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 except that it keeps track of the anisotropy of the network.

Introduction

Congested traffic equilibrium models on finite networks have received a lot of attention since the early 50's because of applications to road traffic and more recently to communication networks. In this line of research, the notion of Wardrop equilibrium plays a central role. Roughly speaking, Wardrop equilibrium requires that users behave rationally by choosing the shortest available paths, taking congestion into account i.e. the fact that travel times increase with the flow. Finding Wardrop equilibria is a fixed-point problem in nature that presents some analogies with mean-field games theory eventhough it is purely stationary. Soon after the work of Wardrop, it was observed by Beckmann, McGuire and Winsten [START_REF] Beckmann | Studies in Economics of Transportation[END_REF] that the Wardrop condition actually is the first-order condition for some some convex minimization problem. This is a key property both from a theoretical point and for numerical computations. Unfortunately, the minimization problem has one (flow) variable per admissible path on the network, it may therefore quickly become untractable for realistic road or communication networks. An alternative consists in studying the dual problem, this dual formulation has one (time) variable per arc but it involves the corresponding shortest travelling times between the nodes, it is therefore nonsmooth and nonlocal. Both primal and dual formulations of Wardrop equilibria are difficult to solve for large scale networks and it becomes natural to investigate whether the problem somehow simplifies passing to the continuous limit in some sense.

The aim of this paper is to study rigorously what happens to Wardrop equilibria as the network becomes very dense. More precisely, we will consider the case of a two-dimensional cartesian network with small arc length ε and will study the Γ-convergence of the functionals in the dual problem as ε goes to 0. We will then obtain an optimization problem posed over certain continuous metrics variables. This limit problem is the dual of a continuous problem posed over a set of probability measures over paths which is similar to the continuous model of optimal transport with congestion of Carlier, Jimenez and Santambrogio [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] except that it keeps track of the anisotropy of the network. The optimality conditions for the continuous model of optimal transport with congestion can naturally be viewed as the continuous counterpart of Wardrop equilibria. We will first address the short-term problem in which the transport plan i.e. the amount of mass that has to be sent from each source to each destination is prescribed. We will also consider the longterm problem in which only the marginals (i.e. the distributions of supply and demand) are fixed and the transport plan is part of the unknown and has to be determined by some additional optimality requirement. In the isotropic continuous long-term case, as shown in Brasco, Carlier and Santambrogio [START_REF] Brasco | Congested traffic dynamics, weak flows and very degenerate elliptic equations[END_REF], the Wardrop equilibrium problem reduces to solving some nonlinear elliptic PDE, a similar approach is possible for the anisotropic case as well but will not be developed here, we just mention that our Γ-convergence results somehow motivate the model studied in [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF], [START_REF] Brasco | Congested traffic dynamics, weak flows and very degenerate elliptic equations[END_REF] as a rigorous continuous limit of the discrete Wardrop problem.

The paper is organized as follows. In section 2, we set some notations, recall the definition of Wardrop equilibria and its variational characterization. The limit functional for the dual problem is identified in section 3 and a precise Γ-convergence result is stated, its proof is detailed in section 4. In section 5, we establish optimality conditions for the limit problem, these conditions may naturally be interpreted as a continuous Wardrop equilibrium. Finally, in section 6, we extend the previous analysis to the long term variant. [START_REF] Beckmann | Studies in Economics of Transportation[END_REF] The discrete model

Setting and definition of Wardrop equilibria

Network of characteristic length ε: Given Ω a bounded domain of R 2 with a smooth boundary and ε > 0, we consider as network whose characteristic length is ε:

Ω ε := εZ 2 ∩ Ω.
We shall denote by (v 1 , v 2 , v 3 , v 4 ) := ((1, 0), (0, 1), (-1, 0), (0, -1)) the directions of the network (i.e. the vectors of the canonical basis as well as their opposite) enumerated counterclockwise. In this setting, every arc of the network is of the form [x, x + εv i ] for some x ∈ Ω ε and some i ∈ {1, ..., 4}. Arcs will therefore simply identified to pairs (x, v i ). One should think of the network as being oriented so that [x, x + εv i ] and [x + εv i , x] really represent two distinct arcs.

Traveling times and congestion: The mass commuting on arc (x, v i ) will be denoted by m ε i (x) and the traveling time of arc (x, v i ) will be denoted by t ε i (x). Due to congestion, traveling time and mass are related for every arc (x, v i ) by the relation:

t ε i (x) = g ε i (x, m ε i (x)) (2.1)
where the g ε i are some given nonnegative functions that depend on the arc itself but also in a nondecreasing way (this is congestion) on the mass m ε i (x) that commutes on (x, v i ). The collection of all arc-masses m ε i (x) will be denoted m ε . Remark 2.1. In this model, we do not consider the case where some time is also spent at the nodes x. This extension could be treated as well simply by considering some extra arcs. We might also allow the functions g ε i to take the value +∞ modelling forbidden arcs or saturation effects but for the sake of simplicity we will only study the case where the travelling times are finite.

Consider two neighboring nodes x and x ′ with x ′ = x + εv i and v j = -v i , the time to go from x to x ′ only depends only on the mass m ε i (x) that uses the arc (x, v i ) whereas the time to go from x ′ to x depends only on the mass m ε j (x ′ ).

Transport plan: A transport plan is also given as a collection of nonnegative masses γ ε (x, y), (x, y) ∈ Ω ε × Ω ε . For each pair (x, y) ∈ Ω ε × Ω ε (viewed as a source/destination pair), γ ε (x, y) represents the amount of mass that has to be sent from the source x to the target y. Of course, if all the masses γ ε (x, y) are zero, no mass at all will travel along the network.

Paths: A path is a finite collection of successive nodes. A generic path σ is therefore of the form (x 0 , x 1 , ..., x L ) ∈ Ω L+1 ε where σ(0) := x 0 ∈ Ω ε and σ(k + 1) -σ(k) := x k+1 -x k ∈ ε{v 1 , ..., v 4 } for k = 0, ..., L -1.
For such a path σ(0) is the origin of σ, εL is the (flat) length of σ and σ(L) is the terminal point of σ. We shall use the notation (x, v i ) ⊂ σ if there is a k between 0 and L -1 such that σ(k) = x and σ(k + 1)σ(k) = εv i . Since commuting time on each arc is nonnegative, we shall restrict ourselves to the C ε set of loop-free paths, this set is finite and may be partitioned as

C ε = (x,y)∈Ωε×Ωε C ε x,y
where C ε x,y is the set of loop-free paths having x as origin and y as terminal point. The mass traveling on the path σ ∈ C ε (therefore starting from the origin of σ and stopping at the terminal point of σ) will be denoted w ε (σ). The collection of all path-masses w ε (σ) will be denoted w ε . Given arc-masses m ε , the travel time of a path σ ∈ C ε is given by

τ ε m ε (σ) := (x,v i )∈σ g ε i (x, m ε i (x)).
Equilibria: To sum up, the data of the model are thus the masses γ ε (x, y) and the congestion functions g ε i . The unknowns are the arc-masses m ε i (x) and path-masses w ε (σ) that should be determined by some equilibrium requirements. First of all, arc-masses and path-masses, should be nonnegative. In addition, arc-masses, path-masses and the data γ ε are related by the follow-ing conditions which both express mass conversation:

γ ε (x, y) := σ∈C ε x,y w ε (σ), ∀(x, y) ∈ Ω ε × Ω ε (2.2)
and

m ε i (x) = σ∈C ε : (x,v i )⊂σ w ε (σ). (2.
3)

The last ingredient to define equilibria is the requirement that only shortest paths (given the congestion pattern created by arc and path-masses) should actually be used. This leads to the concept of Wardrop equilibirum ( [START_REF] Wardrop | Some theoretical aspects of road traffic research[END_REF]) that is defined precisely as follows:

Definition 2.2. A Wardrop equilibrium is a configuration of nonnegative arc-masses m ε : (x, i) → (m ε i (x)
) and of nonnegative path-masses w ε : σ → w ε (σ), that satisfy the mass conservation conditions (2.2) and (2.3) and such that for every (x, y) 

∈ Ω ε × Ω ε and every σ ∈ C ε x,y , if w ε (σ) > 0 then τ ε m ε (σ) ≤ τ ε m ε (σ ′ ), ∀σ ′ ∈ C ε x,y .

