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1. Introduction

The theory of characteristic 1 semirings (i.e. semirings with 1 +1 = 1)
originated in many different contexts : pure algebra (see e.g. LaGrassa’s
PhD thesis [8]), idempotent analysis and the study of R7** ([1, 3]), and
Zhu’s theory ([12]), itself inspired by considerations of Hopf algebras (see
[11]). Its main motivation is now the Riemann Hypothesis, via adeles and
the theory of hyperrings (cf. [2, 3, 4], notably §6 from [4]).

For example, it has by now become clear (see [4],Theorem 3.11) that the
classification of finite hyperfield extensions of the Krasner hyperring K is
one of the main problems of the theory. If H denotes an hyperring extension
of K, B; the smallest characteristic one semifield and S the sign hyperring,
then there are canonical mappings B; — S — K — H, whence mappings

Spec(H) — Spec(K) — Spec(S) — Spec(By) ,

thus Spec(H) “lies over” Spec(By) (see [4], §6, notably diagram (43), where
B is denoted by B).

The ultimate goal of our investigations is to provide a proper algebraic
geometry in characteristic one. The natural procedure is to construct “affine
Bi—schemes”and endow them with an appropriate topology and a sheaf of
semirings ; a suitable glueing procedure will then produce general “B;—
schemes”. This program is not yet completed ; in this paper, we deal with
a natural first step : the extension to Bj—algebras of the notions of spec-
trum and Zariski topology, and the fundamental topological properties of
these objects. In order to construct a structure sheaf over the spectrum of a
Bj—algebra, Castella’s localization procedure ([1]) will probably be useful.

As in our two previous papers, we work in the context of Bj—algebras,
i.e. characteristic one semirings. For such an A, one may define prime
ideals by analogy to classical commutative algebra. In order to define the
spectrum of a By—algebra A, two candidates readily suggest themselves : the
set Spec(A) of prime (in a suitable sense) congruences, and the set Pr(A) of
prime ideals ; in contrast to the classical situation, these two approaches are
not equivalent. In fact both sets may be equipped with a natural topology
of Zariski type (see [10], Theorem 2.4 and Proposition 3.15), but they do not
in general correspond bijectively to one another ; nevertheless, the subset
Pry(A) C Pr(A) of saturated prime ideals is in natural bijection with the set
of excellent prime congruences (see below) on A.



It turns out (§3) that there is another, far less obvious, bijection between
Pry(A) and the mazimal spectrum MaxSpec(A) C Spec(A) of A. This map-
ping is actually an homeomorphism for the natural (Zariski-type) topologies
mentioned above. As a by—product, we find a new point of view on the
descrption of the maximal spectrum of the polynomial algebra By[xy, ..., 2]
found in [9] and [12]. The homeomorphism in question is actually functorial
in A (§4).

In §5, we show that the theory of the nilradical and of the root of an
ideal carry over, with some precautions, to our setting ; the situation is even
better when one restricts oneself to saturated ideals. This allows us, in §6, to
establish some nice topological properties of

MazSpec(A) ~ Pry(A) ;

namely, it is Ty and quasi-compact (Theorem 6.1), and the open quasi—
compact sets constitute a basis stable under finite intersections. Furthermore
this space is sober , i.e. each irreducible closed set has a (necessarily unique)
generic point. In other words, Prs(A) satisfies the usual properties of a ring
spectrum that are used in algebraic geometry (see e.g. the canonical reference
[6]): Prs(A) is a spectral space in the sense of Hochster([7]).

In the last paragraph, we discuss the particular case of a monogenic B;—
algebra, that is, a quotient of the polynomial algebra Bi[z] ; in [9], we had
listed the smallest finite such algebras.

In a subsequent work I shall investigate how higher concepts and meth-
ods of commutative algebra (minimal prime ideals, zero divisors, primary
decomposition) carry over to characteristic one semirings.



2. Definitions and notation

We shall review some the definitions and notation of our previous two
papers ([9], [10]).

B; = {0,1} denotes the smallest characteristic one semifield ; the oper-
ations of addition and multiplication are the obvious ones, with the slight
change that

1+1=1.

