unit of length or metric variables

ξε :=
tε

ε
, i.e. ξε

i (x) =
tεi (x)

ε
, ∀x ∈ Ωε, ∀i ∈ {1, ..., 4} (3.5)

and then to rewrite (2.5) in terms of ξε as:

inf
ξε∈R

4#Ωε
+

Jε(ξε) := Iε
0(ξ

ε) − Iε
1(ξ

ε) (3.6)

where

Iε
0(ξ

ε) := ε2
∑

x∈Ωε

4∑

i=1

Hi(x, ξ
ε
i (x)) (3.7)

and
Iε
1(ξ

ε) := ε
∑

(x,y)∈Ωε
2

γε(x, y)T ε
ξε(x, y). (3.8)
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Our last assumption is that Hi is continuous in its first argument and
there exists p > 2 and two constants 0 < λ ≤ Λ such that for every (x, ξ, i) ∈
Ω × R+ × {1, ..., 4} one has

λ(ξp − 1) ≤ Hi(x, ξ) ≤ Λ(ξp + 1). (3.9)

The growth condition (3.9) is natural if one wants to work in Lp in the
continuous limit and thus to obtain a simple convex integral term as the
limit of Iε

0 (recall that by construction Hi is convex in its second argument),
the requirement p > 2 is technical and less natural, it will however turn out
to be crucial to pass to the limit in the more involved nonlocal term Iε

1 in
(3.6) which will make use of Morrey’s inequality as explained below. From
now on, we will always assume that assumptions (3.1), (3.2) and (3.9) are
satisfied.

3.2 The limit functional

In view of the previous paragraph, it is natural to introduce

Lp
+ := {ξ = (ξ1, ..., ξ4), ξi ∈ Lp(Ω), ξi ≥ 0, i = 1, ..., 4}

as well as the integral functional

I0(ξ) :=
4∑

i=1

∫

Ω

Hi(x, ξi(x))dx, ∀ξ ∈ Lp
+ (3.10)

which naturally arises as the continuous limit of Iε
0 . The construction of the

term that plays the same role as Iε
1 is more involved, to understand this term

let us define for every u = (u1, u2) ∈ R
2:

Φ(u) := ((u · vi)+)i=1,...,4 = ((u1)+, (u2)+, (u1)−, (u2)−) (3.11)

Now, let ξε ∈ R
4#Ωε

+ , (x, y) ∈ Ωε × Ωε, let σ ∈ Cε
x,y, let εL(σ) be the

euclidean length of σ and slightly abusing notations let us extend ξε on each
arc by letting ξε

i be constant with value ξε
i (x) on the arc [x, x + εvi], let us

also identify σ with the piecewise affine curve t ∈ [0, L(σ)] 7→ σ(t) defined by
σ(t) = σk + (t− k)(σk+1 − σk) for t ∈ [k, k + 1] with k = 0, ..., L(σ) − 1 , we
then have

ε
∑

(x,vi)⊂σ

ξε
i (x) =

L(σ)−1∑

k=0

Φ(σk+1 − σk) · ξε(σk) =

∫ L(σ)

0

Φ(σ̇(t)) · ξε(σ(t))dt
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so that

εT ε
ξε(x, y) = inf

σ∈Cε
x,y

∫ L(σ)

0

Φ(σ̇(t)) · ξε(σ(t))dt

= inf
σ∈Cε

x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξε(σ̃(t))dt

where σ̃ : [0, 1] → Ω simply is the reparameterization of σ̃(t) = σ(L(σ)t),
t ∈ [0, 1]. This strongly suggests to define for ξ = (ξ1, ..., ξ4) ∈ C(Ω,R4

+)

cξ(x, y) := inf
{∫ 1

0

Φ(σ̇(t)) · ξ(σ(t))dt
}

(3.12)

where the infimum is over the set of absolutely continuous curves σ with
values in Ω and such that σ(0) = x and σ(1) = y. Note cξ is a sort of Finsler
distance which keeps track of the anisotropy of the network but it is actually
not a distance : it is indeed not separating if ξ vanishes somewhere and it is
not symmetric since Φ is not even. Now, our aim is to extend the definition of
cξ to the case where ξ is only Lp

+, to do so we proceed as in Carlier, Jimenez
and Santambrogio [6] by remarking thanks to an easy dynamic programming
argument that if ξ is continuous then cξ is actually Lipschitz and for all x
and a.e. y one has

|∇ycξ(x, y)| ≤
4∑

i=1

ξi(y)

and a similar inequality gives a bound for ∇xcξ(x, y) for every y and a.e.
x. Now recall that we have assumed that p > 2 in assumption (3.9), so
that W 1,p(Ω) ⊂ C0,α(Ω) with α := 1 − 2/p and we deduce from Morrey’s
inequality that there is a constant C such that for every (x, y1, y2) ∈ Ω3 one
has

|cξ(x, y1) − cξ(x, y2)| ≤ C‖ξ‖Lp |y1 − y2|α

and similarly, for every (x1, x2, y) ∈ Ω3 one has

|cξ(x1, y) − cξ(x2, y)| ≤ C‖ξ‖Lp |x1 − x2|α

and thus

|cξ(x1, y1) − cξ(x2, y2)| ≤ C‖ξ‖Lp(|x1 − x2|α + |y1 − y2|α).

Since cξ vanishes on the diagonal, we deduce from Arzelà-Ascoli theorem that
if (ξn)n is a sequence C(Ω,R4

+) that is bounded in Lp then the sequence cξn
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admits a subsequence that converges in C(Ω × Ω). For ξ ∈ Lp
+ this enables

us to define

cξ(x, y) = sup {c(x, y) : c ∈ A(ξ)} ,∀(x, y) ∈ Ω × Ω (3.13)

where

A(ξ) =
{

lim
n
cξn

in C(Ω × Ω) : (ξn)n ∈ C(Ω,R4
+), ξn → ξ in Lp

}
. (3.14)

For further use, let us state the following result which is a straightforward
generalization of Lemmas 3.4 and 3.5 in [6]:

Lemma 3.1. If ξ ∈ C(Ω,R4
+) then cξ = cξ. If ξ ∈ Lp

+ there exists a sequence
(ξn)n in C(Ω,R4

+) such that cξn
converges to cξ in C(Ω × Ω) as n→ ∞.