Variational characterizations of equilibria

G ε i (x, m ε i (x)) where G ε i (x, m) := m 0 g ε i (x, α)dα (2.4)
subject to nonnegativity constraints and the mass conservation conditions (2.2)-(2.3). Note that this is a convex program (since the functions g ε i are nondecreasing with respect to mass) so that existence results and numerical schemes can easily be derived from this variational formulation. Note however that this problem uses the whole path flow configuration w ε and enumerating all such paths flows becomes extremely costly as soon as the network becomes dense, that prevents in practice the use of this formulation for realistic congested networks. This explains why one may often prefer to work with the dual formulation which reads as: inf

t ε ∈R 4#Ωε + x∈Ωε 4 i=1 H ε i (x, t ε i (x)) - (x,y)∈Ωε 2 γ ε (x, y)T ε t ε (x, y) (2.5)
where

t ε ∈ R 4#Ωε + should be understood as t ε = (t ε i (x)) (x,i)∈Ωε×{1,••• ,4} , H ε i (x, .) := (G ε i (x, .)) * is the Legendre Transform of G ε i (x, .) that is H ε i (x, t) := sup m≥0 {mt -G ε i (x, m)}, ∀t ∈ R + (2.6)
and T ε t ε is the minimal length functional:

T ε t ε (x, y) := min σ∈C ε x,y (x,v i )⊂σ t ε i (x).
(2.7)

In the dual formulation (2.5) (of course again a convex program), we only have 4#Ω ε = O(ε -2 ) variables which is much better than having one variable per path but is still huge for small ε. Note however that the price to pay in working with (2.5) is the term that depends on T ε t ε since it is nonsmooth, nonlocal and might be complicated to optimize, it is not unrealistic however to expect that passing to the continuous limit will actually simplify the structure because one will then be allowed to use the theory of Hamilton-Jacobi equations. The connection between this dual formulation and Wardrop equilibria (i.e. the minimization of (2.4) under the constraints (2.2)-(2.3)) is that whenever (m ε , w ε ) is a Wardrop equilbrium then t ε := (g ε i (x, m ε i (x)) solves (2.5), in other words solving (2.5) amounts to find the equilibrium travelling times (and thus also the corresponding arc-masses m ε i (x) by inverting the relation

t ε i (x) = g ε i (x, m ε i (x))
). We refer to the recent paper of Baillon and Cominetti [START_REF] Baillon | Markovian Traffic Equilibrium[END_REF] for more details, references and an extension of the model to a Markovian setting.

3 The Γ-convergence result

Scaling and assumptions

Of course, if one wants to be able to pass to the continuous limit, ε → 0 + in the Wardrop equilibrium problem, some structural assumptions have to be made on the ε-dependence of the data. The first assumption is the convergence of the transport plans γ ε , namely we assume that there exists a finite nonnegative measure γ on Ω × Ω to which γ ε weakly star converges in the sense that the family of discrete measures (x,y)∈Ωε 2 γ ε (x, y)δ (x,y) weakly star converges to γ:

lim ε→0 + (x,y)∈Ωε 2 γ ε (x, y)ϕ(x, y) = Ω×Ω ϕdγ, ∀ϕ ∈ C(Ω × Ω). (3.1)
Our second assumption concerns the form of the congestion functions t ε i that we assume to be of the form

g ε i (x, m) = εg i x, m ε , ∀ε > 0, (x, i) ∈ Ω ε × {1, ..., 4} (3.2) 
where g i is a given continuous, nonnegative function on Ω × R + , that is nondecreasing in its second argument. This assumption is natural in terms of scaling, it means that the travelling time on an arc of length ε is of order ε and depends on the flow per unit of length i.e. m/ε.

Under assumption (3.2), the functions G ε i and H ε i that appear in the primal and dual variational characterizations of Wardrop equilibria are thus given by

G ε i (x, m) = ε 2 G i x, m ε where G i (x, m) := m 0 g i (x, α)dα (3.3)
and

H ε i (x, t) = ε 2 H i x, t ε where H i (x, .) = (G i (x, .)) * (3.4) 
i.e. for every ξ ∈ R + :

H i (x, ξ) = sup m∈R + {mξ -G i (x, m)}.
Note also that the previous assumptions imply that H i (x, .) is actually strictly convex. In view of (2.5) and (3.4) it is natural to rescale the arc-times t ε by defining the time per unit of length or metric variables

ξ ε := t ε ε , i.e. ξ ε i (x) = t ε i (x) ε , ∀x ∈ Ω ε , ∀i ∈ {1, ..., 4} (3.5) 
and then to rewrite (2.5) in terms of ξ ε as:

inf ξ ε ∈R 4#Ωε + J ε (ξ ε ) := I ε 0 (ξ ε ) -I ε 1 (ξ ε ) (3.6)
where

I ε 0 (ξ ε ) := ε 2 x∈Ωε 4 i=1 H i (x, ξ ε i (x)) (3.7) and I ε 1 (ξ ε ) := ε (x,y)∈Ωε 2 γ ε (x, y)T ε ξ ε (x, y). (3.8)
Our last assumption is that H i is continuous in its first argument and there exists p > 2 and two constants 0 < λ ≤ Λ such that for every (x, ξ, i)

∈ Ω × R + × {1, ..., 4} one has λ(ξ p -1) ≤ H i (x, ξ) ≤ Λ(ξ p + 1).
(3.9)

The growth condition (3.9) is natural if one wants to work in L p in the continuous limit and thus to obtain a simple convex integral term as the limit of I ε 0 (recall that by construction H i is convex in its second argument), the requirement p > 2 is technical and less natural, it will however turn out to be crucial to pass to the limit in the more involved nonlocal term I ε 1 in (3.6) which will make use of Morrey's inequality as explained below. From now on, we will always assume that assumptions (3.1), (3.2) and (3.9) are satisfied.

The limit functional

In view of the previous paragraph, it is natural to introduce

L p + := {ξ = (ξ 1 , ..., ξ 4 ), ξ i ∈ L p (Ω), ξ i ≥ 0, i = 1, ..., 4}
as well as the integral functional

I 0 (ξ) := 4 i=1 Ω H i (x, ξ i (x))dx, ∀ξ ∈ L p + (3.10)
which naturally arises as the continuous limit of I ε 0 . The construction of the term that plays the same role as I ε 1 is more involved, to understand this term let us define for every u

= (u 1 , u 2 ) ∈ R 2 : Φ(u) := ((u • v i ) + ) i=1,...,4 = ((u 1 ) + , (u 2 ) + , (u 1 ) -, (u 2 ) -) (3.11) Now, let ξ ε ∈ R 4#Ωε + , (x, y) ∈ Ω ε × Ω ε , let σ ∈ C ε
x,y , let εL(σ) be the euclidean length of σ and slightly abusing notations let us extend ξ ε on each arc by letting ξ ε i be constant with value