A Bi—module M is a nonempty set equipped with an action
By xM— M

satisfying the usual axioms (see [9], Definition 2.3); as first seen in [12],
Proposition 1 (see also [9], Theorem 2.5), B;—modules can be canonically
identified with ordered sets having a smallest element (0) and in which any
two elements a and b have a least upper bound (a + b). In particular, one
may identify finite B;—modules and nonempty finite lattices.

A (commutative) Bj—algebra is a Bj—module equipped with an associa-
tive multiplication that has a neutral element and satisfies the usual axioms
relative to addition (see [9], Definition 4.1). In the sequel, except when oth-
erwise indicated, A will denote a Bj—algebra.

An ideal I of A is by definition a subset containing 0, stable under addi-
tion, and having the property that

Ve AVyelaxyel;
I is termed prime if I # A and
abel = aclorbel.

By a congruence on A, we mean an equivalence relation on A compatible
with the operations of addition and multiplication. The trivial congruence
Co(A) is characterized by the fact that any two elements of A are equivalent
under it ; the congruences are naturally ordered by inclusion, and

MazSpec(A)

will denote the set of maximal nontrivial congruences on A.
For R a congruence on A, we set

I(R):={x € Alx R 0} ;
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it is an ideal of A
A nontrivial congruence R is termed prime if

ab RO = aR0OorbRO;

the set of prime congruences on A is denoted by Spec(A). It turns out that
(see [10], Proposition 2.3)

MazxSpec(A) C Spec(A) .

For J an ideal of A, there is a unique smallest congruence R ; such that
J CI(R) ; it is denoted by R ;. Such congruences are termed excellent .

An ideal J of A is termed saturated if it is of the form I(R) for some
congruence R ; this is the case if and only if J = J, where

J = ](RJ) .

We shall denote the set of prime ideals of A by Pr(A), and the set of
saturated prime ideals by Pry(A).
For S C A, let us set

W(S):={P € Pr(A)|SC P},

and

V(S):={R € Spec(A)|S CI(R)} .

As seen in [10], Theorem 2.4 and Proposition 3.4, the family (W (S))sca is
the family of closed sets for a topology on Pr(A), and the family (V' (S))sca is
the family of closed sets for a topology on Spec(A). We shall always consider
Spec(A) and Pr(A) as equipped with these topologies, and their subsets with
the induced topologies.

For M a commutative monoid, we define the Deitmar spectrum Specp(M)
as the set of prime ideals (including @) of M (in [5], this is denoted by
Spec Fyr). We define F(M) = Bi[M] as the “monoid algebra of M over
By 7; the functor F is adjoint to the forgetful functor from the category of
Bj—algebras to the category of monoids (for the details, see [9], §5). Fur-
thermore, there is an explicit canonical bijection between Specp(M) and a
certain subset of Spec(F(M)) (see [10], Theorem 4.2).

For S a subset of A, let < S > denote the intersection of all the ideals
of A containing S (there is always at least one such ideal : A itself). It is
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clear that < S > is an ideal of A, and therefore is the smallest ideal of A
containing S. As in ring theory, one may see that

< S >= {Z a;jsjln € N, (a1, ...,a,) € A", (s1, ..., 8,) € S"}.
j=1

We shall denote by SP the category whose objects are spectra of B;—
algebras and whose morphisms are the continuous maps between them.



3. A new description of maximal congruences

Let A denote a B;—algebra.
For P a saturated prime ideal of A, let us define a relation Sp on A by :

Spy=(rePandyeP)or(x¢ Pandy ¢ P) .

Then Sp is a congruence on A : if 2Spy and x'Spy’, then one and only one
of the following holds :

(i) zeP,ycP, 2 €c¢Pandy €P |,
(i) reP,ycP, 2 ¢Pandy ¢P |,
(iiil) 2¢ P,y¢ P, v €¢Pandy € P |,
(iv) 2¢P,y¢ P, ¢ Pandy ¢ P

In case (i), = +2 € P and y +y € P, whence z + 2'Spy + ¢ ; in
cases (i) and (iv), z +2 ¢ P and y+1vy ¢ P (as P is saturated), whence
z+2'Spy+1. Case (iii) is symmetrical relatively to case (i), therefore, in
all cases,  + 2 Spy +y : Sp is compatible with addition.