Having defined cξ when ξ is only Lp
+, let us now define

I1(ξ) :=

∫

Ω×Ω

cξdγ, (3.15)

and the continuous limit (this term will be justified precisely by Γ-convergence
in the next section) of Jε by:

J(ξ) := I0(ξ) − I1(ξ) =
4∑

i=1

∫

Ω

Hi(x, ξi(x))dx−
∫

Ω×Ω

cξdγ, ∀ξ ∈ Lp
+. (3.16)

3.3 The Γ-convergence result

The theory of Γ-convergence, initially due to Ennio de Giorgi is a powerful
tool to study the convergence of variational problems (convergence of values
but also of minimizers) depending on a parameter. It is particularly well
suited to study problems involving a scale parameter, as is the case in the
present paper where ε represents the network scale and to identify discrete
to continuous limits in variational problems, as we shall see in our Wardrop
equilibrium problem. We refer to the books of Dal Maso [7] and Braides [4]
for the general theory of Γ-convergence as well as for many applications.

First let us define weak Lp convergence of a discrete family ξε ∈ R
4#Ωε

+ :

Definition 3.2. For ε > 0, let ξε ∈ R
4#Ωε

+ and ξ ∈ Lp
+, then ξε is said

to weakly converge to ξ in Lp (which we shall simply denote ξε → ξ) if the
following two conditions are satisfied:
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1. There exists a constant M such that for every ε > 0, one has

‖ξε‖ε,p :=
(
ε2

∑

x∈Ωε

4∑

i=1

ξε
i (x)

p
)1/p

≤M, (3.17)

2. for every ϕ ∈ C(Ω,R4), one has

lim
ε→0+

ε2
∑

x∈Ωε

4∑

i=1

ϕi(x)ξ
ε
i (x) =

∫

Ω

ϕ(x) · ξ(x)dx.

Definition 3.3. For ε > 0, let F ε : R
4#Ωε

+ → R ∪ {+∞} and F : Lp
+ →

R ∪ {+∞} then the family of functionals (F ε)ε is said to Γ-converge (for
the weak Lp topology) to F if and only if the following two conditions are
satisfied:

1. (Γ-liminf inequality) for every ξ ∈ Lp
+ and every family ξε ∈ R

4Ωε
+ such

that ξε → ξ one has

lim inf
ε→0+

F ε(ξε) ≥ F (ξ),

2. (Γ-limsup inequality) for every ξ ∈ Lp
+, there exists a family ξε ∈ R

4Ωε
+

such that ξε → ξ and

lim sup
ε→0+

F ε(ξε) ≤ F (ξ).

Our main result whose full proof will be given in the next section, then
reads

Theorem 3.4. Under assumptions (3.1), (3.2), (3.9), the family of func-
tionals Jε defined by (3.6) Γ-converges (for the weak Lp topology) to the
functional J defined by (3.16).

By very classical arguments from general Γ-convergence theory, we obtain
the following convergence result :
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Corollary 3.5. Under assumptions (3.1), (3.2), (3.9), one has:

min
ξε∈R

4#Ωε
+

Jε(ξε) → min
ξ∈Lp

+

J(ξ)

(the fact that infima actually are achieved being part of the statement). More-
over, if for each ε > 0, ξε solves (3.6), then ξε → ξ where ξ is the minimizer
of J over Lp

+ .

Proof. First, thanks to Lemma 4.2 proved below and assumption (3.9), we
deduce an equi-coercivity estimate, namely that there exists M such that for
every ε and ξε ∈ R

4#Ωε

+ :

Jε(ξε) ≥ λ(‖ξε‖p
ε,p − 1) −M‖ξε‖ε,p.

where ‖ξε‖ε,p is defined by (3.17). Not only this proves that the infimum of Jε

over R
4#Ωε

+ is attained (this is a finite dimensional minimization problem with
a continuous and coercive objective function) at some ξε but also that ‖ξε‖ε,p

is bounded, in particular if we define for ε the R
4-valued Radon measure Mε

by

〈Mε, ϕ〉 := ε2
∑

x∈Ωε

4∑

i=1

ϕi(x)ξ
ε
i (x),∀ϕ ∈ C(Ω,R4)

thanks to Hölder inequality, we have for every ε > 0 and ϕ ∈ C(Ω,R4)

| 〈Mε, ϕ〉 | ≤ C‖ϕ‖ε,p′ (3.18)

where p′ = p/(p − 1) is the conjugate exponent of p and the semi-norm
‖.‖ε,p′ is defined in a similar way as in (3.17). Since there is a constant still
denoted C such that ‖ϕ‖ε,p′ ≤ C‖ϕ‖∞ for every ϕ ∈ C(Ω,R4), we deduce
from (3.18) and Banach-Alaoglu’s theorem that there exists a (not relabeled)
subsequence Mε and M , an R

4-valued Radon measure to which Mε weakly
star converges. We therefore deduce from (3.18) that for every ϕ ∈ C(Ω,R4),
we have

| 〈M,ϕ〉 | ≤ C lim
ε→0+

‖ϕ‖ε,p′ = C‖ϕ‖Lp′

which proves that in fact M admits an Lp representative that we denote ξ,
of course ξ ∈ Lp

+ since componentwise nonnegativity is stable under weak
limits and ξε → ξ in the sense of definition 3.2. It remains to prove that ξ
minimizes J over Lp

+. First we now from the Γ-liminf inequality that

J(ξ) ≤ lim inf
ε

Jε(ξε) = lim inf
ε→0+

min
ξε∈R

4#Ωε
+

Jε
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Let then ζ ∈ Lp
+, we deduce from the Γ-limsup inequality the existence for

each ε > 0 of a ζε ∈ R
4#Ωε

+ such that ζε → ζ in the sense of definition 3.2
and

lim sup
ε

Jε(ζε) ≤ J(ζ)

and since ξε minimizes Jε we thus get

J(ξ) ≤ lim inf
ε

Jε(ξε) ≤ lim sup
ε

Jε(ξε) ≤ lim sup
ε

Jε(ζε) ≤ J(ζ)

from which we deduce that ξ minimizes J over Lp
+ (and therefore povides

the existece of a minimizer to the limit problem) as well as

min
Lp

+

J ≤ lim inf
ε→0+

min
ξε∈R

4#Ωε
+

Jε ≤ lim sup
ε→0+

min
ξε∈R

4#Ωε
+

Jε ≤ J(ζ), ∀ζ ∈ Lp
+

which also proves the convergence of the values of the discrete minimization
problems to the value of the continuous one. Finally, we have convergence of
the whole family ξε and not only of a subsequence by the uniqueness of the
minimizer ξ of J of Lp

+ (since J is strictly convex).

4 Proof of the Γ-convergence result

Recall that in all what follows, we will always assume (3.1), (3.2), (3.9).