ξ ε i (x) on the arc [x, x + εv i ], let us also identify σ with the piecewise affine curve t ∈ [0, L(σ)] → σ(t) defined by σ(t) = σ k + (t -k)(σ k+1 -σ k ) for t ∈ [k, k + 1] with k = 0, ..., L(σ) -1 , we then have ε (x,v i )⊂σ ξ ε i (x) = L(σ)-1 k=0 Φ(σ k+1 -σ k ) • ξ ε (σ k ) = L(σ) 0 Φ( σ(t)) • ξ ε (σ(t))dt so that εT ε ξ ε (x, y) = inf σ∈C ε x,y L(σ) 0 Φ( σ(t)) • ξ ε (σ(t))dt = inf σ∈C ε x,y 1 0 Φ( ˙ σ(t)) • ξ ε ( σ(t))dt where σ : [0, 1] → Ω simply is the reparameterization of σ(t) = σ(L(σ)t), t ∈ [0, 1]. This strongly suggests to define for ξ = (ξ 1 , ..., ξ 4 ) ∈ C(Ω, R 4 + ) c ξ (x, y) := inf 1 0 Φ( σ(t)) • ξ(σ(t))dt (3.12)
where the infimum is over the set of absolutely continuous curves σ with values in Ω and such that σ(0) = x and σ(1) = y. Note c ξ is a sort of Finsler distance which keeps track of the anisotropy of the network but it is actually not a distance : it is indeed not separating if ξ vanishes somewhere and it is not symmetric since Φ is not even. Now, our aim is to extend the definition of c ξ to the case where ξ is only L p + , to do so we proceed as in Carlier, Jimenez and Santambrogio [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] by remarking thanks to an easy dynamic programming argument that if ξ is continuous then c ξ is actually Lipschitz and for all x and a.e. y one has

|∇ y c ξ (x, y)| ≤ 4 i=1 ξ i (y)
and a similar inequality gives a bound for ∇ x c ξ (x, y) for every y and a.e.

x. Now recall that we have assumed that p > 2 in assumption (3.9), so that W 1,p (Ω) ⊂ C 0,α (Ω) with α := 1 -2/p and we deduce from Morrey's inequality that there is a constant C such that for every (x,

y 1 , y 2 ) ∈ Ω 3 one has |c ξ (x, y 1 ) -c ξ (x, y 2 )| ≤ C ξ L p |y 1 -y 2 | α
and similarly, for every (x 1 , x 2 , y) ∈ Ω 3 one has

|c ξ (x 1 , y) -c ξ (x 2 , y)| ≤ C ξ L p |x 1 -x 2 | α
and thus

|c ξ (x 1 , y 1 ) -c ξ (x 2 , y 2 )| ≤ C ξ L p (|x 1 -x 2 | α + |y 1 -y 2 | α ).
Since c ξ vanishes on the diagonal, we deduce from Arzelà-Ascoli theorem that if (ξ n ) n is a sequence C(Ω, R 4 + ) that is bounded in L p then the sequence c ξn admits a subsequence that converges in C(Ω × Ω). For ξ ∈ L p + this enables us to define

c ξ (x, y) = sup {c(x, y) : c ∈ A(ξ)} , ∀(x, y) ∈ Ω × Ω (3.13)
where

A(ξ) = lim n c ξn in C(Ω × Ω) : (ξ n ) n ∈ C(Ω, R 4 + ), ξ n → ξ in L p . (3.14)
For further use, let us state the following result which is a straightforward generalization of Lemmas 3.4 and 3.5 in [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF]:

Lemma 3.1. If ξ ∈ C(Ω, R 4 + ) then c ξ = c ξ . If ξ ∈ L p + there exists a sequence (ξ n ) n in C(Ω, R 4 + ) such that c ξn converges to c ξ in C(Ω × Ω) as n → ∞.
Having defined c ξ when ξ is only L p + , let us now define

I 1 (ξ) := Ω×Ω c ξ dγ, (3.15) 
and the continuous limit (this term will be justified precisely by Γ-convergence in the next section) of J ε by:

J(ξ) := I 0 (ξ) -I 1 (ξ) = 4 i=1 Ω H i (x, ξ i (x))dx - Ω×Ω c ξ dγ, ∀ξ ∈ L p + . (3.16)

The Γ-convergence result

The theory of Γ-convergence, initially due to Ennio de Giorgi is a powerful tool to study the convergence of variational problems (convergence of values but also of minimizers) depending on a parameter. It is particularly well suited to study problems involving a scale parameter, as is the case in the present paper where ε represents the network scale and to identify discrete to continuous limits in variational problems, as we shall see in our Wardrop equilibrium problem. We refer to the books of Dal Maso [START_REF] Maso | An Introduction to Γ-convergence[END_REF] and Braides [START_REF] Braides | Γ-convergence for beginners[END_REF] for the general theory of Γ-convergence as well as for many applications. First let us define weak L p convergence of a discrete family

ξ ε ∈ R 4#Ωε + : Definition 3.2. For ε > 0, let ξ ε ∈ R 4#Ωε +
and ξ ∈ L p + , then ξ ε is said to weakly converge to ξ in L p (which we shall simply denote ξ ε → ξ) if the following two conditions are satisfied:

1. There exists a constant M such that for every ε > 0, one has 2. for every ϕ ∈ C(Ω, R 4 ), one has

ξ ε ε,p := ε 2 x∈Ωε 4 i=1 ξ ε i (x) p 1/p ≤ M, (3.17 
lim ε→0 + ε 2 x∈Ωε 4 i=1 ϕ i (x)ξ ε i (x) = Ω ϕ(x) • ξ(x)dx. Definition 3.3. For ε > 0, let F ε : R 4#Ωε + → R ∪ {+∞} and F : L p + → R ∪ {+∞}
then the family of functionals (F ε ) ε is said to Γ-converge (for the weak L p topology) to F if and only if the following two conditions are satisfied:

1. (Γ-liminf inequality) for every ξ ∈ L p + and every family

ξ ε ∈ R 4Ωε + such that ξ ε → ξ one has lim inf ε→0 + F ε (ξ ε ) ≥ F (ξ),

(Γ-limsup inequality) for every ξ ∈ L p

+ , there exists a family

ξ ε ∈ R 4Ωε + such that ξ ε → ξ and lim sup ε→0 + F ε (ξ ε ) ≤ F (ξ).
Our main result whose full proof will be given in the next section, then reads Theorem 3.4. Under assumptions (3.1), (3.2), (3.9), the family of functionals J ε defined by (3.6) Γ-converges (for the weak L p topology) to the functional J defined by (3.16).

By very classical arguments from general Γ-convergence theory, we obtain the following convergence result : Corollary 3.5. Under assumptions (3.1), (3.2), (3.9), one has:

min ξ ε ∈R 4#Ωε + J ε (ξ ε ) → min ξ∈L p + J(ξ)
(the fact that infima actually are achieved being part of the statement). Moreover, if for each ε > 0, ξ ε solves (3.6), then ξ ε → ξ where ξ is the minimizer of J over L p + .

Proof. First, thanks to Lemma 4.2 proved below and assumption (3.9), we deduce an equi-coercivity estimate, namely that there exists M such that for every ε and

ξ ε ∈ R 4#Ωε + : J ε (ξ ε ) ≥ λ( ξ ε p ε,p -1) -M ξ ε ε,p .
where ξ ε ε,p is defined by (3.17). Not only this proves that the infimum of J ε over R 4#Ωε + is attained (this is a finite dimensional minimization problem with a continuous and coercive objective function) at some ξ ε but also that ξ ε ε,p is bounded, in particular if we define for ε the R 4 -valued Radon measure M ε by

M ε , ϕ := ε 2 x∈Ωε 4 i=1 ϕ i (x)ξ ε i (x), ∀ϕ ∈ C(Ω, R 4 )
thanks to Hölder inequality, we have for every ε > 0 and ϕ ∈ C(Ω, R 4 )

| M ε , ϕ | ≤ C ϕ ε,p ′ (3.18)
where p ′ = p/(p -1) is the conjugate exponent of p and the semi-norm . ε,p ′ is defined in a similar way as in (3.17). Since there is a constant still denoted C such that ϕ ε,p ′ ≤ C ϕ ∞ for every ϕ ∈ C(Ω, R 4 ), we deduce from (3.18) and Banach-Alaoglu's theorem that there exists a (not relabeled) subsequence M ε and M , an R 4 -valued Radon measure to which M ε weakly star converges. We therefore deduce from (3.18) that for every ϕ ∈ C(Ω, R 4 ), we have

| M, ϕ | ≤ C lim ε→0 + ϕ ε,p ′ = C ϕ L p ′ which
proves that in fact M admits an L p representative that we denote ξ, of course ξ ∈ L p + since componentwise nonnegativity is stable under weak limits and ξ ε → ξ in the sense of definition 3.2. It remains to prove that ξ minimizes J over L p + . First we now from the Γ-liminf inequality that

