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Abstract

If a Z ′ gauge boson of a gauged Lµ −Lτ symmetry is very light, it is associated with
a long-range leptonic force. In this case the particles in the Sun create via mixing of
Z ′ with the Standard Model Z a flavor-dependent potential for muon neutrinos in
terrestrial long-baseline experiments. The potential changes sign for anti-neutrinos
and hence can lead to apparent differences in neutrino and anti-neutrino oscillations
without introducing CP or CPT violation. This can for instance explain the recently
found discrepancy in the survival probabilities of muon neutrinos and anti-neutrinos
in the MINOS experiment. We obtain the associated parameters of gauged Lµ − Lτ

required to explain this anomaly, and compare our scenario to usually considered non-
standard interactions. When applied to MINOS, both approaches have difficulties
with existing limits. The consequences for future long-baseline experiments and for
the anomalous magnetic moment of the muon are discussed. The main feature is
that atmospheric neutrino mixing has to be non-maximal in order to have an effect.
Neutrino masses tend to have a mild hierarchy.
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1 Introduction

Additional gauged U(1) symmetries are a feature of many theories beyond the Standard
Model (for a review, see e.g. Ref. [1]). A large amount of interesting phenomenology arises
in such scenarios, including LHC physics, lepton flavor violation, dark matter, etc. Here we
focus on a particularly interesting class of models, namely anomaly free U(1) symmetries
under which the SM is invariant. It was observed long ago [2] that with the particle content
of the Standard Model one can gauge one of the lepton flavor combinations Le−Lµ, Le−Lτ

or Lµ − Lτ without introducing anomalies. If the gauge bosons associated with this U(1)
symmetry are very light, then long-range forces are introduced. In case the extra U(1)
corresponds to Le − Lµ or Le − Lτ , the electrons in the Sun or the Earth generate a
potential acting on the neutrinos in terrestrial experiments [3–5]. The flavor dependence
of Le − Lµ or Le − Lτ induces modifications to the neutrino oscillations and therefore the
coupling of the U(1) can be constrained. The lack of a significant amount of muons in
the Sun or Earth lead to the fact that the oscillation phenomenology of gauged Lµ − Lτ

with very light Z ′ was never studied, though this symmetry was analyzed with different
phenomenology in mind [6–10]. The reason why Lµ −Lτ should be preferred over Le −Lµ

or Le − Lτ is that the neutrino mass matrix in the symmetry limit has a very promising
structure.
In the present paper we note that the unavoidable Z–Z ′ mixing in models with gauged
U(1) symmetries allows to put limits on the parameters associated with Lµ−Lτ . The flavor
dependent potential generated by the Z ′ has different sign for neutrinos and anti-neutrinos
and can therefore lead to seemingly different neutrino and anti-neutrino parameters. We
apply this to the recently found discrepancy in the survival probabilities of muon neutrinos
and anti-neutrinos by the MINOS collaboration [11]. In this long-baseline experiment, the
results for the oscillation parameters in the neutrino and anti-neutrino running lead to
different values, namely1

∆m2 =
(
2.35+0.11

−0.08

)
× 10−3 eV2 , sin2 2θ > 0.91 ,

∆m2 =
(
3.36+0.45

−0.40

)
× 10−3 eV2 , sin2 2θ = 0.86 ± 0.11 ,

(1)

for neutrinos and anti-neutrinos, respectively [11]. We will use here the impact of a long-
range force associated with the Z ′ of gauged Lµ − Lτ to explain this anomaly. We obtain
the parameters (Z–Z ′ mixing and gauge coupling) of the U(1) and discuss in addition
consequences for future long-baseline neutrino oscillation experiments and the anomalous
magnetic moment of the muon. An interesting feature of our proposal is that in order for
gauged Lµ −Lτ to be the explanation of the MINOS results, atmospheric neutrino mixing
needs to be non-maximal. We furthermore find an interesting correlation in what regards
the sign of the differences between neutrino and anti-neutrino parameters. Neutrino masses
tend to be quasi-degenerate.
The apparent difference of the neutrino and anti-neutrino parameters has motivated several
explanation attempts, in the form of CPT violation [12], Non-Standard Interactions [13–15],

1This result is henceforth referred to as “MINOS anomaly”.
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and sterile neutrinos plus gauged B−L [16]. As became clear [17,18], each of the explana-
tions put forward so far has problems with existing constraints on non-standard neutrino
physics:2 the standard three-neutrino picture is remarkably stable and robust. We will nev-
ertheless present fits to the MINOS data and obtain the associated parameters of gauged
Lµ − Lτ required to explain the anomaly. Comparing the results with Non-Standard In-
teractions (NSIs), we find that there are difficulties with existing limits on non-standard
neutrino physics. There are however interesting differences to the usually considered stan-
dard NSIs. We furthermore check a variety of experimental observables which could be
modified by the parameters of gauged Lµ − Lτ for consistency. These include the mag-
netic moment of the muon, Big Bang Nucleosynthesis, charge difference of electron and
muon, electroweak precision data, and tests of the equivalence principle. The strongest
constraints are and will be provided by neutrino oscillation experiments, which shows the
remarkable sensitivity of neutrinos to new and interesting physics. Performing a GLoBES
analysis, we finally obtain future limits on the parameters of Lµ − Lτ .