In cases (i), (i) and (i), zo° € P and yy € P, whence z2'Spyy ; in
case (iv) zx' ¢ P and yy ¢ P (as P is prime), whence also z2' Spyy : Sp is
compatible with multiplication, hence is a congruence on A.

AsOePand 1 ¢ P, 0 Spl, therefore Sp is nontrivial ; but each z € A
is either in P (whence xSp0) or not (whence xSpl). It follows that

in particular, Sp is maximal : Sp € MaxSpec(A).

Obviously, I(Sp) = P.

Furthermore, let (z,y) € A? be such that ¥Rpy ; then there is z € P
such that t + 2 =y + 2 If x € Pthen y+ 2z =z + 2 € P, whence y € P
(as y+ (y+ 2) = y + z and P is saturated) ; symmetrically, y € P implies
x € P, whence the assertions (z € P) and (y € P) are equivalent, and zSpy.
We have shown that

Rp < Sp .

We shall denote by a4 the mapping

as @ Pry(A) — MaxSpec(A)
P — 87) .
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Let R € MaxSpec(A) ; then R € Spec(A), whence I(R) is prime ; by
Theorem 3.8 of [10], it is saturated, i.e. I(R) € Prs(A). Let us set

Theorem 3.1. The mappings
ay : Pry(A) — MaxSpec(A)

and
Ba: MaxSpec(A) — Pry(A)

are bijections, inverse of one another. They are continuous for the topologies
on Pry(A) and MaxSpec(A) induced by the topologies on Pr(A) and Spec(A)
mentioned above, whence Prs(A) and MaxSpec(A) are homeomorphic.

Proof. Let R € MaxSpec(A) ; then

aa(Ba(R)) = aa(I(R)) = Si(w) -

Let us assume Ry ; then, if x € I(R) one has xR0, whence yR0 and
y € I(R); by symmetry, y € I[(R) implies x € I(R), thus (x € I(R)) and
(y € I(R)) are equivalent, i.e. £Syr)y. We have proved that R < Syg). As
R is maximal, we have R = Sjr), whence

aa(Pa(R)) = Sir) = R ,

and
iy 0 BA = IdMaxSpec(A) .

Let now P € Pry(A) ; then

(Baoaa)(P) = Balaa(P))
= Ba(Sp)

1(Sp)

- P,

whence
BA Oty = IdPrs(A) )



and the first statement follows.

Let now F' denote a closed subset of Pry(A) ; then F' = G N Pry(A) for
G a closed subset of Pr(A) and G = W(S) :={P € Pr(A)|S C P} for some
subset S of A. But then, for R € MaxSpec(A), R € B (F) if and only if
Ba(R) € F,i.e. I(R) € GN Pryg(A), that is I(R) € G, or S C I(R), which
means R € V(5). Thus

BiH(F) =V (S)N MaxSpec(A)

is closed in MaxzSpec(A). We have shown the continuity of 54.

Let now H C MaxSpec(A) be closed ; then H = MaxSpec(A) N L for
some closed subset L of Spec(A), and L = V(T) for some subset T of A. Then
a saturated prime ideal P of A belongs to a;'(H) if and only if as(P) € H,
that is

Sp € MaxSpec(A)NL ,
i.e.
Sp e V(T)
or T C I(Sp). But I(Sp) = P whence P belongs to a,*(H) if and only if
T C P, that is
a'(H) = W(T)N Pry(A) ,

which is closed in Prg(A). O

Let us consider the special case in which A is in the image of F : A =
F(M), for M a commutative monoid. Let P be a prime ideal of M ; as seen
in [10], Theorem 4.2, P is a saturated prime ideal in A, and one obtains in
this way a bijection between Specp(M) and Prg(A). The following is now
obvious :