J(ξ) ≤ lim inf ε J ε (ξ ε ) = lim inf ε→0 + min ξ ε ∈R 4#Ωε + J ε
Let then ζ ∈ L p + , we deduce from the Γ-limsup inequality the existence for each ε > 0 of a

ζ ε ∈ R 4#Ωε + such that ζ ε → ζ in the sense of definition 3.2 and lim sup ε J ε (ζ ε ) ≤ J(ζ)
and since ξ ε minimizes J ε we thus get

J(ξ) ≤ lim inf ε J ε (ξ ε ) ≤ lim sup ε J ε (ξ ε ) ≤ lim sup ε J ε (ζ ε ) ≤ J(ζ)
from which we deduce that ξ minimizes J over L p + (and therefore povides the existece of a minimizer to the limit problem) as well as min

L p + J ≤ lim inf ε→0 + min ξ ε ∈R 4#Ωε + J ε ≤ lim sup ε→0 + min ξ ε ∈R 4#Ωε + J ε ≤ J(ζ), ∀ζ ∈ L p +
which also proves the convergence of the values of the discrete minimization problems to the value of the continuous one. Finally, we have convergence of the whole family ξ ε and not only of a subsequence by the uniqueness of the minimizer ξ of J of L p + (since J is strictly convex).

Proof of the Γ-convergence result

Recall that in all what follows, we will always assume (3.1), (3.2), (3.9).

Γ-liminf inequality

For (small) ε > 0, let ξ ε ∈ R 4#Ωε + and ξ ∈ L p + such that ξ ε → ξ (in the sense of definition 3.2), recall that our aim is to prove that

lim inf ε→0 + J ε (ξ ε ) ≥ J(ξ). (4.1) 
As far as the local term I ε 0 is concerned, by our convexity, growth and continuity assumptions, we easily get Lemma 4.1. Under the previous assumptions, one has

lim inf ε→0 + I ε 0 (ξ ε ) ≥ I 0 (ξ). (4.2)
Proof. Let δ > 0, we claim that there exists ϕ = (ϕ 1 , ..., ϕ 4 ) continuous on Ω such that

I 0 (ξ) ≤ δ + i=1 Ω [ϕ i (x)ξ i (x) -G i (x, ϕ i (x))]dx
where we recall that G i (x, .) is the Legendre Transform of H i (x, .). Indeed, without imposing continuity, this is just convex duality, now the fact that ϕ i can be chosen continuous follows from the continuity for the L p ′ topology (p ′ := p/(p -1) the conjugate exponent of p) of ϕ → i=1 Ω G i (x, ϕ i (x))dx and the density of continuous functions in L p ′ . Now using Young's inequality yields for every ε > 0, and x ∈ Ω ε :

4 i=1 H i (x, ξ ε i (x)) ≥ 4 i=1 [ϕ i (x)ξ ε i (x) -G i (x, ϕ i (x))]
from which we easily deduce that lim inf

ε→0 + I ε 0 (ξ ε ) ≥ I 0 (ξ) -δ
and since δ > 0 is arbitrary, we get the claim.

To deal with the nonlocal term, we shall need some compactness for the minimal length terms, this will follow from the following discretization of Morrey's inequality:

Lemma 4.2. Let θ ε ∈ R Ωε + and ϕ ε ∈ R Ωε such that |ϕ ε (x)-ϕ ε (y)| ≤ εθ ε (x)
, for every x ∈ Ω ε and every y neighbor of x (4.3)

then there is a constant C such that for every (x, y) ∈ Ω ε × Ω ε , one has

|ϕ ε (x) -ϕ ε (y)| ≤ C θ ε ε,p (|x 1 -y 1 | + |x 2 -y 2 |) α
where α := 1 -2/p and

θ ε ε,p = ε 2 x∈Ωε θ ε (x) p 1/p .
Proof. For x ∈ Ω ε , divide the cell x+ε[0, 1] 2 into two triangles and extend ϕ ε on these triangles by linear interpolation. Still denoting ϕ ε this interpolation, we then have ϕ ε ∈ W 1,p with ∇ϕ ε L p ≤ C θ ε ε,p so that the desired result follows from Morrey's inequality.

To shorten notations, let us define for every (x, y) ∈ Ω ε × Ω ε :

c ε (x, y) := εT ε ξ ε (x, y) = inf σ∈C ε x,y 1 0 Φ( ˙ σ(t)) • ξ ε ( σ(t))dt. (4.4) 
By definition, if x 0 ∈ Ω ε and x and y are neighbors in Ω ε , we have

c ε (x 0 , z) ≤ c ε (x 0 , y) + ε max i=1,..,4 ξ ε i (y) (4.5)
and since ξ ε ε,p is bounded, we deduce from Lemma 4.2 that there is a constant C such that for every ε > 0 one has

|c ε (x, y) -c ε (x 0 , y 0 )| ≤ C(|x -x 0 | α + |y -y 0 | α ), ∀(x, y, x 0 , y 0 ) ∈ Ω ε 4 . (4.6)
This enables us to extend c ε (and slightly abusing notations we still denote by c ε this extension) to the whole of Ω × Ω by setting c ε (x, y) := sup

(x 0 ,y 0 )∈Ωε×Ωε {c ε (x 0 , y 0 ) -C(|x -x 0 | α + |y -y 0 | α )}, ∀(x, y) ∈ Ω × Ω.
(4.7) By construction, the extensions c ε still satisfy the uniform Hölder estimate on the whole of Ω × ×Ω and since c ε vanishes on the diagonal of Ω ε × Ω ε , we deduce from Arzelà-Ascoli Theorem that the family (c ε ) ε is precompact in C(Ω × Ω), taking a subsequence if necessary we may therefore assume that there is some c ∈ C(Ω × Ω) such that c ε → c in C(Ω × Ω), and thus c(x, x) = 0, ∀x ∈ Ω (4.8) so that thanks to assumption (3.1): The rest of this paragraph will be devoted to the proof of inequality (4.10), the strategy to prove (4.10) will consist in showing that c is a sort of subsolution in a very weak sense of an Hamilton-Jacobi equation and this is enough to conclude by some comparison principle, all this seems very classical except that we have to deal with the fact that ξ is only L p + . Let us start by remarking that, for fixed x 0 ∈ Ω, c(x 0 , .) ∈ W 1,p (Ω), indeed if ϕ ∈ C 1 c (Ω) and i = 1 or 2, denoting by (e 1 , e 2 ) the canonical basis of R 2 , choosing x ε 0 ∈ Ω ε such that |x 0x ε 0 | ≤ √ 2ε and using the uniform convergence of c ε (x ε 0 , .) to c(x 0 , .), it is easy to see that

I ε 1 (ξ ε ) = (x,y)∈Ωε×Ωε c ε (x, y)γ ε (x, y) → Ω×Ω cdγ. ( 4 
Ω c(x 0 , .)∂ i ϕ = lim ε→0 + ε 2 x∈Ωε c ε (x ε 0 , x) ϕ(x + εe i ) -ϕ(x) ε = lim ε→0 + ε 2 x∈Ωε c ε (x ε 0 , x -εe i ) -c ε (x ε 0 , x) ε ϕ(x)
and thanks to (4.5), Hölder inequality and the fact that ξ ε ε,p is bounded we obtain that

Ω c(x 0 , .)∂ i ϕ ≤ C ϕ L p ′ , ∀ϕ ∈ C 1 c (Ω)
which proves that c(x 0 , .) ∈ W 1,p (Ω) (and by a similar argument that c(., y 0 ) ∈ W 1,p (Ω) for every fixed y 0 ∈ Ω).