In Section 2 we outline the framework of gauged Lµ − Lτ symmetry including Z–Z ′ mix-
ing, current constraints are described in Section 3. The results are applied to oscillation
phenomenology and the MINOS results in Section 4, where we also study the impact on
future neutrino oscillation experiments, the anomalous magnetic moment of the muon and
neutrino masses. Section 5 summarizes our findings.

2 Gauged Lµ − Lτ Symmetry

The most general Lagrangian after breaking the SU(3) × SU(2) × U(1)Y × U(1)Lµ−Lτ

symmetry can be written as [19]

L = LSM + LZ′ + Lmix , (2)

where the relevant part of the Standard Model Lagrangian is

LSM = −1

4
B̂µν B̂µν − 1

4
Ŵ a

µν Ŵ aµν +
1

2
M̂2

Z Ẑµ Ẑµ − ê

ĉW

jµ
B B̂µ − ê

ŝW

jaµ
W Ŵ a

µ , (3)

and the hats denote that we are not in the mass eigenbasis. The currents jµ
B and jaµ

W are
the usual Standard Model ones. The gauge coupling of the U(1)Lµ−Lτ is denoted ĝ′. The
Z ′ part in our case is

LZ′ = −1

4
Ẑ ′

µν Ẑ ′µν +
1

2
M̂ ′2

Z Ẑ ′
µ Ẑ ′µ − ĝ′ j ′µ Ẑ ′

µ , (4)

j ′µ = µ̄ γµ µ + ν̄µ γµ PL νµ − τ̄ γµ τ − ν̄τ γµ PL ντ , (5)

2An exception is probably CPT violation, if one is willing to abandon such an important cornerstone
of modern physics.
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with the projection operator PL ≡ 1
2
(1− γ5). The term 1

2
M̂ ′2

Z Ẑ ′
µ Ẑ ′µ breaks the U(1)Lµ−Lτ

symmetry, and is generated by a vev of some Higgs sector (left unspecified here). Then
there are terms associated with mixing of the field strength tensors and the two massive
bosons:

Lmix = −sin χ

2
Ẑ ′µν B̂µν + δM̂2 Ẑ ′

µ Ẑµ (6)

with the kinetic mixing angle χ. The crucial mixing term sin χ can arise directly, or can
be generated radiatively [20].
Diagonalizing [19] the kinetic terms (which gives fields denoted by Bµ = B̂µ +sin χ Ẑ ′

µ and

Z ′
µ = cos χ Ẑ ′

µ) and then the mass terms leads, besides the usual W bosons, to a massless
photon field Aµ = ĉW Bµ + ŝW W 3µ

and two massive gauge bosons Z1 and Z2. They are
related to the original Ẑ and Ẑ ′ as

Zµ
1 = cos ξ

(
Ẑµ − ŝW sin χ Ẑ ′

µ

)
+ sin ξ cos χ Ẑ ′

µ , (7)

Zµ
2 = cos ξ cos χ Ẑ ′

µ − sin ξ
(
Ẑµ − ŝW sin χ Ẑ ′

µ

)
, (8)

where ξ is a new mixing angle defined by

tan 2ξ =
−2 cos χ (δM̂2 + M̂2

Z ŝW sin χ)

M̂2
Z′ − M̂2

Z cos2 χ + M̂2
Z ŝ2

W sin2 χ + 2δM̂2 ŝW sin χ
. (9)

The above physical particles Z1 and Z2 are in the literature normally called Z and Z ′. We
will follow this notation from now on. Their masses are given by

M2
1,2 =

a + c

2
±

√
b2 +

(
a − c

2

)2

(10)

with

a = M̂2
Z , b = ŝW tanχ M̂2

Z +
δM̂2

cos χ
,

c =
1

cos2 χ

(
M̂2

Z ŝ2
W sin2 χ + 2ŝW sin χ δM̂2 + M̂2

Z′

)
.