Theorem 3.2. The mapping

Uy o Speep(M) — MaxSpec(F(M))
P QF (M) (P)
15 a bijection.
Two particular cases are of special interest :

1. M is a group ; then Specp(M) = {0}, whence MaxSpec(F(G)) has
exactly one element.



2. M =C, =< x1,...,x, > is the free monoid on n variables z1, ..., z,.
Then the elements of Specp(M) are the (Py)jcqi,. n}, Where

Py = U z;C,
jed
(a fact that was already used in [10], Example 4.3). Then

Uar(Py) = azon(Pr) = Sp,

whence x5 (Py)y if and only if either (z € Pyandy € P))or (z ¢ P;
and y ¢ P;). But we have seen in [9], Theorem 4.5, that

F(M) = Bl[ZL‘l, ,ZL‘n]

could be identified with the set of finite formal sums of elements of M.
Obviously, an element z of F(M) belongs to P; if and only if at least
one of its components involves at least one factor z;(j € J). It is now
clear that, using the notation of [9], Definition 4.6 and Theorem 4.7,

vu(Pr) =7 .

We hereby recover the description of MaxSpec(B; [y, ..., z,]) given in
[9](Theorems 4.7, 4.8 and 4.10).

The following result will be useful

Theorem 3.3. Any proper saturated ideal of a Bi—algebra A is contained in
a saturated prime ideal of A.

Proof. Let J be a proper saturated ideal of A ;as I(R;) =J = J # A, R; #
Co(A). By Zorn’s Lemma, one has R; < R for some R € MaxSpec(A).
According to Theorem 2.1, R = a4(P) = Sp for a saturated prime ideal P
of A, therefore R; < Sp and

J=J=I1R;)CI(Sp)="P.
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4. Functorial properties of spectra

Let ¢ : A — C denote a morphism of Bj—algebras, and let R € Spec(C).
We define a binary relation ¢(R) on A by :
Y(a,a) € A% ap(R)a’ = p(a)Rp(a) .
It is clear that ¢(R) is a congruence on A, and that

I(3(R)) = ¢~ (I(R)) -
In particular I(¢(R)) is a prime ideal of A, hence ¢(R) € Spec(A) : ¢
maps Spec(C) into Spec(A). Let F := V(S) be a closed subset of Spec(A),
and let R € Spec(C) ; then R € ¢7'(F) if and only if (R) € F, that
is S C I(@(R)), or S C ¢ HI(R)), i.e. p(S) C I(R), or R € V(p(9)).
Therefore o~ 1(F) = V((S)) is closed in Spec(C) : ¢ is continuous.
Furthermore, for ¢ : A — C and ¢ : C'— D one has

Yop=gor: Spec(D) — Spec(A) .

It follows that the equations H(A) = Spec(A) and H(p) = ¢ define a con-
travariant functor H from Z, to SP.
Let J denote an ideal in C', and let us assume aR,-1( J)a/ ; then there is

an z € ¢ 1(J) with a + x = a' 4+ z. Now () € J and
pla) +o(z) = plat)
= ¢la +2)
= pla)+¢(x),
whence p(a)Rp(a’) and a@(R;)a . We have established

Proposition 4.1. Let A and C' denote By—algebras, ¢ : A — C' a morphism
and J an ideal of C : then

Re-1) < P(Ry) -

Theorem 4.2. Let A and C' denote two By—algebras, and ¢ : A — C' a mor-
phism. Then @ : Spec(C') — Spec(A) maps MaxSpec(C) into MaxSpec(A),
and the diagram

—1

Pry(C) s Pry(A)
I
MazSpec(C) 5 MaxSpec(A)

commautes.

11



Proof. Let P € Pr,(C), then, for all (a,a’) € A?

p(a)Spep(a)
(p(a) € P and go(a/) €P))

ap(Sp)ad

or (p(a) ¢ P and ¢(a’) & P)
(a €Y (P) and a’ € o1 (P))

or (a¢ ¢ ' (P) and a’ ¢ ¢~ (P))

P11

CLS@— 1(P) a/ .
Therefore

(poac)(P) = ¢lac(P))
= ¢(Sp)
= Spmi(p)
= aalp™'(P))
= (aa0p™)(P)
whence @ oac =as0p™1.

