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Visual tracking with omnidirectional
cameras: an efficient approach

F. Rameau, D.D. Sidibé, C. Demonceaux and D. Fofi

An effective technique for applying visual tracking algorithms to omni-
directional image sequences is presented. The method is based on a
spherical image representation which allows taking into account the
distortions and nonlinear resolution of omnidirectional images.
Experimental results show that both deterministic and probabilistic
tracking methods can effectively be adapted in order to robustly
track an object with an omnidirectional camera.

Introduction: Visual tracking is an important task in many computer
vision applications such as video surveillance, smart rooms, mobile
robotics, augmented reality and video compression. Different tracking
methods have been developed in the literature and can be roughly
divided into two groups: deterministic methods and stochastic
methods. Methods of the former group, such as the Kanade-Lucas-
Tomasi (KLT) tracker [1] and the mean-shift tracker [2], iteratively
search for the local maxima of a similarity measure between a template
of the target and the current image. In contrast, methods of the latter
group use a state space representation of the moving object to model
its underlying dynamics. These include the Kalman filter and particle
filters [3].

Though these methods have been successfully employed in various
application domains, they cannot be directly applied to images acquired
by an omnidirectional camera. An omnidirectional camera provides a
panoramic view of a scene by the association of a conventional perspec-
tive camera with a convex mirror. Omnidirectional sensors are useful in
various applications such as 3D reconstruction, structure from motion,
robot navigation and video surveillance. However, conventional visual
tracking methods are not able to perform efficiently when applied to a
sequence taken with an omnidirectional camera. This is mainly due to
the geometrical distortion induced by the mirror. The mirror also
makes the sensor highly sensitive to illumination changes.

Few tracking methods in omnidirectional images have been proposed
in the literature. The simplest and widely used technique is based on
image unwrapping. The unwrapping process creates a perspective
image from the distorted one, and conventional tracking methods can
be applied [4]. Other methods use a geometrical a priori knowledge
about the object to track, for instance planes or lines [5, 6].

In this Letter, we show how to effectively adapt mean-shift and par-
ticle filters to omnidirectional images. We report experimental results
which show a significant improvement in the tracking accuracy.

Adapted search window: To efficiently track a target, a distinctive
model of its appearance is needed. The target model is usually computed
within a bounding box (or search window) given by the object current
position. With a perspective image this search window is defined by
an M × N rectangle centred on the target’s central pixel. Obviously,
this window has to be adapted to take into account the distortion and
the nonlinear resolution of omnidirectional images. Indeed, without
adaptation, the target representation will contain a lot of background
pixels which cause tracking drift and failure. Following the work pre-
sented in [7], omnidirectional images are considered as spherical
images. A point XS lying on the unit sphere S 2 can be defined by its
spherical co-ordinates: Xs = [cos(f) sin(u), sin(f) cos(u), cos(f)]T ,
where f [ [0,p] is the latitude, and u [ [0, 2p] is the longitude.
Then, the window centred on XS is defined in the unit sphere using
the following equation:

W (XS) = {X = (u′,f′) [ S2; |u′ − u| ≤ du and |f′ − f| ≤ df} (1)

Finally, the window is back-projected on the image plane to get the
spatial neighbourhood on the image as illustrated in Fig. 1.

Colour histogram representation: The colour histogram is a widely
used representation in tracking algorithms. It is robust against noise,
partial occlusion and is scale invariant. To model the appearance of
the object of interest, a weighted 3D colour histogram is used. The
weights are assigned by a kernel which accounts for the spatial infor-
mation in order to improve tracking accuracy. In conventional colour
based tracking methods, the Epanechnikov kernel is used [2].
However, an adaptation of this profile is necessary to deal with the
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distortion in omnidirectional images. To that end, the Euclidean distance
is replaced by the geodesic distance [7]. The distance between two
points (Xsph, Ysph) [ S2 is defined by:

d(Xsph, Ysph) = arcos(Xsph, Ysph) (2)

Tracking algorithms: In this Letter we consider two popular tracking
methods and adapt them to omnidirectional images. The first one is
the mean-shift algorithm [2] which is a deterministic method, and the
second one is the probabilistic particle filter algorithm [3]. In both
cases, the appearance of the object to track is represented by a colour his-
togram using the adapted window and the similarity between two colour
distributions is obtained by the Bhattacharyya coefficient [2]. For the
particle filter, we define the object’s state vector in the unit sphere as
S = [u,f, u,f, du, df]T , where u and f are the co-ordinates of the
window’s centre, and du and df are the size of the window.

Fig. 1 Window adaptation on sphere

Left: window on unitary sphere; right: window projected on image plane

Results: We evaluate the performance of our adapted tracking methods
using four sequences acquired in different conditions. The conditions
include indoor and outdoor scenes, moving objects and persons, a
moving or fixed camera, difficult illumination changes and occlusion.
The image resolution is 640 × 480 and the size of sequences varies
between 500 and 800 frames. The adapted tracking algorithms are com-
pared with the conventional ones using three criteria: the spatial overlap-
ping (percentage of common area between the ground-truth and the
tracking bounding boxes), the distance between the real centre (from
the ground-truth) and the centre estimated by the tracking algorithm,
and the temporal overlapping (percentage of successfully tracked
frames in a sequence).

Fig. 2 Example of tracking results

Tracking results with conventional particle filter depicted in green. Results with
proposed method shown in red, and ground truth is in blue

Table 1: Tracking performance evaluation

Spatial overlapping (%)
Temporal overlapping

(%)
Centres distance (in

pixels)

Conventional
method

Adapted
method

Conventional
method

Adapted
method

Conventional
method

Adapted
method

Seq. 1 45 71 100 100 5.7 2.6

Particle
filter

Seq. 2 30 60 44 99.7 5.5 3.8

Seq. 3 33 65 88 99.5 7.7 4.8

Seq. 4 45 66 96.8 97.3 6 4.1

Seq. 1 32.4 64.5 63.21 96.35 6.38 6.2

Mean-shift
Seq. 2 42.5 47.79 89 90 16.2 8.3

Seq. 3 40.55 61.8 96 97.84 7.8 7.5

Seq. 4 34.72 67.67 52.81 97.71 10.52 5.02

A few tracking results are shown in Fig. 2. Note that in the images, the
blue bounding box corresponds to the ground truth object location,
while the red and green bounding boxes correspond to the estimated
positions by the proposed tracking methods and the conventional
47 No. 21



ones, respectively. As can be seen, the adapted particle filter provides a
better localisation of the tracked object.

Quantitative performances are summarised in Table 1. As can be seen,
our adapted methods outperform the conventional mean-shift and par-
ticle filter tracking methods for all four sequences. In particular, even
with strong scale variation (all sequences), occlusion (sequence 3) and
a strong change in illumination (sequence 2), the adapted algorithms
accurately follow the targets. In particular, they give a better localisation
of the object as shown by the mean distance between the true centre of
the object and the centre given by the algorithms.

Conclusion: An efficient way to adapt conventional tracking methods to
omnidirectional image sequences is proposed. The adaptation is based
on using spherical image representation to account for the specific geo-
metry of omnidirectional images. Experimental results with different
sequences in different conditions show significant improvements in
the tracking accuracy. In particular, the adapted methods are robust
against occlusion, clutter background and large illumination variation.
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