4.1 Γ-liminf inequality

For (small) ε > 0, let ξε ∈ R
4#Ωε

+ and ξ ∈ Lp
+ such that ξε → ξ (in the sense

of definition 3.2), recall that our aim is to prove that

lim inf
ε→0+

Jε(ξε) ≥ J(ξ). (4.1)

As far as the local term Iε
0 is concerned, by our convexity, growth and

continuity assumptions, we easily get

Lemma 4.1. Under the previous assumptions, one has

lim inf
ε→0+

Iε
0(ξ

ε) ≥ I0(ξ). (4.2)

13



Proof. Let δ > 0, we claim that there exists ϕ = (ϕ1, ..., ϕ4) continuous on
Ω such that

I0(ξ) ≤ δ +
∑

i=1

∫

Ω

[ϕi(x)ξi(x) −Gi(x, ϕi(x))]dx

where we recall that Gi(x, .) is the Legendre Transform of Hi(x, .). Indeed,
without imposing continuity, this is just convex duality, now the fact that
ϕi can be chosen continuous follows from the continuity for the Lp′ topology
(p′ := p/(p− 1) the conjugate exponent of p) of ϕ 7→ ∑

i=1

∫
Ω
Gi(x, ϕi(x))dx

and the density of continuous functions in Lp′ .
Now using Young’s inequality yields for every ε > 0, and x ∈ Ωε:

4∑

i=1

Hi(x, ξ
ε
i (x)) ≥

4∑

i=1

[ϕi(x)ξ
ε
i (x) −Gi(x, ϕi(x))]

from which we easily deduce that

lim inf
ε→0+

Iε
0(ξ

ε) ≥ I0(ξ) − δ

and since δ > 0 is arbitrary, we get the claim.

To deal with the nonlocal term, we shall need some compactness for the
minimal length terms, this will follow from the following discretization of
Morrey’s inequality:

Lemma 4.2. Let θε ∈ R
Ωε
+ and ϕε ∈ R

Ωε such that

|ϕε(x)−ϕε(y)| ≤ εθε(x), for every x ∈ Ωε and every y neighbor of x (4.3)

then there is a constant C such that for every (x, y) ∈ Ωε × Ωε, one has

|ϕε(x) − ϕε(y)| ≤ C‖θε‖ε,p(|x1 − y1| + |x2 − y2|)α

where α := 1 − 2/p and

‖θε‖ε,p =
(
ε2

∑

x∈Ωε

θε(x)p
)1/p

.

14



Proof. For x ∈ Ωε, divide the cell x+ε[0, 1]2 into two triangles and extend ϕε

on these triangles by linear interpolation. Still denoting ϕε this interpolation,
we then have ϕε ∈ W 1,p with ‖∇ϕε‖Lp ≤ C‖θε‖ε,p so that the desired result
follows from Morrey’s inequality.

To shorten notations, let us define for every (x, y) ∈ Ωε × Ωε:

cε(x, y) := εT ε
ξε(x, y) = inf

σ∈Cε
x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξε(σ̃(t))dt. (4.4)

By definition, if x0 ∈ Ωε and x and y are neighbors in Ωε, we have

cε(x0, z) ≤ cε(x0, y) + ε max
i=1,..,4

ξε
i (y) (4.5)

and since ‖ξε‖ε,p is bounded, we deduce from Lemma 4.2 that there is a
constant C such that for every ε > 0 one has

|cε(x, y) − cε(x0, y0)| ≤ C(|x− x0|α + |y − y0|α), ∀(x, y, x0, y0) ∈ Ωε
4. (4.6)

This enables us to extend cε(and slightly abusing notations we still denote
by cε this extension) to the whole of Ω × Ω by setting

cε(x, y) := sup
(x0,y0)∈Ωε×Ωε

{cε(x0, y0)−C(|x−x0|α + |y−y0|α)}, ∀(x, y) ∈ Ω×Ω.

(4.7)
By construction, the extensions cε still satisfy the uniform Hölder estimate
on the whole of Ω××Ω and since cε vanishes on the diagonal of Ωε ×Ωε, we
deduce from Arzelà-Ascoli Theorem that the family (cε)ε is precompact in
C(Ω × Ω), taking a subsequence if necessary we may therefore assume that
there is some c ∈ C(Ω × Ω) such that

cε → c in C(Ω × Ω), and thus c(x, x) = 0, ∀x ∈ Ω (4.8)

so that thanks to assumption (3.1):

Iε
1(ξ

ε) =
∑

(x,y)∈Ωε×Ωε

cε(x, y)γε(x, y) →
∫

Ω×Ω

cdγ. (4.9)

Thanks to Lemma 4.1, to prove (4.1), it is therefore enough to prove that

c ≤ cξ on Ω × Ω. (4.10)
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The rest of this paragraph will be devoted to the proof of inequality (4.10),
the strategy to prove (4.10) will consist in showing that c is a sort of subsolu-
tion in a very weak sense of an Hamilton-Jacobi equation and this is enough
to conclude by some comparison principle, all this seems very classical ex-
cept that we have to deal with the fact that ξ is only Lp

+. Let us start by
remarking that, for fixed x0 ∈ Ω, c(x0, .) ∈ W 1,p(Ω), indeed if ϕ ∈ C1

c (Ω) and
i = 1 or 2, denoting by (e1, e2) the canonical basis of R

2, choosing xε
0 ∈ Ωε

such that |x0 − xε
0| ≤

√
2ε and using the uniform convergence of cε(xε

0, .) to
c(x0, .), it is easy to see that

∫

Ω

c(x0, .)∂iϕ = lim
ε→0+

ε2
∑

x∈Ωε

cε(xε
0, x)

ϕ(x+ εei) − ϕ(x)

ε

= lim
ε→0+

ε2
∑

x∈Ωε

cε(xε
0, x− εei) − cε(xε

0, x)

ε
ϕ(x)

and thanks to (4.5), Hölder inequality and the fact that ‖ξε‖ε,p is bounded
we obtain that

∣∣∣
∫

Ω

c(x0, .)∂iϕ
∣∣∣ ≤ C‖ϕ‖Lp′ , ∀ϕ ∈ C1

c (Ω)

which proves that c(x0, .) ∈ W 1,p(Ω) (and by a similar argument that c(., y0) ∈
W 1,p(Ω) for every fixed y0 ∈ Ω).