(11)

The situation simplifies considerably if the Z ′ is much lighter than the Z, i.e., if χ � 1
and δM̂2 � M̂2

Z are very small. In this case we have for the masses

M2
1 ' M̂2

Z , M2
2 ' c − b2

a − c
, (12)

and the mixing angle is

ξ ' 1

cos χ

(
ŝW sin χ +

δM̂2

M̂2
Z

)
' ŝW χ +

δM̂2

M̂2
Z

. (13)
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νµ, ντ νµ, ντ

Z ′

Z

e, p, n e, p, n

Figure 1: Long-range νµ,τ–(e, p, n) interaction through Z–Z ′-mixing.

With this approximation the Lagrangians for the physical particles are3

LA = −e (jEM)µ Aµ ,

LZ1 = −
(

e

sW cW

(
(j3)µ − s2

W (jEM)µ

)
+ g′ ξ (j ′)µ

)
Zµ

1 , (14)

LZ2 = −
(

g′ (j ′)µ − (ξ − sW χ)
e

sW cW

(
(j3)µ − s2

W (jEM)µ

)
− e cW χ (jEM)µ

)
Zµ

2 .

The Lagrangian for the Aµ field is the canonical one and hence ê = e. The other gauge
coupling g′ is simply ĝ′.

If we take the mass of the Z ′ to be M2 < 1/RA.U. ' 10−18 eV (RA.U. ' 7.6×1026 GeV−1 de-
notes an astronomical unit) we obtain for particles on Earth a static potential generated
by particles in the Sun. This has been studied for the U(1)Le−Lµ and the U(1)Le−Lτ gauge
bosons, for which the electrons in the Sun generate a potential

V = αeβ
Ne

RA.U.
' 1.3 · 10−11

( αeβ

10−50

)
eV (15)

for the electron neutrinos νe on Earth. For νe and νβ the sign of the potential changes.
Here αeβ = g′2/(4π) is the “fine-structure constant” of the U(1)Le−Lβ

and Ne is the number
of electrons in the Sun. The constraints from solar neutrino and KamLAND data are
αeµ < 3.4 × 10−53 and αeτ < 2.5 × 10−53 at 3σ [3–5]. The lack of muons and taus seems
to forbid analogous studies of Lµ − Lτ , since its Z ′ does not couple directly to protons,
neutrons or electrons. Consequently, to the best of our knowledge, there is no limit on αµτ

from oscillation experiments.
However, there is an indirect effect due to the Z–Z ′ mixing (see Fig. 1). For a neutral and
unpolarized Sun the final result for the potential is (see the Appendix for details)

Vµ,τ = ± g′ (ξ − sW χ)
e

4 sW cW

Nn

4πRA.U.

, (16)

3Here we defined the physical Weinberg angle as s2
W c2

W = π α(M1)√
2 GF M2

1
. This gives the identity

sW cW M1 = ŝW ĉW M̂Z and the neutral current coupling constant becomes e/(ŝW ĉW ) ' e/(sW cW ) (1 −
ξ2/2).
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where the plus (minus) sign holds for a muon (tauon) neutrino. The potential for the
corresponding anti-neutrinos can be obtained via g′ → −g′. Looking at Fig. 1, the main
features of this potential can be understood as g′ and e/(sW cW ) arising from the vertices
and (ξ − sW χ) from the Z–Z ′ mixing (see Eq. (14)). The contributions of the electrons
and protons cancel each other, so that finally only the neutrons generate the potential.
Their total number in the Sun is about Nn ' Ne/4 ' 1.5× 1056. The Earth also generates
a comparable potential, approximating a static potential at the surface, we get

Vearth

Vsun
=

Nn,earth

Nn,sun

RA.U.

Rsurface
' 1.8 × 1051

1.5 × 1056

1.5 × 108

6380
' 0.28 . (17)

Our full potential at the surface of the Earth is therefore:

Vµ,τ ≡ ±V = ± 3.60 × 10−14 eV
( α

10−50

)
with α ≡ g′ (ξ − sW χ) . (18)

For anti-neutrinos, the sign of V changes. We stress here that the parameter α that we
have defined is not a “fine-structure constant” as for the Le −Lµ or Le−Lτ potentials, but
a combination of coupling and mixing parameters. It can in particular be either positive
or negative. Note further that due to the various factors in V the scale for α = 10−50 is
different than for αeβ = 10−50 in the cases of gauged Le−Lµ or Le−Lτ in Eq. (15).4 We will
use in the following the value give in Eq. (18) for a long-range force according to the Earth-
Sun distance. In order not to completely spoil the successful oscillation phenomenology,
V should not become too close to ∆m2/E ' 2.9 × 10−12 (GeV/E) eV, where we took for
∆m2 the mean of the two mass-squared differences from Eq. (1).
The crucial Z–Z ′ mixing, and consequently the potential (16), can only be avoided if for
the Lagrangian in Eq. (6) Lmix = 0 holds, i.e., if both χ and δM̂2 vanish. As can be seen
from Eq. (13), α would vanish for δM̂2 = 0. In that case, however, one can show that the
next order term for ξ would generate non-zero α ' g′ sW (MZ′/MZ)2 χ, which is however
too small for our purposes, as we will see later. In the case χ = 0, the mixing angle is

given by tan 2ξ = 2 δM̂2

M̂2
Z−M̂2

Z′
, and α looks as before.