Incidentally we have proved that @ maps MaxzSpec(C) = ac(Prs(C))
into g (Prs(A)) = MaxSpec(A), i.e. the first assertion. O

12



5. Nilpotent radicals and prime ideals
The usual theory generalizes without major problem to Bi—algebras.

Theorem 5.1. In the By—algebra A,let us define
Nil(A) :=={z € A|(3In > 1)z" =0} .

Then Nil(A) is a saturated ideal of A, and one has

(| P= () P=Nil(A).
)

PePr(A) PePrs(A

Proof. Let M := (\pcp,ayP and N = (Npep, 4y P- If @ € Nil(A) and
P € Pr(A), then, for some n > 1, 2™ = 0 € P, whence (as P is prime) z € P
: Nil(A) C M.

As Pry(A) C Pr(A), we have M C N.

Let now x ¢ Nil(A) ; then

(VneN) a" £0.

Define
E:={J e ld,(A)|(Vn>0)z" & J}.

This set is nonempty ({0} € &) and inductive for C, therefore, by Zorn’s
Lemma, there exists a maximal element P of £. As 1 =20¢ P, P # A.

Let us assume ab € P, a ¢ P and b ¢ P ; then P + Aa and P + Ab are
saturated ideals of A strictly containing P, whence there exists two integers m
and n with 2™ € P + Aa and 2" € P + Ab. By definition of the closure of an
ideal, there
are 4 = p; + Aa € P+ Aa and v = py + ub € P + Ab such that 2™ +u =wu
and 2" + v = v. Then

ub = p1b+ A(ab) € P

and
b+ ub= (2™ + u)b = ub ,

whence, as P is saturated, ™b € P.
Then
x"v =2"py + px™b e P

13



as

2"+ 2™y = 2™ (2" + )
= v,

we obtain ™" € P, a contradiction.
Therefore P is prime and saturated and x = x' ¢ P, whence x ¢ N. We
have proved that N C Nil(A), whence M = N = Nil(A). O

Corollary 5.2.
Nil(A)= () P.

PePr(A)
Proof.

Nil(A) = ﬂ P (by Theorem 5.1)
PePr(A)

N P
PePr(A)

N 7
PePry(A)

= ﬂ P

PePrs(A)
= Nil(A) (also by Theorem 5.1).

N

N

Definition 5.3. For [ an ideal of A, we define the root r(I) of I by
r(I):={z € A|(In>1)z" € I}.

Lemma 5.4. (i) r(I) is an ideal of A.
(i) v(I) C r(I) ; in particular, if I is saturated then so is v(I).

(111) r({0}) = Nil(A).
Proof. (i) Obviously, 0 € r(I).

14



If x € r(I) and y € r(I), then 2™ € I for some m > 1 and y" € [ for
some n > 1, whence

m+n—1 "R m+n—1 i, m+n—1—j
(x+y) = > S )aly 7

J=0 J
m-+n—1
(= )
j=0
er,

as 2/ € I for 7 > m and y™™ 177 € [ for j < m — 1 (as, then,
m+n—1—j>n). Thus x +y € r(I).

For a € A, (az)™ = a™x™ € I, whence ax € r(I). Therefore (/) is an
ideal of A.

(ii) Let « € 7(I) then there is u € r(I) such that  + u = u, and there is
n > 1 such that ™ € I. Let us show by induction on j € {0,...,n}
that w72/ € I. This is clear for j = 0. Let then j € {0,....,n — 1},
and assume that v 727 € T ; then

u" T e = W (24 )

= w1y

.
whence u"712/t1 € I = I . Thus, for j = n, we obtain

2t =u"""2" el

whence x € r(1).
If now I is saturated, then

r() (
r(
(

<

I
1

N 1N

(by the above)

~— ~— ~—

I

Il
<

9

whence 7(I) = r(I) is saturated.