Lemma 4.3. Let x0 ∈ Ω, ξ ∈ Lp
+ and ϕ ∈ W 1,p(Ω) such that ϕ(x0) = 0

(which makes sense since p > 2 so that ϕ is continuous). If for a.e. x ∈ Ω
one has

∇ϕ(x) · u ≤ ξ(x) · Φ(u), ∀u ∈ R
2 (4.11)

then ϕ ≤ cξ(x0, .) on Ω.

Proof. The result is obvious if ϕ ∈ C1(Ω) and ξ is continuous on Ω, indeed,
in this case, (4.11) holds pointwise, and if x ∈ Ω and σ is an absolutely
continuous curve with values in Ω connecting x0 and x, by the chain rule we
have

ϕ(x) =

∫ 1

0

∇ϕ(σ(t)) · σ̇(t)dt ≤
∫ 1

0

Φ(σ̇(t)) · ξ(σ(t))dt

and taking the infimum in σ we obtain ϕ ≤ cξ(x0, .) on Ω i.e. ϕ ≤ cξ(x0, .)
thanks to Lemma 3.1. If ϕ is only W 1,p and ξ only Lp

+, we first extend ϕ
to a function in W 1,p(R2) (recall that Ω is assumed to be smooth), we then
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extend ξ outside Ω by setting ξ = |∇ϕ|(1, 1, 1, 1) so that if x ∈ R
2 \ Ω and

u ∈ S1 we have

∇ϕ(x) · u ≤ |∇ϕ(x)| = |∇ϕ(x)|(u2
1 + u2

2)

≤ |∇ϕ(x)|(|u1| + |u2|) = ξ(x) · Φ(u)

so that by the homogenity of (4.11) in u, (4.11) continues to hold outside Ω
with the previous extension. We then consider a mollifying sequence ρn(x) =
n2ρ(nx), x ∈ R

2 where ρ is a smooth nonnegative function supported on
the unit ball and such that

∫
R2 ρ = 1 and define ξn := ρn ⋆ ξ and ϕn :=

ρn ⋆ ϕ− (ρn ⋆ ϕ)(x0). By construction we have

∇ϕn(x) · u ≤ ξn(x) · Φ(u), ∀(x, u) ∈ R
2 × R

2

so that with the previous argument and the smoothness of ϕn and ξn we get
ϕn ≤ cξn

(x0, .), using the convergence of ϕn to ϕ we thus get

ϕ = lim supϕn ≤ lim sup cξn
(x0, .) ≤ cξ(x0, .)

where the last inequality follows from the very definition of cξ as a supremum
(3.13)-(3.14) and the precompactness of cξn

in C(Ω × Ω).

The last ingredient to prove c ≤ cξ and then to terminate the proof of
the Γ-liminf inequality (4.1) is given by :

Lemma 4.4. Let x0 ∈ Ω and c be defined by (4.8), one has

1. for every w ∈ C∞
c (Ω,R2), the following inequality holds

∫

Ω

∇xc(x0, x) · w(x)dx ≤
∫

Ω

Φ(w(x)) · ξ(x)dx (4.12)

2. c ≤ cξ (and then, thanks to Lemma 4.1, the Γ-liminf inequality (4.1)
holds).

Proof. 1. Let xε
0 ∈ Ωε be such that |x0−xε

0| ≤
√

2ε so that cε(xε
0, .) converges

unifformly to c(x0, .). For ϕ ∈ C1
c (Ω), i = 1, 2, and (e1, e2) the canonical basis

of R
2, we already know that

Tϕ :=

∫

Ω

∂ic(x0, .) ϕ = lim
ε→0+

Tεϕ (4.13)
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where

Tεϕ = ε2
∑

x∈Ωε

cε(xε
0, x+ εei) − cε(xε

0, x)

ε
ϕ(x).

For ϕ ∈ Cc(Ω) ∩W 1,∞(Ω), approximating ϕ uniformly by smooth and com-
pactly supported functions ((again by convolution), it is easy to see that
(4.13) also holds. In particular (4.13) applies to the components of Φ(w)
(they are nonsmooth because of the positive part but still Lipschitz and
compactly supported). We may thus write
∫

Ω

∇xc(x0, .) · w =

∫

Ω

(∂1c(x0, .)((w1)+ − (w1)−) + ∂2c(x0, .)((w2)+ − (w2)−))

as the limit as ε→ 0+ of

ε2
∑

x∈Ωε

4∑

i=1

cε(xε
0, x+ εvi) − cε(xε

0, x)

ε
(w(x) · vi)+

now we use the inequality cε(xε
0, x + εvi) − cε(xε

0, x) ≤ εξε
i (x) to obtain that

the previous sum is bounded from above by

ε2
∑

x∈Ωε

Φ(w(x)) · ξε(x)

passing to the limit in ε→ 0+ thus exactly gives (4.12).

2. First, using (4.12) with w = θv for v ∈ C∞
c (Ω,R2) and an arbitrary

scalar function θ ∈ C∞
c (Ω,R), θ ≥ 0, we deduce from the homogeneity of Φ

that
∇xc(x0, x) · v(x) ≤ Φ(v(x)) · ξ(x) a.e. on Ω (4.14)

Now let x be a Lebesgue point of both ξ and ∇xc(x0, .), u ∈ S1 and choose
v ∈ C∞

c (Ω,R2) such that v = u in some neighbourhood of x, integrating
inequality (4.14) over Br(x) dividing by πr2 and letting r → 0+ we exactly
get

∇xc(x0, x) · u ≤ Φ(u) · ξ(x) a.e. on Ω

which thanks to Lemma 4.3 gives c(x0, .) ≤ cξ(.).

4.2 Γ-limsup inequality

Given, ξ ∈ Lp
+, it remains now to prove the Γ-limsup inequality i.e. the

existence of a family ξε ∈ R
4#Ωε

+ such that

ξε → ξ, and lim sup
ε→0+

Jε(ξε) ≤ J(ξ). (4.15)
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The proof is much simpler than that of Γ-liminf inequality. We shall prove
the result first in the case where ξ is continuous and then treat the general
case by a density argument:

Step 1 : ξ is continuous

For ε > 0, let us define for every x ∈ Ωε and i = 1, ..., 4,

ξε
i (x) :=

1

ε

∫

[x,x+εvi]

ξi =

∫ 1

0

ξi(x+ sεvi)ds

We also extend ξε in a piecewise constant way to the whole of Ω by setting
ξε = ξε(x) on the square having the neighbors of x in Ωε as vertices. Doing
so, we obviously have

‖ξε − ξ‖Lp → 0, and Iε
0(ξ

ε) → I0(ξ) as ε→ 0+. (4.16)