If M2 < 1/Rgal ' 10−27 eV, with Rgal the distance between the Sun and the core of the
galaxy (Rgal ' 1.6 × 109 RA.U.), we would obtain a potential

Vgal

Vsun
=

(1 − 4) × 1011

1.6 × 109
' 60 − 240 , (19)

(with 100 − 400 billion stars) which would dominate over the Earth and Sun potentials.
Depending on the range of the U(1) force the results which we obtain in the following can
be easily rescaled.

4We note that while small values for our coupling constant and mixing angles are natural in the sense
of ’t Hooft (setting them to zero leads to exact Z ′-number and Lµ − Lτ conservation, respectively), a
discussion of radiative corrections to quantify fine-tuning would require a specific Higgs-sector and lies
outside the realm of this work.
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3 Current bounds on Lµ − Lτ parameters

In this Section we will discuss the current bounds on the parameters of Lµ−Lτ . They arise
from gravitational fifth force searches, electroweak precision observables, fermion charge
universality and cosmological considerations.
In principle our model violates the equivalence principle because it adds a lepton number
dependent force to gravitation. The bounds on such forces are very strict [21] but are
not directly applicable here since they are based on lunar ranging and torsion balance
experiments, which are only sensitive to the electron and baryon content. The only effect
comes once again from mixing; as shown in the Appendix, the potential corresponding to
Z ′ generated by a massive body depends on its neutron number Nn:

V (r) =
e (ξ − sW χ)

4 sW cW
Nn

e−rM2

4π r
. (20)

The gravitational potential between two bodies with masses m1 and m2 and neutron con-
tent Nn1 and Nn2 is therefore changed to

Vgrav(r) = −GN
m1 m2

r

(
1 −

(
e (ξ − sW χ)

4 sW cW

)2
Nn1

m1

Nn2

m2

1

4π GN

e−rM2

)
, (21)

which can be visualized in a similar way as Fig. 1, but with two mixing “vertices”. The
95% C.L. limits for a neutron dependent fifth force as a function of its range are given
in [21] (see references therein for a description of the experiments), where the effect of new
light vector or scalar bosons is parameterized as

Vgrav(r) = −GN
m1 m2

r

(
1 + α̃

Nn1

µ1

Nn1

µ2
e−r/λ

)
, (22)

µ being a test body mass in units of atomic mass unit u and α̃ = ±g̃2/(4π GN u2) (the sign
distinguishes between vector and scalar interaction). Comparison with Eq. (21) gives the
translation into our parameters

|α̃| ≡ 1

4π GN u2

(
e (ξ − sW χ)

4 sW cW

)2

, λ ≡ 1

M2

. (23)

For Earth-Sun range we take the bound |α̃| < 10−11, given in [21], corresponding to

|ξ − sW χ| < 5 × 10−24 , (24)

whereas the limit for an Earth range force is given as |α̃| < 5 × 10−9, corresponding to

|ξ − sW χ| < 10−22 . (25)

These are the strongest constraints on the mixing angles.
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The parameters are however also constrained through precision data from electroweak
observables. Measurements around the Z-pole examine the mass-eigenstate Z1 with mass
(see Eqs. (10,11)) M2

1 ' a(1 + b2/a2), while measurements on W -bosons give values for
MW = M̂Z cW . Therefore the mixing changes the ρ-parameter of the Standard Model from
ρ = M2

W/(M2
Z c2

W ) to

ρmix =

(
MW

M1cW

)2

= ρ
1

1 + b2/a2
' ρ (1 − ξ2) . (26)