Lemma 4.3. Let x 0 ∈ Ω, ξ ∈ L p + and ϕ ∈ W 1,p (Ω) such that ϕ(x 0 ) = 0 (which makes sense since p > 2 so that ϕ is continuous). If for a.e. x ∈ Ω one has ∇ϕ

(x) • u ≤ ξ(x) • Φ(u), ∀u ∈ R 2 (4.11) then ϕ ≤ c ξ (x 0 , .) on Ω.
Proof. The result is obvious if ϕ ∈ C 1 (Ω) and ξ is continuous on Ω, indeed, in this case, (4.11) holds pointwise, and if x ∈ Ω and σ is an absolutely continuous curve with values in Ω connecting x 0 and x, by the chain rule we have

ϕ(x) = 1 0 ∇ϕ(σ(t)) • σ(t)dt ≤ 1 0 Φ( σ(t)) • ξ(σ(t))dt
and taking the infimum in σ we obtain ϕ ≤ c ξ (x 0 , .) on Ω i.e. ϕ ≤ c ξ (x 0 , .) thanks to Lemma 3.1. If ϕ is only W 1,p and ξ only L p + , we first extend ϕ to a function in W 1,p (R 2 ) (recall that Ω is assumed to be smooth), we then extend ξ outside Ω by setting ξ = |∇ϕ|(1, 1, 1, 1) so that if x ∈ R 2 \ Ω and u ∈ S 1 we have

∇ϕ(x) • u ≤ |∇ϕ(x)| = |∇ϕ(x)|(u 2 1 + u 2 2 ) ≤ |∇ϕ(x)|(|u 1 | + |u 2 |) = ξ(x) • Φ(u)
so that by the homogenity of (4.11) in u, (4.11) continues to hold outside Ω with the previous extension. We then consider a mollifying sequence ρ n (x) = n 2 ρ(nx), x ∈ R 2 where ρ is a smooth nonnegative function supported on the unit ball and such that R 2 ρ = 1 and define ξ n := ρ n ⋆ ξ and ϕ n := ρ n ⋆ ϕ -(ρ n ⋆ ϕ)(x 0 ). By construction we have

∇ϕ n (x) • u ≤ ξ n (x) • Φ(u), ∀(x, u) ∈ R 2 × R 2
so that with the previous argument and the smoothness of ϕ n and ξ n we get ϕ n ≤ c ξn (x 0 , .), using the convergence of ϕ n to ϕ we thus get ϕ = lim sup ϕ n ≤ lim sup c ξn (x 0 , .) ≤ c ξ (x 0 , .)

where the last inequality follows from the very definition of c ξ as a supremum (3.13)-(3.14) and the precompactness of c ξn in C(Ω × Ω).

The last ingredient to prove c ≤ c ξ and then to terminate the proof of the Γ-liminf inequality (4.1) is given by : Lemma 4.4. Let x 0 ∈ Ω and c be defined by (4.8), one has 1. for every w ∈ C ∞ c (Ω, R 2 ), the following inequality holds

Ω ∇ x c(x 0 , x) • w(x)dx ≤ Ω Φ(w(x)) • ξ(x)dx (4.12)
2. c ≤ c ξ (and then, thanks to Lemma 4.1, the Γ-liminf inequality (4.1) holds).

Proof.

1. Let x ε 0 ∈ Ω ε be such that |x 0 -x ε 0 | ≤ √ 2ε so that c ε (x ε 0 , .
) converges unifformly to c(x 0 , .). For ϕ ∈ C 1 c (Ω), i = 1, 2, and (e 1 , e 2 ) the canonical basis of R 2 , we already know that

T ϕ := Ω ∂ i c(x 0 , .) ϕ = lim ε→0 + T ε ϕ (4.13)
where

T ε ϕ = ε 2 x∈Ωε c ε (x ε 0 , x + εe i ) -c ε (x ε 0 , x) ε ϕ(x).
For ϕ ∈ C c (Ω) ∩ W 1,∞ (Ω), approximating ϕ uniformly by smooth and compactly supported functions ((again by convolution), it is easy to see that (4.13) also holds. In particular (4.13) applies to the components of Φ(w) (they are nonsmooth because of the positive part but still Lipschitz and compactly supported). We may thus write

Ω ∇ x c(x 0 , .) • w = Ω (∂ 1 c(x 0 , .)((w 1 ) + -(w 1 ) -) + ∂ 2 c(x 0 , .)((w 2 ) + -(w 2 ) -))
as the limit as ε → 0 + of

ε 2 x∈Ω ε 4 i=1 c ε (x ε 0 , x + εv i ) -c ε (x ε 0 , x) ε (w(x) • v i ) + now we use the inequality c ε (x ε 0 , x + εv i ) -c ε (x ε 0 , x) ≤ εξ ε i (x)
to obtain that the previous sum is bounded from above by

ε 2 x∈Ωε Φ(w(x)) • ξ ε (x)
passing to the limit in ε → 0 + thus exactly gives (4.12).

2. First, using (4.12) with w = θv for v ∈ C ∞ c (Ω, R 2 ) and an arbitrary scalar function θ ∈ C ∞ c (Ω, R), θ ≥ 0, we deduce from the homogeneity of Φ that

∇ x c(x 0 , x) • v(x) ≤ Φ(v(x)) • ξ(x)
a.e. on Ω (4.14)

Now let x be a Lebesgue point of both ξ and ∇ x c(x 0 , .), u ∈ S 1 and choose v ∈ C ∞ c (Ω, R 2 ) such that v = u in some neighbourhood of x, integrating inequality (4.14) over B r (x) dividing by πr 2 and letting r → 0 + we exactly get

∇ x c(x 0 , x) • u ≤ Φ(u) • ξ(x) a.e. on Ω
which thanks to Lemma 4.3 gives c(x 0 , .) ≤ c ξ (.).

Γ-limsup inequality

Given, ξ ∈ L p + , it remains now to prove the Γ-limsup inequality i.e. the existence of a family ξ ε ∈ R 4#Ωε + such that ξ ε → ξ, and lim sup

ε→0 + J ε (ξ ε ) ≤ J(ξ). (4.15)
The proof is much simpler than that of Γ-liminf inequality. We shall prove the result first in the case where ξ is continuous and then treat the general case by a density argument:

Step 1 : ξ is continuous For ε > 0, let us define for every x ∈ Ω ε and i = 1, ..., 4,

ξ ε i (x) := 1 ε [x,x+εv i ] ξ i = 1 0 ξ i (x + sεv i )ds
We also extend ξ ε in a piecewise constant way to the whole of Ω by setting ξ ε = ξ ε (x) on the square having the neighbors of x in Ω ε as vertices. Doing so, we obviously have ξ εξ L p → 0, and

I ε 0 (ξ ε ) → I 0 (ξ) as ε → 0 + . (4.16)
Note in particular that ξ ε → ξ in the weak sense of definition 3.2. For ε > 0, and (x, y) ∈ Ω ε , let us define

c ε (x, y) := εT ε ξ ε (x, y) = inf σ∈C ε x,y 1 0 Φ( ˙ σ(t)) • ξ ε ( σ(t))dt
by the same arguments as in the proof of the Γ-liminf inequality, thanks to the fact that ξ ε is bounded in L p and again to Lemma 4.2, we may extend c ε to the whole of Ω × Ω and thus obtain a bounded and equi-Hölder family still denoted c ε , passing up to a subsequence we may also assume that c ε converges to some c in C(Ω×Ω). We then have lim inf ε→0 + I ε 1 (ξ ε ) = Ω×Ω cdγ so that to prove (4.15) it is enough to prove that c ≥ c ξ = c ξ and to see that this inequality holds it is enough to remark that by construction for (x, y) ∈ Ω ε × Ω ε one has

c ε (x, y) = inf σ∈C ε x,y 1 0 Φ( ˙ σ(t)) • ξ( σ(t))dt ≥ c ξ (x, y)
using the uniform convergence of c ε to c we indeed obtain c ≥ c ξ = c ξ .