Note in particular that ξε → ξ in the weak sense of definition 3.2. For ε > 0,
and (x, y) ∈ Ωε, let us define

cε(x, y) := εT ε
ξε(x, y) = inf

σ∈Cε
x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξε(σ̃(t))dt

by the same arguments as in the proof of the Γ-liminf inequality, thanks to
the fact that ξε is bounded in Lp and again to Lemma 4.2, we may extend
cε to the whole of Ω × Ω and thus obtain a bounded and equi-Hölder family
still denoted cε, passing up to a subsequence we may also assume that cε

converges to some c in C(Ω×Ω). We then have lim infε→0+ Iε
1(ξ

ε) =
∫

Ω×Ω
cdγ

so that to prove (4.15) it is enough to prove that c ≥ cξ = cξ and to see
that this inequality holds it is enough to remark that by construction for
(x, y) ∈ Ωε × Ωε one has

cε(x, y) = inf
σ∈Cε

x,y

∫ 1

0

Φ( ˙̃σ(t)) · ξ(σ̃(t))dt ≥ cξ(x, y)

using the uniform convergence of cε to c we indeed obtain c ≥ cξ = cξ.

Step 2 : the general case where ξ is only Lp
+

Thanks to lemma 3.1 we can find for each n, ξn ∈ C(Ω,R4
+) such that

‖ξn − ξ‖Lp + ‖cξn
− cξ‖L∞ + |I0(ξn) − I0(ξ)| ≤

1

n
(4.17)

for each ε we then construct a piecewise constant ξε
n approximation of ξn as

in step 1. Thanks to step 1, we deduce that for each n there is some εn > 0
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(that we may choose nonincreasing and such that εn → 0 as n → ∞) such
that for 0 < ε ≤ εn one has

‖ξε
n − ξn‖Lp + |Iε

0(ξ
ε
n) − I0(ξn)| ≤ 1

n
and Iε

1(ξ
ε
n) ≥ I1(ξn) − 1

n
(4.18)

For ε > 0 let nε := sup{n : εn ≥ ε} and ξε := ξε
nε

, by construction with
(4.17) and (4.18), we have

‖ξε − ξ‖Lp + |Iε
0(ξ

ε) − I0(ξ)| ≤
2

nε

→ 0 as ε→ 0+ (4.19)

as well as

Iε
1(ξ

ε) ≥ I1(ξnε
) − 1

nε

=

∫

Ω×Ω

cξnε
dγ − 1

nε

using the fact that cξnε
converges to cξ we thus get

lim inf
ε

I1(ξ
ε) ≥ I1(ξ)

with (4.19) this proves the Γ-limsup inequality (4.15).

5 Optimality conditions and continuous Wardrop

equilibria

Our aim now is to give optimality conditions for the limit problem:

inf
ξ∈Lp

+

J(ξ) :=
4∑

i=1

∫

Ω

Hi(x, ξi(x))dx−
∫

Ω×Ω

cξdγ, (5.1)

through some dual formulation that can be interpreted in terms of continu-
ous Wardrop equilibria i.e. that is in some sense the continuous version of
the finite dimensional optimization problem that consists in minimizing (2.4)
subject to the mass conservation conditions (2.2) and (2.3). This dual formu-
lation will involve probability measures on set of paths (i.e. the macroscopic
version of the flows wε(σ) of the network model of section 2.1) and will turn
out to be an anisotropic variant of the problem studied in details in Carlier,
Jimenez and Santambrogio [6]. Let C := W 1,∞([0, 1],Ω), viewed as a subset
of C([0, 1],R2), i.e. equipped with the uniform topology, and slightly abusing
notations let us denote by M+

1 (C) the set of Borel probability measures Q
on C([0, 1],R2) such that Q(C) = 1. Let us define then the set of probability
measures on paths that are consistent with the transport plan γ:

Q(γ) := {Q ∈ M+
1 (C) : (e0, e1)#Q = γ}
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where e0 and e1 are evaluations at time 0 and 1 and (e0, e1)#Q denotes the
image measure of Q by (e0, e1). Thus Q ∈ Q(γ) means that

∫

C

ϕ(σ(0), σ(1))dQ(σ) =

∫

Ω×Ω

ϕ(x, y)dγ(x, y), ∀ϕ ∈ C(R2,R).

Note that Q plays the same role as the paths-flows in the network model
and the condition Q ∈ Q(γ) is the continuous analogue of the mass conserva-
tion condition (2.2). Let us now define the analogue of the arc flows induced
by Q ∈ Q(γ); for i = 1, .., 4 let us define the nonnegative measure on Ω, mQ

i ,
by

∫

Ω

ϕ(x)dmQ
i (x) =

∫

C

( ∫ 1

0

ϕ(σ(t))(σ̇(t) · vi)+dt
)
dQ(σ), ∀ϕ ∈ C(Ω,R).

Thus, the R
4-valued measure mQ = (mQ

1 ,m
Q
2 ,m

Q
3 ,m

Q
4 ) can be defined by

∫

Ω

ξdmQ =

∫

C

Lξ(σ)dQ(σ),∀ξ ∈ C(Ω,R4
+)

where

Lξ(σ) :=

∫ 1

0

ξ(σ(t)) · Φ(σ̇(t))dt =

∫ 1

0

4∑

i=1

ξi(σ(t))(σ̇(t) · vi)+dt =
4∑

i=1

Li
ξi
(σ).

(5.2)
Let us now recall that Hi(x, .) is the convex conjugate of Gi(x, .) where
Gi(x, .) is the primitive of the function gi(x, .) that relates the metric at
x in direction vi to the flow in this direction. The p growth assumption
(3.9) on Hi then can be translated into a similar q-growth condition on Gi

for q = p/(p − 1) the conjugate exponent of p. In fact, we will slightly
strengthen assumption (3.9) by further assuming that gi(x, .) is continuous,
everywhere positive and increasing in its second argument (so that Gi(x, .)
is strictly convex) and such there exists a and b such that b ≥ a > 0 and

amq−1 ≤ gi(x,m) ≤ b(mq−1+1), ∀(i, x,m) ∈ {1, .., 4}×Ω×R+, with q ∈ (1, 2).
(5.3)

Let us define then

Qq(γ) := {Q ∈ Q(γ) : mQ ∈ Lq(Ω,R4)} (5.4)

and assume
Qq(γ) 6= ∅ (5.5)
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this assumption is satisfied in particular when γ is supported by finitely many
points and q < 2 (see [3]). Let Q ∈ Qq(γ) and ξ and ξ̃ be in C(Ω,R4