The current value [22] is ρ = 1.0008+0.0017
−0.0007 which constrains ξ <∼ 10−2. Stronger limits arise

from the modified vector/axial couplings of the tauon, which can be read off from Eq. (14):

gτ
V → 2 s2

W − 1

2
− 2

sW cW

e
g′ ξ, gτ

A → −1

2
, (27)

where 2 s2
W − 1

2
stems from the SM neutral current jµ

3 −s2
W jµ

EM. The asymmetry parameter
Aτ ≡ 2 gτ

V gτ
A/((gτ

V )2 + (gτ
A)2) becomes approximately

Aτ → Aτ
SM

(
1 +

4 sW cW

1 − 4 s2
W

g′ ξ

e

)
≡ Aτ

SM + ∆Aτ (g′ ξ) , (28)

where Aτ
SM = (1− 4 s2

W )/ (1 − 4 s2
W (1 − 2 s2

W )) is the value without any new physics. This
quantity is measured to be Aτ = 0.143 ± 0.004 (Ref. [22]), while with the central value
sin2 θW (MZ) = 0.23116 one expects Aτ

SM = 0.1499. Since the measured Aτ and Aµ are
of the same order while a nonzero g′ ξ shifts them in different directions, we will require
∆Aτ (g′ ξ) to be within the measured error, i.e. ∆Aτ (g′ ξ) < 0.004. This restricts g′ ξ to
values

g′ ξ < 3.6 × 10−4 . (29)

This limit is stronger than e.g. from the Z-coupling to νµ or the ratio Γ(Z → µ+µ−)/Γ(Z →
e+e−), where

Γ(Z → `¯̀) =
αEMMZ

12 s2
W c2

W

(
(g`

V )2 + (g`
A)2
)

(30)

at tree-level, ignoring lepton masses.

The mixing also changes the electromagnetic behavior, as can be seen from the La-
grangian (14), slightly rewritten and shown only for negatively charged muons (µ), electrons
(e) and positrons (e+):

LZ2 = −
{[

g′ + e cW χ − (ξ − sW χ)
e

sW cW

(
s2

W − 1

4

)]
µγβµ

−
[
e cW χ − (ξ − sW χ)

e

sW cW

(
s2

W − 1

4

)]
e+γβe+ (31)

+

[
e cW χ − (ξ − sW χ)

e

sW cW

(
s2

W − 1

4

)]
eγβe

}
Zβ

2 ,
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In muonium the coupling between positive muons and electrons is modified because there is
not only photon exchange, but also photon-Z ′ mixing. In direct analogy to the derivation
of the neutrino potential given in the Appendix, one finds an effective potential

Vµ+e−(r) = − e2

4π

(
1 − g′

e
Q̃P e−rM2

)
1

r
. (32)

where Q̃P ≡ −(ξ−sW χ)(1/4−s2
W )/(sW cW )−cW χ. Hence, the result is an effective change

of the fine-structure constant in systems involving muons (or tauons).5 On atomic scales
the factor e−rM2 can be omitted. By comparing the above potential with the potential for
positronium we find the ratio of the µ+ and positron charge

Q(µ+)

Q(e+)
=

e2

4π

(
1 − g′

e
Q̃P

)

e2

4π

' 1 − g′

e
Q̃P . (33)

This ratio has been measured via the muonium hyperfine-structure [27] to be 1 with an
accuracy of 10−7, corresponding to a limit

g′ (3 sW χ + (1 − 4 s2
W ) ξ

)
< 5 × 10−8 . (34)

Note that, as it should, there is no effect in case of χ = ξ = 0, i.e., when there is no photon-
Z ′ mixing. In case di-muonium (a bound state of µ− and µ+ [28]) would be produced, one
could test the Z ′ even in the limit of no mixing.

Another effect the new light Z ′ would have is a contribution to the effective number of
degrees of freedom, potentially threatening for instance the success of Big Bang Nucle-
osynthesis (BBN). Recent BBN measurements as well as other cosmological probes are
compatible with about one extra degree of freedom [23]. Let us demand that the Z ′ does
not contribute. This means for the case of BBN that it should enter equilibrium after weak
interactions freeze out (T ' MeV), and requires to consider the process Z ′ Z ′ → νµ,τ νµ,τ ,
whose rate goes as (g′2/(4π))2 T . Comparing this to the Hubble rate H ' T 2/MPl gives
the requirement g′2/(4π) <∼ 10−11 [24]. A constraint of similar size has been estimated
from Supernova 1987a [25]. An upper limit of g′2/(4π) <∼ 10−18 can be obtained with the
process γ µ → Z ′ µ, going with g′2/(4π) α T , and demanding that Z ′ is not in equilibrium
at T = mµ [26].

As expected, the largest constraints stem from the equivalence principle and BBN. How-
ever, the small values of the Lµ−Lτ parameters required in order to give observable effects
in oscillation experiments are compatible with these limits.