Step 2 : the general case where ξ is only L p + Thanks to lemma 3.1 we can find for each n,

ξ n ∈ C(Ω, R 4 + ) such that ξ n -ξ L p + c ξn -c ξ L ∞ + |I 0 (ξ n ) -I 0 (ξ)| ≤ 1 n (4.17)
for each ε we then construct a piecewise constant ξ ε n approximation of ξ n as in step 1. Thanks to step 1, we deduce that for each n there is some ε n > 0 (that we may choose nonincreasing and such that ε n → 0 as n → ∞) such that for 0 < ε ≤ ε n one has

ξ ε n -ξ n L p + |I ε 0 (ξ ε n ) -I 0 (ξ n )| ≤ 1 n and I ε 1 (ξ ε n ) ≥ I 1 (ξ n ) - 1 n (4.18)
For ε > 0 let n ε := sup{n : ε n ≥ ε} and ξ ε := ξ ε nε , by construction with (4.17) and (4.18), we have

ξ ε -ξ L p + |I ε 0 (ξ ε ) -I 0 (ξ)| ≤ 2 n ε → 0 as ε → 0 + (4.19)
as well as

I ε 1 (ξ ε ) ≥ I 1 (ξ nε ) - 1 n ε = Ω×Ω c ξn ε dγ - 1 n ε
using the fact that c ξn ε converges to c ξ we thus get

lim inf ε I 1 (ξ ε ) ≥ I 1 (ξ)
with (4.19) this proves the Γ-limsup inequality (4.15).

Optimality conditions and continuous Wardrop equilibria

Our aim now is to give optimality conditions for the limit problem:

inf ξ∈L p + J(ξ) := 4 i=1 Ω H i (x, ξ i (x))dx - Ω×Ω c ξ dγ, (5.1) 
through some dual formulation that can be interpreted in terms of continuous Wardrop equilibria i.e. that is in some sense the continuous version of the finite dimensional optimization problem that consists in minimizing (2.4) subject to the mass conservation conditions (2.2) and (2.3). This dual formulation will involve probability measures on set of paths (i.e. the macroscopic version of the flows w ε (σ) of the network model of section 2.1) and will turn out to be an anisotropic variant of the problem studied in details in Carlier, Jimenez and Santambrogio [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF].

Let C := W 1,∞ ([0, 1], Ω), viewed as a subset of C([0, 1], R 2 
), i.e. equipped with the uniform topology, and slightly abusing notations let us denote by

M + 1 (C) the set of Borel probability measures Q on C([0, 1], R 2 ) such that Q(C) = 1.
Let us define then the set of probability measures on paths that are consistent with the transport plan γ:

Q(γ) := {Q ∈ M + 1 (C) : (e 0 , e 1 ) # Q = γ} 20
where e 0 and e 1 are evaluations at time 0 and 1 and (e 0 , e 1 ) # Q denotes the image measure of Q by (e 0 , e 1 ). Thus

Q ∈ Q(γ) means that C ϕ(σ(0), σ(1))dQ(σ) = Ω×Ω ϕ(x, y)dγ(x, y), ∀ϕ ∈ C(R 2 , R).
Note that Q plays the same role as the paths-flows in the network model and the condition Q ∈ Q(γ) is the continuous analogue of the mass conservation condition (2.2). Let us now define the analogue of the arc flows induced by Q ∈ Q(γ); for i = 1, .., 4 let us define the nonnegative measure on Ω, m Q i , by

Ω ϕ(x)dm Q i (x) = C 1 0 ϕ(σ(t))( σ(t) • v i ) + dt dQ(σ), ∀ϕ ∈ C(Ω, R). Thus, the R 4 -valued measure m Q = (m Q 1 , m Q 2 , m Q 3 , m Q 4 ) can be defined by Ω ξdm Q = C L ξ (σ)dQ(σ), ∀ξ ∈ C(Ω, R 4 + )
where

L ξ (σ) := 1 0 ξ(σ(t)) • Φ( σ(t))dt = 1 0 4 i=1 ξ i (σ(t))( σ(t) • v i ) + dt = 4 i=1 L i ξ i (σ).
(5.2) Let us now recall that H i (x, .) is the convex conjugate of G i (x, .) where G i (x, .) is the primitive of the function g i (x, .) that relates the metric at x in direction v i to the flow in this direction. The p growth assumption (3.9) on H i then can be translated into a similar q-growth condition on G i for q = p/(p -1) the conjugate exponent of p. In fact, we will slightly strengthen assumption (3.9) by further assuming that g i (x, .) is continuous, everywhere positive and increasing in its second argument (so that G i (x, .) is strictly convex) and such there exists a and b such that b ≥ a > 0 and

am q-1 ≤ g i (x, m) ≤ b(m q-1 +1), ∀(i, x, m) ∈ {1, .., 4}×Ω×R + , with q ∈ (1, 2).
(5.3) Let us define then

Q q (γ) := {Q ∈ Q(γ) : m Q ∈ L q (Ω, R 4 )} (5.4)
and assume

Q q (γ) = ∅ (5.5)
this assumption is satisfied in particular when γ is supported by finitely many points and q < 2 (see [START_REF] Benmansour | Numerical Approximation of Continuous Traffic Congestion Equilibria[END_REF]). Let Q ∈ Q q (γ) and ξ and ξ be in C(Ω, R 4 + ), we have

C |L ξ (σ) -L e ξ (σ)|dQ(σ) ≤ ξ -ξ L p m Q L q which proves that if ξ ∈ L p + and (ξ n ) n is a sequence in C(Ω, R 4 
+ ) that converges in L p to ξ, then L ξn is a Cauchy sequence in L 1 (C, Q) and its limit, again denoted L ξ does not depend on the approximating sequence (ξ n ) n . As in [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF], this enables us to define L ξ in an L 1 (C, Q) sense for every ξ ∈ L p + and

Q ∈ Q q (γ). For every ξ ∈ L p + and Q ∈ Q q (γ), one can show that Ω ξ • m Q = C L ξ (σ)dQ(σ), c ξ (σ(0), σ(1)) ≤ L ξ (σ) for Q-a.e. σ ∈ C (5.6)
we refer to [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] for a proof. Let ξ ∈ L p + and Q ∈ Q q (γ), we first deduce from Young's inequality that

4 i=1 Ω H i (x, ξ i (x))dx ≥ Ω ξ • m Q - 4 i=1 Ω G i (x, m Q i (x))dx (5.7) 
using the fact that Q ∈ Q q (γ) and (5.6), we also have

Ω×Ω c ξ dγ = C c ξ (σ(0), σ(1))dQ(σ) ≤ C L ξ (σ)dQ(σ) = Ω ξ • m Q (5.8) so that inf ξ∈L p + J(ξ) ≥ sup Q∈Q q (γ) - 4 i=1 Ω G i (x, m Q i (x))dx.
(5.9)

We shall from now on call sup

Q∈Q q (γ) - 4 i=1 Ω G i (x, m Q i (x))dx.
(5.10) the dual of (5.1). Let us also remark the analogy between the continuous problem (5.10) and the the finite-dimensional that consists in minimizing (2.4) subject to the mass conservation conditions (2.2) and (2.3). The precise relations between (5.10) and (5.1) and the connection with Wardrop-like equilibria are given by the following properties which are quite simple extensions of the results of [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] to the anisotropic setting:

Theorem 5.1. Under assumptions (5.3) and (5.5), we have:

1. (5.10) admits solutions,

2. Q ∈ Q q (γ) solves (5.10) if only if C L ξ Q (σ) -c ξ Q (σ(0), σ(1) dQ(σ) = 0 (5.11)
where ξ Q := (g 1 (., m Q 1 (.)), ..., g 4 (., m Q 4 (.))).

3. there is no duality gap : the supremum of (5.10) equals the infimum of (5.1) and moreover if Q solves (5.10) then ξ Q solves (5.1).