(iii) That assertion is obvious.

15



Proposition 5.5. For each saturated ideal I of the Bi—algebra A , one has

= (| P.

PePry(A);ICP
Remark 5.6. For I = {0}, this is part of Theorem 5.1.

Proof. Let x € r(I), and let P € Pry(A) with I C P ; then, for some n > 1
x™ € I, whence 2" € P and x € P :

rnc () P

PEPry(A):ICP

Let now y € A, y ¢ r(I), and denote by 7 the canonical projection

A
A Agi= — .
m —» A RI
As [ is saturated, one has
Vn>1y"¢1,
whence
Vn Z 1yn RIO )
or

Vn>17(y)" =n(y") #0.

Therefore 7(y) ¢ Nil(Ap), whence, according to Theorem 5.1, there exists a
saturated prime ideal Py of Ay such that 7(y) ¢ Py. But then P := 771(P,)
is a saturated prime ideal of A containing I with y ¢ P, whence

y ¢ ﬂ P .

PePrs(A);ICP

16



6. Topology of spectra

We can now establish the basic topological properties of the spectra
Prs(A) (analogous, in our setting, to Corollary 1.1.8 and Proposition 1.1.10(ii)
of [6]).

Theorem 6.1. Pry(A) and MaxSpec(A) are Ty and quasi—-compact.

Proof. According to Theorem 3.1, Pry(A) and MaxSpec(A) are homeomor-
phic, therefore it is enough to establish the result for Pry(A).

Let P and Q denote two different points of Prs(A) ; then either P SZ Q
or @ ¢ P. Let us for instance assume that P € Q ; then Q ¢ W (P) ; set

O := Pry(A) N (Pr(A)\ W(P)) .
Then O is an open set in Pry(A), Q € O and, obviously, P ¢ O. Therefore

Pry(A) is Tp.
Let (U;)ier denote an open cover of Pry(A) :

iel
each Pry(A)\U; is closed, whence Pry(A)\U; = Pry(A)NW(S;) for some sub-
set S; of A. Therefore Pr,(A)N(N;c; W(Si)) =0, i.e. Pro(A)NW (e, Si) =
0. Therefore Pry(A) "W (< U,¢; Si >) = 0, whence, according to Theorem
33, <Uje;Si> = A Let J =< [J;e;Si > ; then 1 € J, hence there is
x € J such that 1 + x = z. Furthermore, there exist n € N, (iy,...,4,) € I"
, x;, € 9, and (ay, ..., a,) € A" such that © = ayz;, + ... + a,z;,. But then

1+ayxy, + ... +apy;, = a1y, + ...+ apx;,

whence

n
le< {.ﬁlfil, ,.Tzn} > C USZ]
=1

and

It follows that



that is

or

Pry(A) is quasi-compact. O
For f € A, let

D(f) = Prs(A)\(Prs(A)nW({f}))
= {Pe Pr,A)lf ¢ P}

Proposition 6.2. 1. Each D(f)(f € A) is open and quasi—compact in
Pry(A) (see [6], Proposition 1.1.10 (ii)).

2. The family (D(f))fea is an open basis for Prs(A) (see [6], Proposition
1.1.10(i)); in particular, the open quasi—compact sets constitute an open
basis.

3. A subset O of Prs(A) is open and quasi—compact if and only if it is of
the form Pry(A) N W (I) for I an ideal of finite type in A.

4. The family of open quasi—compact subsets of Prs(A) is stable under
finite intersections.

5. Fach irreducible closed set in Prs(A) has a unique generic point (see
[6], Corollary 1.1.14(ii)).

Proof. 1. The openness of D(f) is obvious.
Let us assume D(f) = J,c; Us, where the U;’s are open sets in D(f).
Each U; can be written as

Ui=D(f)NVi,
for V; an open set in Pry(A), i.e. Prs(A)\V; = W(S;) for S; a subset
of A. Then
D(f) S| JVi=Pro( )\ (YW(S) .
iel il
whence

PrA)ynw(JS) cW{r})

el

18



that is, setting

SZIUSZ',

el

fe N P= (] P.