5There is an effect quadratic in Q̃P due to two mixings in systems like positronium or hydrogen, which
is however way to small to be observable.
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4 MINOS and Beyond

The potential V in Eq. (18) generated by Lµ − Lτ is flavor dependent, acts on the µ–τ
part of the system, and has a different sign for neutrinos and anti-neutrinos. Consequently
it is a good candidate for an explanation of the MINOS results, which seemingly give
different mixing parameters in the muon neutrino and anti-neutrino oscillations. In a 2-
flavor approach, the Schrödinger-like equation for neutrinos is (note that we start in the
mass basis)

i
d

dt
~νM =

1

2E

(
m2

2 0
0 m2

3

)
~νM + V U †

(
1 0
0 −1

)
U ~νM , (35)

where ∆m2 ≡ m2
3 − m2

2 is the atmospheric mass-squared difference and ~νM = (ν2, ν3)
T are

the mass eigenstates which are connected to the flavor states ~νflavor = (νµ, ντ )
T = U ~νM via

the matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
. (36)

Here θ = θ23 is the atmospheric mixing angle. The Schrödinger-like equation (35) thus
contains the Hamiltonian:

HV =
1

2E

(
m2

2 + 2 E V cos 2θ 2 E V sin 2θ
2 E V sin 2θ m2

3 − 2 E V cos 2θ

)
=

1

2 E
UV

(
m2

2,V 0
0 m2

3,V

)
U †

V . (37)

As we have indicated, HV is diagonalized by the rotation matrix

UV =

(
cos φ sin φ
− sin φ cos φ

)
, with tan 2φ =

2 η sin 2θ

1 − 2 η cos 2θ
. (38)

We have introduced η ≡ 2 E V
∆m2 . The new mass eigenvalues m2

2,V and m2
3,V are associated to

the new mass eigenstates ~νM,V = (ν2,V , ν3,V )T via

~νM,V = U †
V ~νM = U †

V U † ~νflavor . (39)

Thus, in the presence of the potential V , the mixing angle between flavor and mass eigen-
states becomes θ + φ and ∆m2 changes to ∆m2

V ≡ m2
3,V − m2

2,V . The exact results for the
parameters are

sin2 2θV =
sin2 2θ

1 − 4 η cos 2θ + 4 η2
, (40)

∆m2
V = ∆m2

√
1 − 4 η cos 2θ + 4 η2 = ∆m2

√
sin2 2θ

sin2 2θV

. (41)

For V = 0 the vacuum results sin2 2θ and ∆m2 are obtained. For anti-neutrinos, the
potential V and hence η changes sign, thereby an apparent difference between the oscillation
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Figure 2: Difference between the mass-squared differences of neutrinos and anti-neutrinos
(choosing initial values of ∆m2 = 2.48 × 10−3 eV2 and cos 2θ = 0.41) for different values
of α as a function of energy.

parameters of neutrinos (∆m2
V , θ) and anti-neutrinos (∆m2

V , θ) could arise. Fig. 2 shows the
difference between the mass-squared differences of neutrinos and anti-neutrinos (choosing
an initial value of ∆m2 = 2.48× 10−3 eV2) for different values of α as a function of energy.
We note here some important properties following from Eqs. (40, 41):

• first, the effect goes with η cos 2θ, and therefore it is absent if θ is maximal. In
this case the oscillation parameters θ and ∆m2 would be the same for neutrinos and
anti-neutrinos, but with a common offset compared to their values for V = 0. If the
long-range force mediated by Lµ−Lτ is responsible for the MINOS anomaly, then the
necessary θ 6= π/4 is a possibility to disentangle it from other proposed explanations;

• the second point is that the corrections to the mixing angle and the mass-squared
difference are correlated. For positive ∆m2 and α the correction for sin2 2θ goes in
the opposite direction as the correction of the ∆m2. Recalling that MINOS finds
∆m2 > ∆m2 we therefore predict for positive ∆m2 and α that sin2 2θ > sin2 2θ,
which is compatible with the MINOS results (see Eq. (1)), and can be checked with
higher statistics data sets. For negative ∆m2 and positive α the correction goes in
the same direction, and hence sin2 2θ < sin2 2θ;

• the third point is that the relative effect is expected to be slightly larger for sin2 2θ
than for ∆m2;

• though the effect looks like a diagonal NSI, we note that the potential does not
depend on the matter density and therefore even for vacuum oscillations there is an
effect.

We stress that the first three points given above are directly related to the form of the
potential (35) in flavor space and hence are in general different for usual NSI; however,
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in the 2-flavor framework used here these points hold for all flavor-diagonal potentials.
Considering on the other hand an off-diagonal NSI parameter εµτ maximizes the difference
|∆m2−∆m2| for θ = π/4, while the relative effect for sin2 2θ is suppressed by 2 cos 2θ cot 2θ
compared to ∆m2.