Proof. We will only sketch the proof and refer to [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] for detailed proofs which can straightforwardly be adapted to the anisotropic case. 1. Let (Q n ) n be a maximizing sequence for (5.10), we may reparameterize paths by arclength (so that euclidean length becomes the Lipschitz constant of the curve), the corresponding measures on curves still form a maximizing sequence again denoted (Q n ), since (m Qn ) is bounded in L q , this gives a bound on C Lip(σ)dQ n (σ) and thus thanks to Ascoli and Prokhorov's theorems, this also gives some tightness of (Q n ), arguing as in Lemma 2.8 of [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] we find a Q ∈ M + 1 (C) to which, up to a subsequence, (Q n ) weakly star converges in M(C([0, 1], R 2 ). We may also assume that m Qn converges weakly in L q to some m and arguing as in Lemma 2.9 of [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] we obtain that m Q i ≤ m i for i = 1, ..., 4, in particular Q ∈ Q q (γ) and since G i (x, .) is nondecreasing and convex, we have

Ω G i (x, m Q i (x))dx ≤ Ω G i (x, m i (x))dx ≤ lim inf n Ω G i (x, m Qn i (x))dx
which proves that Q solves (5.10).

2. Assume first that Q ∈ Q q (γ) satisfies (5.11), and let Q ∈ Q q (γ), by convexity of G i (x, .), (5.6) and (5.11) we have

4 i=1 Ω G i (x, m Q i (x))dx - 4 i=1 Ω G i (x, m Q i (x))dx ≥ Ω ξ Q (•m Q -m Q ) = C L ξ Q (σ)dQ(σ) - C L ξ Q (σ)dQ(σ) ≥ C c ξ Q (σ(0), σ(1))dQ(σ) - C c ξ Q (σ(0), σ(1))dQ(σ) = Ω×Ω c ξ Q dγ - Ω×Ω c ξ Q dγ = 0
so that Q solves (5.10). Now assume that Q ∈ Q q (γ) solves (5.10), let Q ∈ Q q (γ) and ε ∈ (0, 1), dividing the inequality

4 i=1 Ω G i (x, (1 -ε)m Q i (x) + εm Q i (x))dx - 4 i=1 Ω G i (x, m Q i (x))dx ≥ 0 by ε and letting ε → 0 + we get Ω ξ Q • m Q = C L ξ Q dQ ≤ Ω ξ Q • m Q = C L ξ Q dQ, ∀Q ∈ Q q (γ)
arguing as in Proposition 3.9 of [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] we obtain that the infimum of the righthand side of the previous inequality is in fact Ω×Ω c ξ Q dγ so that

C L ξ Q dQ = C c ξ Q (σ(0), σ (1) 
)dQ(σ).

3. Let Q solve (5.10) then, by construction taking ξ = ξ Q and m = m Q , inequality (5.7) becomes an equality, and (5.8) as well thanks to (5.11), which proves that (5.9) is in fact an equality and ξ Q solves (5.1).

Of course, the optimality condition (5.11) for (5.10) can naturally be interpreted in terms of Wardrop equilibria. Indeed, ξ Q being the metric induced by Q we may define continuous Wardrop equilibria as the set of Q's in Q q (γ) such that Q gives full mass to geodesics for the congested metric ξ Q , where such geodesics are by definition paths σ such that L ξ Q (σ) = c ξ Q (σ(0), σ(1)). Condition (5.11) therefore exactly says that Q solves (5.10) if and only if it is a continuous Wardrop equilibrium. In particular there exist continuous Wardrop equilibria as soon as (5.3) and (5.5) hold.

A natural question now is whether the discrete problems corresponding to (2.4) i.e.:

inf m ε ,w ε ε 2 x∈Ωε 4 i=1 G i x, m ε i (x) ε (5.12)
subject to the mass conservation constraints (2.2)-(2.3) converge in some sense to the continuous problem inf

Q∈Q q (γ) 4 i=1 Ω G i (x, m Q i (x))dx. (5.13) Let m ε = (m ε i (x)) x,i ∈ Ω ε × {1, .
..4} and w ε = (w ε (σ)) σ∈C ε be a solution of the discrete problem (5.12) and define the discrete measure over C ε :

Q ε := σ∈C ε w ε (σ)δ σ as well as Q ε := σ∈C ε w ε (σ)δ e σ
where σ ∈ C denotes the constant speed reparameterization of the path σ.

Since for every i ∈ {1, ..., 4} and ξ i ∈ C(Ω, R + ), using definition (5.2) one has

L i ξ i (σ) = L i ξ i ( σ) and thus also m Q ε = m e Q ε .
Let us also remark that the measure Q ε contains all the information on (m ε , w ε ).

Theorem 5.2. Under assumptions (3.1), (3.2), (3.9), ( 5.3) and (5.5), defining Q ε as above, up to (a not relabeled) subsequence ( Q ε ) ε > 0 converges weakly to some solution Q ∈ Q q (γ) of ( 5.13) in the sense that

C([0,1],R 2 ) Φ(σ)d Q ε (σ) → C([0,1],R 2 ) Φ(σ)dQ(σ) as ε → 0 + for every Φ ∈ C b (C([0, 1], R 2 ), R).
Proof. We know by duality, from corollary 3.5 and theorem 5.1, that the value of (5.12) converges to the value of (5.13) in particular, thanks to (5.3) this gives a bound on the discrete L q norm of m ε . Arguing as in the proof of corollary 3.5 and section 4.1, we deduce that there is some m = (m 1 , ..., m 4 ) ∈ L q + such that up to a subsequence ε -1 m ε weakly converges in L q to m in the sense of definition 3.2 (up to changing p to its conjugate q) and 

Ω 4 i=1 G i (x, m i (x))dx ≤ lim inf ε→0 + ε 2 x∈Ωε 4 i=1 G i x, m ε i (x) ε . ( 5 
Ω ξ i (x)dm e Q ε i (x) = σ∈C ε w ε (σ)L i ξ i (σ) = x∈Ωε [x,x+εv i ] ξ i σ∈C ε : [x,x+εv i ]⊂σ w ε (σ) = x∈Ωε ξ i (x) + O(ω ξ i (ε)) σ∈C ε : [x,x+εv i ]⊂σ εw ε (σ) = ε 2 x∈Ωε ξ i (x) m ε i (x) ε + O(ω ξ i (ε))
where ω ξ i denotes a modulus of continuity of ξ i . Since ε -1 m ε weakly converges in L q to m in the sense of definition 3.2, this shows that m e Q ε i weakly star converges to m. Proceeding as in [START_REF] Carlier | Optimal transportation with traffic congestion and Wardrop equilibria[END_REF] (see lemmas 2.7, 2.8 and 2.9), we can find

Q ∈ M + 1 (C) such that (up to a subsequence) ( Q ε ) ε converges weakly to Q and m Q i ≤ m i for i = 1, ..., 4. Clearly, Q ∈ Q q (γ) and since G i (x, .
) is nondecreasing, recalling (5.14), we have

Ω 4 i=1 G i (x, m Q i (x))dx ≤ Ω 4 i=1 G i (x, m i (x))dx ≤ lim inf ε→0 + ε 2 x∈Ωε 4 i=1 G i x, m ε i (x) ε
and the desired conclusion follows from the fact that the right-hand side is the value of the infimum in (5.13).