+), we
have ∫

C

|Lξ(σ) − Leξ(σ)|dQ(σ) ≤ ‖ξ − ξ̃‖Lp‖mQ‖Lq

which proves that if ξ ∈ Lp
+ and (ξn)n is a sequence in C(Ω,R4

+) that con-
verges in Lp to ξ, then Lξn

is a Cauchy sequence in L1(C,Q) and its limit,
again denoted Lξ does not depend on the approximating sequence (ξn)n. As
in [6], this enables us to define Lξ in an L1(C,Q) sense for every ξ ∈ Lp

+ and
Q ∈ Qq(γ). For every ξ ∈ Lp

+ and Q ∈ Qq(γ), one can show that

∫

Ω

ξ ·mQ =

∫

C

Lξ(σ)dQ(σ), cξ(σ(0), σ(1)) ≤ Lξ(σ) for Q-a.e. σ ∈ C (5.6)

we refer to [6] for a proof. Let ξ ∈ Lp
+ and Q ∈ Qq(γ), we first deduce from

Young’s inequality that

4∑

i=1

∫

Ω

Hi(x, ξi(x))dx ≥
∫

Ω

ξ ·mQ −
4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx (5.7)

using the fact that Q ∈ Qq(γ) and (5.6), we also have

∫

Ω×Ω

cξdγ =

∫

C

cξ(σ(0), σ(1))dQ(σ) ≤
∫

C

Lξ(σ)dQ(σ) =

∫

Ω

ξ ·mQ (5.8)

so that

inf
ξ∈Lp

+

J(ξ) ≥ sup
Q∈Qq(γ)

−
4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx. (5.9)

We shall from now on call

sup
Q∈Qq(γ)

−
4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx. (5.10)

the dual of (5.1). Let us also remark the analogy between the continuous
problem (5.10) and the the finite-dimensional that consists in minimizing
(2.4) subject to the mass conservation conditions (2.2) and (2.3). The pre-
cise relations between (5.10) and (5.1) and the connection with Wardrop-like
equilibria are given by the following properties which are quite simple exten-
sions of the results of [6] to the anisotropic setting:

Theorem 5.1. Under assumptions (5.3) and (5.5), we have:
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1. (5.10) admits solutions,

2. Q ∈ Qq(γ) solves (5.10) if only if

∫

C

(
Lξ

Q
(σ) − cξ

Q
(σ(0), σ(1)

)
dQ(σ) = 0 (5.11)

where ξQ := (g1(.,m
Q
1 (.)), ..., g4(.,m

Q
4 (.))).

3. there is no duality gap : the supremum of (5.10) equals the infimum of
(5.1) and moreover if Q solves (5.10) then ξQ solves (5.1).

Proof. We will only sketch the proof and refer to [6] for detailed proofs which
can straightforwardly be adapted to the anisotropic case.

1. Let (Qn)n be a maximizing sequence for (5.10), we may reparameterize
paths by arclength (so that euclidean length becomes the Lipschitz constant
of the curve), the corresponding measures on curves still form a maximiz-
ing sequence again denoted (Qn), since (mQn) is bounded in Lq, this gives a
bound on

∫
C

Lip(σ)dQn(σ) and thus thanks to Ascoli and Prokhorov’s theo-
rems, this also gives some tightness of (Qn), arguing as in Lemma 2.8 of [6]
we find a Q ∈ M+

1 (C) to which, up to a subsequence, (Qn) weakly star con-
verges in M(C([0, 1],R2). We may also assume that mQn converges weakly
in Lq to some m and arguing as in Lemma 2.9 of [6] we obtain that mQ

i ≤ mi

for i = 1, ..., 4, in particular Q ∈ Qq(γ) and since Gi(x, .) is nondecreasing
and convex, we have

∫

Ω

Gi(x,m
Q
i (x))dx ≤

∫

Ω

Gi(x,mi(x))dx ≤ lim inf
n

∫

Ω

Gi(x,m
Qn

i (x))dx

which proves that Q solves (5.10).

2. Assume first that Q ∈ Qq(γ) satisfies (5.11), and let Q ∈ Qq(γ), by
convexity of Gi(x, .), (5.6) and (5.11) we have

4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx−

4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx ≥

∫

Ω

ξQ(·mQ −mQ)

=

∫

C

Lξ
Q
(σ)dQ(σ) −

∫

C

Lξ
Q
(σ)dQ(σ)

≥
∫

C

cξ
Q
(σ(0), σ(1))dQ(σ) −

∫

C

cξ
Q
(σ(0), σ(1))dQ(σ)

=

∫

Ω×Ω

cξ
Q
dγ −

∫

Ω×Ω

cξ
Q
dγ = 0
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so that Q solves (5.10). Now assume that Q ∈ Qq(γ) solves (5.10), let
Q ∈ Qq(γ) and ε ∈ (0, 1), dividing the inequality

4∑

i=1

∫

Ω

Gi(x, (1 − ε)mQ
i (x) + εmQ

i (x))dx−
4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx ≥ 0

by ε and letting ε→ 0+ we get

∫

Ω

ξQ ·mQ =

∫

C

Lξ
Q
dQ ≤

∫

Ω

ξQ ·mQ =

∫

C

Lξ
Q
dQ, ∀Q ∈ Qq(γ)

arguing as in Proposition 3.9 of [6] we obtain that the infimum of the right-
hand side of the previous inequality is in fact

∫
Ω×Ω

cξ
Q
dγ so that

∫

C

Lξ
Q
dQ =

∫

C

cξ
Q
(σ(0), σ(1))dQ(σ).

3. Let Q solve (5.10) then, by construction taking ξ = ξQ and m = mQ,
inequality (5.7) becomes an equality, and (5.8) as well thanks to (5.11), which
proves that (5.9) is in fact an equality and ξQ solves (5.1).

Of course, the optimality condition (5.11) for (5.10) can naturally be
interpreted in terms of Wardrop equilibria. Indeed, ξQ being the metric
induced by Q we may define continuous Wardrop equilibria as the set of
Q’s in Qq(γ) such that Q gives full mass to geodesics for the congested
metric ξQ, where such geodesics are by definition paths σ such that LξQ

(σ) =

cξQ
(σ(0), σ(1)). Condition (5.11) therefore exactly says that Q solves (5.10)

if and only if it is a continuous Wardrop equilibrium. In particular there
exist continuous Wardrop equilibria as soon as (5.3) and (5.5) hold.