We can estimate the magnitude of the parameter η as

η ' 0.025
( α

10−50

)( E

GeV

)
, (42)

which allows for not too high energies (note that at MINOS the oscillation dip occurs at
around E ∼ 1 GeV) and for α around 10−50 (see the discussion after Eq. (18)), η is small
and can be used as an expansion parameter. As can be seen from (40) and (41) the relative
difference of the mass-squared differences is in this case obtained as

∆m2
V − ∆m2

V

∆m2
' −4 η cos 2θ , (43)

while for the mixing angle the result is:

sin2 2θV − sin2 2θV

sin2 2θ
' 8 η cos 2θ . (44)

These expressions nicely confirm the three points mentioned above. The muon neutrino
and anti-neutrino survival probabilities are

P ≡ P (νµ → νµ) = 1 − sin2 2θV sin2 ∆m2
V

4 E
L , (45)

P = P (νµ → νµ) = P (νµ → νµ)(α ↔ −α) , (46)

which are subject to the following degeneracies

P (θ, ∆m2, α) = P (θ,−∆m2,−α) = P (θ + π/2, ∆m2,−α) = P (θ + π/2,−∆m2, α) . (47)

While the part discussed so far was rather general, we continue by applying the formalism
to the recently found MINOS results [11]. We have performed with the expressions (45,
46) a χ2-fit to the MINOS data (given in bins of energy Ei) on the ratio of observed events
divided by the expectation for no oscillations. This data was taken, as in Ref. [13], from
the slides of the talk referred to in our Ref. [11]. In case of asymmetric errors, the largest
one was used and inserted in the χ2-function

χ2(θ, ∆m2, α) =
∑

i

(
P (θ, ∆m2, α, Ei) − Ri

σi

)2

+
∑

i

(
P (θ, ∆m2, α, Ei) − Ri

σi

)2

, (48)

where P (P ) is the survival probability P (νµ → νµ) from Eq. (45) (from Eq. (46)), Ri

(Ri) the ratio of observed events relative to the no-oscillation expectation, and σi (σi) the
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Figure 3: The oscillation probabilities for the best-fit values from Eq. (49) for neutrinos
and anti-neutrinos superimposed on the MINOS data. Also plotted are the cases α = 0
and the value for the second, local χ2-minimum.

error for the neutrino (anti-neutrino) data set. The result of our fit after marginalizing
over ∆m2 and θ is6

sin2 2θ = 0.83±0.08 , |∆m2| = (2.48±0.19)×10−3 eV2 , |α| =
(
1.52+1.17

−1.14

)
×10−50 , (49)

with χ2
min/Ndof = 47.77/50 ' 0.96. The absolute values stem from the degeneracies listed

in Eq. (47), in the following we will w.l.o.g. use positive values. In Fig. 3 we show the
experimental data together with the results of our fit. One can see that the non-zero value
of α puts in particular the data points at the oscillation minimum in better agreement with
the curves. From the plot of the χ2-function in Fig. 4 one sees that there is a second (local)
minimum, corresponding to sin2 2θ = 0.98, ∆m2 = 2.36 × 10−3 eV2 and α = 4.41 × 10−50,
with χ2

min/Ndof = 48.73/50 ' 0.97. The curves for this point are also plotted in Fig. 3.
The goodness of fit is not particularly worse for the absence of new physics, which has
been noted also in Ref. [13].

The uncertainty of α will decrease once higher statistics is available. To get a feeling for
the improvement stemming from future data, we performed the fits with naively doubling
the statistics. Doubled statistics in the ν-channel can reduce the relative error of α from
77% to 61%. Including also an additional ν-run, the error goes down to roughly 54%.
We continue by discussing the consequences of the implied value of α in future neutrino
oscillation experiments. We have modified the commonly used GLoBES software [29] to
include the potential V from Eq. (16). Using the pre-defined packages (“AEDL files”) for

6We have checked our analysis by setting α = 0 and have obtained the best-fit values ∆m2 = 2.28×10−3

eV2, sin2 2θ = 0.94 for the neutrino data set, and ∆m2 = 3.38 × 10−3 eV2, sin2 2θ = 0.81 for the
anti-neutrinos, in good agreement with the MINOS results. A fit to the total data set yields ∆m2 =
(2.38+0.20

−0.17) × 10−3 eV2 and sin2 2θ = 0.89+0.08
−0.07, with χ2

min/Ndof = 49.43/51 ' 0.97.
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Figure 4: The χ2-function from Eq. (48) as a function of the fit parameters.

the most frequently discussed future experiments, we analyzed future neutrino experiments,
as listed in Table 1, to obtain future constraints on α. The oscillation parameters we use
are listed in Table 2. The results are given in Table 3. The χ2-functions generated by
GLoBES are shown in Fig. 5 (left) for some examples.
Setting the true parameter values of α, θ and ∆m2 (and their errors) to our best-fit values
from Eq. (49), we can see how the “precision” on α can be improved. From the plots of χ2

in Fig. 5 (right) one sees that NOνA would give α = (1.52±0.27)×10−50, T2K would yield
α = (1.52±0.46)×10−50 and NuFact would determine very precisely α = (1.52+0.11

−0.21)×10−50.