PEW (S)NPrs(A) PePry(A);SCP

Therefore, by Proposition 5.5, f € (< S >) : there is n > 1 such that
f" e < S >. Thus, there is g €< S > such that f" + g = ¢ ; one has
g = a8 fora; € A, s; € S ; for each j € {1,...,m}, s; € S,
for some i; € I. Let Sy = {51, ..., S} ; then g €< U?Zl Si; >, whence

frex< U;“:l Si; >, and reading the above argument in reverse order
with S replaced by [J;_, S;; yields that

whence the quasi-compactness of D(f).

. Let U be an open set in Pry(A), and P € U. We have Pry(A)\ U =
Pry(A)NW(S) for some subset S of A. As P ¢ W(S), S ¢ P, whence
there is an s € S with s ¢ P. It is now clear that P € D(s) and

D(s) C Pry(AH)\W(S)=U.

. Let O C Pry(A) be open and quasi-compact ; according to (2), one
may write O = {J;.; D(f;) with f; € A. But then, there is a finite
subset Jo of J such that O = J,;; D(f;). Now

PryA)\O = (] D(f)

j€Jo

= PTS(A) ﬂW(< f]|j - JO >)

is of the required type.

Conversely, if Pry(A)\ O = Pry(A) N W(I) with I =< g1,..., gn >,
it is clear that O = |J;_; D(g;); as a finite union of quasi-compact
subspaces of Prg(A), O is therefore quasi-compact.

. Let Oy, ..., 0, denote quasi—compact open subsets of Prs(A) ; then,
according to (iii), we may write

Pry(A)\ O; = Pry(A)nW(I;)
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for some finitely generated ideal I; of A. Thus

(@

Pr(A)\ (01N..N0,) = | J(PriA)\ O;)

<.
Il
—_

Il

I
A

(Prs(A) N W (L))

J

:PM@HOW@)

= Pry(A)nW(

s

I;)
=1
L)

whence, according to (iii), O1 N ... N O,, is quasi-compact, as [3...1,, is
finitely generated.

. Let F' denote an irreducible closed set in Pry(A) ; then F' = Pry(A)N
W (S) for S a subset of A. We have seen above that, setting I := < S >,
one has F' = Pry(A)NW(I). As F is not empty, I # A. Let us assume
ab € I ; then, for each P € F', one has ab € I C P, whence a € P or
beP,ie Pe FNW({a})or Pe FNW({b}) :

<
Il

= PryA) nW(

~

F=(FnW{a}) U (FnW({b})) .

As F is irreducible, it follows that either ' = FnNW({a}) or F =
FNW({b}). In the first case we get F' C W ({a}), i.e.

a€ ﬂ P = I(Proposition 5.5) ;

PEPro(A);ICP
similarly, in the second case, b € I : I is prime. But then
{I} = Pr(A)nw(I)
= F

and [ is a generic point for F'.

It is unique as, in a Ty—space, an (irreducible) closed set admits at
most one generic point (see [6], (0.2.1.3)).

O
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Corollary 6.3. Pry(A) and MaxSpec(A) are spectral spaces in the sense of
Hochster ([7],p. 43).

Theorem 6.4. (c¢f. [6], Corollary 1.1.14) Let F = Pry(A) N W(S) be a
nonempty closed set in Pry(A) ; then F' is homeomorphic to Pry(B), where

A -
B::EwithI::<S>.

Proof. As seen above, one has F' = Pr,(A)NW (I), whence, as F # (), I # A.
A
Let Ag := = and let m: A — Ay denote the canonical projection.

1
Let us now define

W o Pry(Ag) — F
Q»—Hr_l(Q).

Then ) is well-defined (as 771(Q) is a saturated prime ideal of A that
contains I), and injective (as, for each Q € Pry(Ay), 7(¢(Q)) = Q).
Let P € F ; then m(P) is an ideal of Ay. Let us assume 7(v) € 7(P) ;
then
m(v) + 7(a) = 7(a)

for some a € P, that is
m(a+v)=m(a) .