A natural question now is whether the discrete problems corresponding
to (2.4) i.e.:

inf
mε,wε

ε2
∑

x∈Ωε

4∑

i=1

Gi

(
x,
mε

i (x)

ε

)
(5.12)

subject to the mass conservation constraints (2.2)-(2.3) converge in some
sense to the continuous problem

inf
Q∈Qq(γ)

4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx. (5.13)
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Let mε = (mε
i (x))x,i ∈ Ωε × {1, ...4} and wε = (wε(σ))σ∈Cε be a solution

of the discrete problem (5.12) and define the discrete measure over Cε:

Qε :=
∑

σ∈Cε

wε(σ)δσ

as well as
Q̃ε :=

∑

σ∈Cε

wε(σ)δeσ

where σ̃ ∈ C denotes the constant speed reparameterization of the path σ.
Since for every i ∈ {1, ..., 4} and ξi ∈ C(Ω,R+), using definition (5.2) one

has Li
ξi
(σ) = Li

ξi
(σ̃) and thus also mQε

= m
eQε

. Let us also remark that the

measure Q̃ε contains all the information on (mε,wε).

Theorem 5.2. Under assumptions (3.1), (3.2), (3.9), (5.3) and (5.5), defin-

ing Q̃ε as above, up to (a not relabeled) subsequence (Q̃ε)ε > 0 converges
weakly to some solution Q ∈ Qq(γ) of (5.13) in the sense that

∫

C([0,1],R2)

Φ(σ)dQ̃ε(σ) →
∫

C([0,1],R2)

Φ(σ)dQ(σ) as ε→ 0+

for every Φ ∈ Cb(C([0, 1],R2),R).

Proof. We know by duality, from corollary 3.5 and theorem 5.1, that the
value of (5.12) converges to the value of (5.13) in particular, thanks to (5.3)
this gives a bound on the discrete Lq norm of mε. Arguing as in the proof of
corollary 3.5 and section 4.1, we deduce that there is somem = (m1, ...,m4) ∈
Lq

+ such that up to a subsequence ε−1mε weakly converges in Lq to m in the
sense of definition 3.2 (up to changing p to its conjugate q) and

∫

Ω

4∑

i=1

Gi(x,mi(x))dx ≤ lim inf
ε→0+

ε2
∑

x∈Ωε

4∑

i=1

Gi

(
x,
mε

i (x)

ε

)
. (5.14)

Let i ∈ {1, ..., 4} and ξi ∈ C(Ω,R+), using definition (5.2) and (2.3), rear-
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ranging terms, one easily gets

∫

Ω

ξi(x)dm
eQε

i (x) =
∑

σ∈Cε

wε(σ)Li
ξi
(σ)

=
∑

x∈Ωε

( ∫

[x,x+εvi]

ξi

)( ∑

σ∈Cε : [x,x+εvi]⊂σ

wε(σ)
)

=
∑

x∈Ωε

(
ξi(x) +O(ωξi

(ε))
)( ∑

σ∈Cε : [x,x+εvi]⊂σ

εwε(σ)
)

= ε2
∑

x∈Ωε

ξi(x)
mε

i (x)

ε
+O(ωξi

(ε))

where ωξi
denotes a modulus of continuity of ξi. Since ε−1mε weakly con-

verges in Lq to m in the sense of definition 3.2, this shows that m
eQε

i weakly
star converges to m. Proceeding as in [6] (see lemmas 2.7, 2.8 and 2.9), we

can find Q ∈ M+
1 (C) such that (up to a subsequence) (Q̃ε)ε converges weakly

to Q and mQ
i ≤ mi for i = 1, ..., 4. Clearly, Q ∈ Qq(γ) and since Gi(x, .) is

nondecreasing, recalling (5.14), we have

∫

Ω

4∑

i=1

Gi(x,m
Q
i (x))dx ≤

∫

Ω

4∑

i=1

Gi(x,mi(x))dx

≤ lim inf
ε→0+

ε2
∑

x∈Ωε

4∑

i=1

Gi

(
x,
mε

i (x)

ε

)

and the desired conclusion follows from the fact that the right-hand side is
the value of the infimum in (5.13).

6 The long-term variant

Instead of prescribing a transport plan γε in the discrete problem (2.5), we
could have fixed only its marginals i.e. the distribution of sources and of
sinks (or supply and demand), respectively given by the nonnegative numbers
(µε

0(x))x∈Ωε
and (µε

1(y))y∈Ωε
that satisfy the compatibility condition

∑

x∈Ωε

µε
0(x) =

∑

y∈Ωε

µε
1(y) > 0.
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In the equilibrium problem this means that the transport plan now becomes
part of the unknown and should be determined by some additional optimal-
ity requirement, namely that it is an optimal transport plan between the
prescribed marginals for the transport cost induced by the congested metric
itself. In other words, in the long term variant, in addition to traffic con-
gestion we are also facing an optimal transportation problem. We refer the
reader to Villani’s book [8] for a recent account of optimal transport theory
and its numerous applications. More precisely, using the same notations as in
section 2, the definition of an equilibirium is exactly the same as in definition
2.2 except that one replaces the mass conservation condition (2.2) by

µε
0(x) :=

∑

σ∈Cε
x,.

wε(σ), µε
1(y) :=

∑

σ∈Cε
.,y

wε(σ) (6.1)

for every (x, y) ∈ Ωε where we have denoted by Cε
x,. (respectively Cε

.,y) the set
of simple paths on the network that start at x (respectively end at y). It is
then easy to check that equilibria are obtained by minimizing the functional
defined by (2.4) but now subject to (6.1) and (2.3). The dual formulation
then reads as the following variant of (2.5):

inf
tε∈R

4#Ωε
+

{ ∑

x∈Ωε

4∑

i=1

Hε
i (x, t

ε
i (x)) − inf

γε∈Π(µε
0,µε

1)

∑

(x,y)∈Ωε
2

γε(x, y)T ε
tε(x, y)

}
(6.2)

where H and T ε
tε are defined as before by (2.6) and (2.7) and Π(µε

0, µ
ε
1)

denotes the set of (discrete) transport plans between µε
0 and µε

1 i.e. the set
of collection of nonnegative reals (γε(x, y))(x,y)∈Ωε

2 such that
∑

y∈Ωε

γε(x, y) = µε
0(x),

∑

x∈Ωε

γε(x, y) = µε
1(y), (x, y) ∈ Ωε × Ωε.

As a normalization, we may assume that the common mass of µε
0 and µε

1 is
1 and identify them with the discrete probability measures:

µε
0 :=

∑

x∈Ωε

µε
0(x)δx, µ

ε
1 :=

∑

y∈Ωε

µε
1(y)δy.