The long-term variant

Instead of prescribing a transport plan γ ε in the discrete problem (2.5), we could have fixed only its marginals i.e. the distribution of sources and of sinks (or supply and demand), respectively given by the nonnegative numbers (µ ε 0 (x)) x∈Ωε and (µ ε 1 (y)) y∈Ωε that satisfy the compatibility condition

x∈Ωε µ ε 0 (x) = y∈Ωε µ ε 1 (y) > 0.
In the equilibrium problem this means that the transport plan now becomes part of the unknown and should be determined by some additional optimality requirement, namely that it is an optimal transport plan between the prescribed marginals for the transport cost induced by the congested metric itself. In other words, in the long term variant, in addition to traffic congestion we are also facing an optimal transportation problem. We refer the reader to Villani's book [START_REF] Villani | Topics in optimal transportation[END_REF] for a recent account of optimal transport theory and its numerous applications. More precisely, using the same notations as in section 2, the definition of an equilibirium is exactly the same as in definition 2.2 except that one replaces the mass conservation condition (2.2) by

µ ε 0 (x) := σ∈C ε x,. w ε (σ), µ ε 1 (y) := σ∈C ε .,y w ε (σ) (6.1)
for every (x, y) ∈ Ω ε where we have denoted by C ε x,. (respectively C ε .,y ) the set of simple paths on the network that start at x (respectively end at y). It is then easy to check that equilibria are obtained by minimizing the functional defined by (2.4) but now subject to (6.1) and (2.3). The dual formulation then reads as the following variant of (2.5): inf

t ε ∈R 4#Ωε + x∈Ωε 4 i=1 H ε i (x, t ε i (x))
inf γ ε ∈Π(µ ε 0 ,µ ε 1 ) (x,y)∈Ωε 2 γ ε (x, y)T ε t ε (x, y) (

where H and T ε t ε are defined as before by (2.6) and (2.7) and Π(µ ε 0 , µ ε 1 ) denotes the set of (discrete) transport plans between µ ε 0 and µ ε 1 i.e. the set of collection of nonnegative reals (γ ε (x, y)) (x,y)∈Ωε 2 such that y∈Ωε γ ε (x, y) = µ ε 0 (x), x∈Ωε γ ε (x, y) = µ ε 1 (y), (x, y) ∈ Ω ε × Ω ε .

As a normalization, we may assume that the common mass of µ ε 0 and µ ε 1 is 1 and identify them with the discrete probability measures:

µ ε 0 := x∈Ωε µ ε 0 (x)δ x , µ ε 1 := y∈Ωε µ ε 1 (y)δ y .
Thus, in (6.2) the second term in the criterion is the value of the optimal transport problem between µ ε 0 and µ ε 1 for the transport cost T ε t ε . Let us now assume that assumptions (3.2) and (3.9) hold and let us replace (3.1) by the assumption that µ ε 0 and µ ε 1 weakly star converge to some probability measures µ 0 and µ 1 on Ω: With assumptions (3.2) and (3.9) and setting ξ ε := ε -1 t ε as previously, we may rewrite (6.2) as: inf

ξ ε ∈R 4#Ωε + F ε (ξ ε ) := I ε 0 (ξ ε ) -F ε 1 (ξ ε ) (6.4)
where I ε 0 is defined by (3.7) and

F ε 1 (ξ ε ) := inf γ ε ∈Π(µ ε 0 ,µ ε 1 )
ε (x,y)∈Ωε 2 γ ε (x, y)T ε ξ ε (x, y). (6.5)

We then define the limit functional by where, as before, I 0 is defined by (3.10), c ξ is defined by (3.13) and Π(µ 0 , µ 1 ) is the set of transport plans between µ 0 and µ 1 i.e. the set of probability measures having µ 0 and µ 1 as marginals. We then have the following Γconvergence result: Theorem 6.1. Under assumptions (6.3), (3.2), (3.9), the family of functionals F ε defined by (6.4) Γ-converges (for the weak L p topology) to the functional F defined by (6.6).

Proof. The proof can be achieved exactly as that of Theorem 6.1, except for the proof of the inequality

F 1 (ξ) ≥ lim sup ε F ε 1 (ξ ε )
as soon as ξ ε → ξ for which we use Lemma 6.2 given below. From section 4.1, we already know that c ε := εT ε ξ ε has a subsequence that converges uniformly to some c ≤ c ξ . Now, let γ ∈ Π(µ 0 , µ 1 ) be such that F 1 (ξ) = Ω×Ω c ξ dγ thanks to Lemma 6.2 we may choose γ ε ∈ Π(µ ε 0 , µ ε 1 ) that weakly star converges to γ as ε → 0, we therefore get lim sup Lemma 6.2. Let µ and ν be probability measures on Ω, (µ n ) n , (ν n ) n be sequences of probability measures on Ω weakly star converging to µ and ν and let γ ∈ Π(µ, ν) be a transport plan between µ and ν. There exists a sequence of transport plans γ n ∈ Π(µ n , ν n ) that weakly star converges to γ.

Proof. Let us recall that the 1-Wasserstein distance between µ and µ n is defined by

W 1 (µ, µ n ) := inf θ∈Π(µ,µn) Ω×Ω |x -x ′ |dθ(x, x ′ )
and let θ ∈ Π(µ, µ n ) be an optimal plan in the minimization problem above. Similarly, let η ∈ Π(ν n , ν) be an optimal plan in the problem defining W 1 (ν, ν n ). Let us disintegrate θ as θ = µ ⊗ θ x and η as η = ν ⊗ η y and finally let γ n := Ω×Ω θ x ⊗ η y dγ(x, y) i.e. and we conclude thanks to the well-known fact that W 1 is a distance that metrizes the weak-star topology on the set of probability measures on Ω (see for instance [START_REF] Villani | Topics in optimal transportation[END_REF]).

Let us finally mention that the continuous long term problem inf

ξ∈L p + 4
i=1 Ω H i (x, ξ i (x))dxinf γ∈Π(µ 0 ,µ 1 ) Ω×Ω c ξ dγ (6.7)

  )

. 9 )

 9 Thanks to Lemma 4.1, to prove (4.1), it is therefore enough to prove that c ≤ c ξ on Ω × Ω.(4.10)

  lim

ψdµ 1 ,

 1 ∀(ϕ, ψ) ∈ C(Ω) 2 . (6.3)

F

  (ξ) := I 0 (ξ) -F 1 (ξ), where F 1 (ξ) := inf γ∈Π(µ 0 ,µ 1 ) Ω×Ω c ξ dγ; ∀ξ ∈ L p + (6.6)

ε F ε 1 (

 1 ξ ε ) ≤ lim sup ε (x,y)∈Ωε×Ωε γ ε (x, y)c ε (x, y) = Ω×Ω cdγ ≤ Ω×Ω c ξ dγ = F 1 (ξ).

  Ω×Ω ϕ(x ′ , y ′ )dγ n (x ′ , y ′ ) = Ω×Ω×Ω×Ω ϕ(x ′ , y ′ )dπ(x, x ′ , y, y ′ ), ∀ϕ ∈ C(Ω × Ω)) where Ω×Ω×Ω×Ω ϕ(x, x ′ , y, y ′ )dπ(x, x, y, y ′ ) = Ω×Ω Ω×Ω ϕ(x, x ′ , y, y ′ ))dθ x (x ′ )dη y (y ′ ) dγ(x, y), ∀ϕ ∈ C(Ω 4 ).by construction, γ n ∈ Π(µ n , ν n ) andW 1 (γ n , γ) ≤ Ω×Ω×Ω×Ω (|xx ′ | + |yy ′ |)dπ(x, x ′ , y, y ′ ) = Ω×Ω |xx ′ |dθ x (x ′ )dµ(x) + Ω×Ω |yy ′ |dη y (y ′ )dν(y) = Ω×Ω |xx ′ |dθ(x, x ′ ) + Ω×Ω |yy ′ |dη(y, y ′ ) = W 1 (µ n , µ) + W 1 (ν n , ν)
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admits a dual formulation that reads as sup Q∈Q q (µ 0 ,µ 1 )

where

Provided Q q (µ 0 , µ 1 ) = ∅ and (5.3) holds, one can generalize theorem 5.1 to the long-term models as follows:

• the supremum in (6.8) is achieved and coincides with the infimum of (6.7),

• Q ∈ Q q (µ 0 , µ 1 ) solves (6.8) if and only if it is a long-term equilibrium : it gives full mass to the geodesics for the congested metric ξ Q generated by Q in the sense that (5.11) holds and in addition γ := (e 0 , e 1 ) # Q solves the optimal transport problem: inf γ∈Π(µ 0 ,µ 1 ) Ω×Ω c ξ Q (x, y)dγ(x, y),

• if Q solves (6.8) then ξ Q solves (6.7).