But then
at+v+i=a+1

for some i € I, whence
v+ (a+i)=a-+1

As a+1i € P and P is saturated, it follows that v € P : 7(P) is saturated.
Furthermore , if 7(1) € 7(P), one has w(1)+m(v) = m(v) for some v € P,
whence there is w € [ such that 14+v+w = v+ w, whence 1 +v+w € P and
(as P is saturated) 1 € P and P = A, a contradiction. Therefore 7(P) # A,.
Let us assume 7(z)m(y) € n(P) : then zy +1i = g+ i for some i € I,
whence
(z+i)y+i)=ay+zit+iy+i>€P,

and x+i € Pory+1i € P ; as P is saturated, it follows that x € P ory € P,
whence 7(z) € m(P) or w(y) € n(P) : ©n(P) is prime.
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As P is saturated, one sees in the same way that ¢(7(P)) = 7! (7(P)) =
P, whence 1) is surjective.

Let G := FNW(Sy) be closed in F ; then P € ¢~ 1(G) if and only if
P(P) € FNW (Sp), that is S C 7~ !(P) and Sy C 7 1(P), i.e. 7(SUSy) C P

Y (G) = Pry(Ag) NW(m(SUSp))

is closed in F', and 1) is continuous.

Let now H := Pry(Ay) "W (G) be closed in Prs(Ay), and let Q € Pry(Ay)
;as 7 is surjective, G C Q if and only if 771(G) C 771(Q) = ¥(Q), and it
follows that

Y(H) =FnW(r ()

is closed in F'. Therefore v is an homeomorphism. O
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7. Remarks on the one—generator case

Let us now consider the case of a nontrivial monogenic B;—algebra con-

B
Bil] is a quotient of the free algebra Bj|x]

taining strictly By, i.e. A =
with z = 0, z = 1. Denote by a the image of z in A ; then o ¢ {0,1}, and
« generates A as a Bpy—algebra.

Let us suppose that, for some (u,v) € A% au = 1+ av ; then « is not

nilpotent, as from o” = 0 would follow

0=av=a"aw)=a"1+au)=a" ' +a"u=a""",

whence o™~ ! = 0 and, by induction on n, 1 = a® = 0, a contradiction.
Therefore three cases may appear

(i) « is nilpotent.
(ii) « is not nilpotent and there does not exist (u,v) € A% such that au =
1+ av.
(iii) (c is not nilpotent) and there exists (u,v) € A% such that au = 1+ aw.

In case (i), any prime ideal of A must contain «, hence contain aA; the
ideal oA is, according to the above remark, saturated, and is not contained
in a strictly bigger saturated ideal other than A itself (in both cases, as any
element of A not in @A is of the shape 1 + ax). Therefore Pry(A) = {aA},
whence Nil(A) = aA. In this case we see that

A
R

281.

In cases (ii) and (iii), no power of a belongs to Nil(A) ; as Nil(A) is
saturated, it follows that Nil(A) = {0}. In fact, A is integral, whence
{0} € Pry(A). If P € Pry(A) and P # {0}, then P contains some power
of «, hence contains «, hence contains aA. As above we see that P = aA ;
but, in case (iii), @A is not saturated. In case (ii) it is easy to see that oA is
prime and saturated. Therefore

1. In case (ii), Prs(A) = {{0},aA} ; {0} is a generic point, that is

{{0}} = Pri(4) ,

and A a “closed point” ({aA} is closed) ;
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2. In case (iii), Prs(A) = {{0}}.

One may remark that B;[z] itself falls into case (ii).

In [9], pp. 75-79, we have enumerated (up to isomorphism) monogenic
Bj-algebras of cardinality < 5. It is easy to see where these algebras fall
in the above classification ; we keep the numbering used in [9]. Let then
3 < |A| < 5. We have the following repartition

Case (i) : (6),(8),(12),(15),(18),(24)

Case (7): (7),(10),(11),(16),(19),(25),(26)

Case (7i7): (5),(9),(13),(14),(17),(20),(21),(22),(23),(27),(28)
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