Thus, in (6.2) the second term in the criterion is the value of the optimal
transport problem between µε

0 and µε
1 for the transport cost T ε

tε .
Let us now assume that assumptions (3.2) and (3.9) hold and let us

replace (3.1) by the assumption that µε
0 and µε

1 weakly star converge to some
probability measures µ0 and µ1 on Ω:

lim
ε→0+

∑

x∈Ωε

(ϕ(x)µε
0(x) + ψ(x)µε

1(x)) =

∫

Ω

ϕdµ0 +

∫

Ω

ψdµ1, ∀(ϕ, ψ) ∈ C(Ω)2.

(6.3)
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With assumptions (3.2) and (3.9) and setting ξε := ε−1tε as previously, we
may rewrite (6.2) as:

inf
ξε∈R

4#Ωε
+

F ε(ξε) := Iε
0(ξ

ε) − F ε
1 (ξε) (6.4)

where Iε
0 is defined by (3.7) and

F ε
1 (ξε) := inf

γε∈Π(µε
0,µε

1)
ε

∑

(x,y)∈Ωε
2

γε(x, y)T ε
ξε(x, y). (6.5)

We then define the limit functional by

F (ξ) := I0(ξ) − F1(ξ), where F1(ξ) := inf
γ∈Π(µ0,µ1)

∫

Ω×Ω

cξdγ; ∀ξ ∈ Lp
+ (6.6)

where, as before, I0 is defined by (3.10), cξ is defined by (3.13) and Π(µ0, µ1)
is the set of transport plans between µ0 and µ1 i.e. the set of probability
measures having µ0 and µ1 as marginals. We then have the following Γ-
convergence result:

Theorem 6.1. Under assumptions (6.3), (3.2), (3.9), the family of func-
tionals F ε defined by (6.4) Γ-converges (for the weak Lp topology) to the
functional F defined by (6.6).

Proof. The proof can be achieved exactly as that of Theorem 6.1, except for
the proof of the inequality

F1(ξ) ≥ lim sup
ε

F ε
1 (ξε)

as soon as ξε → ξ for which we use Lemma 6.2 given below. From section 4.1,
we already know that cε := εT ε

ξε has a subsequence that converges uniformly
to some c ≤ cξ. Now, let γ ∈ Π(µ0, µ1) be such that

F1(ξ) =

∫

Ω×Ω

cξdγ

thanks to Lemma 6.2 we may choose γε ∈ Π(µε
0, µ

ε
1) that weakly star con-

verges to γ as ε→ 0, we therefore get

lim sup
ε

F ε
1 (ξε) ≤ lim sup

ε

∑

(x,y)∈Ωε×Ωε

γε(x, y)cε(x, y)

=

∫

Ω×Ω

cdγ ≤
∫

Ω×Ω

cξdγ = F1(ξ).
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Lemma 6.2. Let µ and ν be probability measures on Ω, (µn)n, (νn)n be
sequences of probability measures on Ω weakly star converging to µ and ν
and let γ ∈ Π(µ, ν) be a transport plan between µ and ν. There exists a
sequence of transport plans γn ∈ Π(µn, νn) that weakly star converges to γ.

Proof. Let us recall that the 1-Wasserstein distance between µ and µn is
defined by

W1(µ, µn) := inf
θ∈Π(µ,µn)

∫

Ω×Ω

|x− x′|dθ(x, x′)

and let θ ∈ Π(µ, µn) be an optimal plan in the minimization problem above.
Similarly, let η ∈ Π(νn, ν) be an optimal plan in the problem defining
W1(ν, νn). Let us disintegrate θ as θ = µ ⊗ θx and η as η = ν ⊗ ηy and
finally let γn :=

∫
Ω×Ω

θx ⊗ ηydγ(x, y) i.e.

∫

Ω×Ω

ϕ(x′, y′)dγn(x′, y′) =

∫

Ω×Ω×Ω×Ω

ϕ(x′, y′)dπ(x, x′, y, y′), ∀ϕ ∈ C(Ω×Ω))

where
∫

Ω×Ω×Ω×Ω

ϕ(x, x′, y, y′)dπ(x, x, y, y′)

=

∫

Ω×Ω

( ∫

Ω×Ω

ϕ(x, x′, y, y′))dθx(x′)dηy(y′)
)
dγ(x, y), ∀ϕ ∈ C(Ω

4
).

by construction, γn ∈ Π(µn, νn) and

W1(γn, γ) ≤
∫

Ω×Ω×Ω×Ω

(|x− x′| + |y − y′|)dπ(x, x′, y, y′)

=

∫

Ω×Ω

|x− x′|dθx(x′)dµ(x) +

∫

Ω×Ω

|y − y′|dηy(y′)dν(y)

=

∫

Ω×Ω

|x− x′|dθ(x, x′) +

∫

Ω×Ω

|y − y′|dη(y, y′)

= W1(µn, µ) +W1(νn, ν)

and we conclude thanks to the well-known fact that W1 is a distance that
metrizes the weak-star topology on the set of probability measures on Ω (see
for instance [8]).

Let us finally mention that the continuous long term problem

inf
ξ∈Lp

+

{ 4∑

i=1

∫

Ω

Hi(x, ξi(x))dx− inf
γ∈Π(µ0,µ1)

∫

Ω×Ω

cξdγ
}

(6.7)
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admits a dual formulation that reads as

sup
Q∈Qq(µ0,µ1)

−
4∑

i=1

∫

Ω

Gi(x,m
Q
i (x))dx (6.8)

where

Qq(µ0, µ1) := {Q ∈ M+
1 (C) : e0#Q = µ0, e1#Q = µ1, m

Q ∈ Lq}
=

⋃

γ∈Π(µ0,µ1)

Qq(γ).

Provided Qq(µ0, µ1) 6= ∅ and (5.3) holds, one can generalize theorem 5.1 to
the long-term models as follows:

• the supremum in (6.8) is achieved and coincides with the infimum of
(6.7),

• Q ∈ Qq(µ0, µ1) solves (6.8) if and only if it is a long-term equilibrium :
it gives full mass to the geodesics for the congested metric ξQ generated

by Q in the sense that (5.11) holds and in addition γ := (e0, e1)#Q
solves the optimal transport problem:

inf
γ∈Π(µ0,µ1)

∫

Ω×Ω

cξ
Q
(x, y)dγ(x, y),

• if Q solves (6.8) then ξQ solves (6.7).
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