As mentioned above, long-range forces generated by Le −Lµ,τ have been discussed before.
Ref. [3] bounds αe µ,τ by analyzing νµ and ντ oscillations and using atmospheric neutrino
data. It is easy to see that in a two-flavor framework, the potential Veτ = αeτ Ne/RA.U.

corresponds to 2 Vµτ . Likewise, Veµ corresponds to −2 Vµτ . Therefore, the limit of αeτ <
6.4 × 10−52 obtained in Ref. [3] corresponds to α = g′ (ξ − sW χ) < 8.9 × 10−50, not in
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Figure 5: The 1, 2 and 3σ limits which can be obtained by T2K, NOνA and a neutrino
factory if α = 0 (left) and if α = (1.52+0.11

−0.21) × 10−50 (right).
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conflict with our fit-result from Eq. (49). In turn, this means that not only Lµ−Lτ could be
the origin of the MINOS anomaly, but also Le −Lµ or Le −Lτ , for which α = 1.52× 10−50

translates into αeµ,τ = 1.1 × 10−52. If we take the 3σ-bound αeτ < 2.5 × 10−53 from
solar neutrino and KamLAND data [4] and treat it like in the 2-flavor case we obtain
α < 3.5 × 10−51. However, the interplay of the other limits on long-range forces, and also
the impact of stronger bounds on αeµ,τ using solar and KamLAND data [4], can not be
used without doing a full 3-flavor fit to all data. In general, we note that the different
flavor structures of the potentials arising from Le − Lµ, Le − Lτ and Lµ − Lτ ,




V 0 0
0 −V 0
0 0 0


 ,




V 0 0
0 0 0
0 0 −V


 ,




0 0 0
0 V 0
0 0 −V


 , (50)

render it difficult to translate existing bounds on Le − Lµ or Le − Lτ into constraints on
Lµ − Lτ , in particular if in addition a matter potential is present in Vee. We would like to
stress though that the solar neutrino oscillations should really be fitted specifically for this
model, since the electron and neutron densities in the Sun are not exactly proportional.
However, it would admittedly be surprising if a full 3-flavor solar neutrino analysis of our
scenario would give a limit below the 3σ-bound α < 3.5× 10−51, which was obtained from
translating the limit from solar neutrino and KamLAND data, as discussed above. We em-
phasize that in a model of shorter range, e.g. M2 ∼ 1/R⊕, the limits from solar neutrinos
are even harder to translate and might be completely invalid. However, even though this
solar neutrino limit and the NSI limits given below look not promising for our explanation
of the MINOS anomaly (which is true for every solution of the results put forward so far),
our scenario has advantages over the other proposed solutions for the MINOS results, as
we will discuss in what follows.

It should be clear that our scenario is different from the standard lore of NSIs. However,
adding the potential to the Hamiltonian then looks like a typical NSI Hamiltonian, for
which limits have of course been derived already [31] (also pointed out in Ref. [17]). In
particular, in a 2-neutrino framework the relation 2 V = Vm εµµ holds, and our range of α
would correspond to εµµ

>∼ 0.25, to be compared with the 90 % C.L. limit [31] |εµµ| ≤ 0.068.
Saturating this limit would correspond to α = 1.04 × 10−51. A fit to the data fixing it to
this value yields a bad fit of sin2 2θ = 0.88+0.08

−0.07 and ∆m2 = (2.39+0.20
−0.17) × 10−3 eV2, with

χ2
min/Ndof = 49.25/51 ' 0.97.

At this point it is important to note that the NSI limits we are concerned with stem
predominantly from atmospheric neutrinos, which travel through all the different layers of
the Earth. Hence, and this is especially important for forces of shorter range also covered
by our model, the position dependence of the potentials has to be taken into account (while
it can be ignored for LBL experiments like MINOS). Since the NSI potential follows the
highly discontinuous electron density while Vµ,τ (r) smoothly satisfies a Poisson equation
∆Vµ,τ (r) ∼ nn(r), the neutrino oscillation behaviour will be different and make a full new
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fit to atmospheric neutrino data necessary. Of course this will most likely produce limits
of a similar order as those for NSI.
Note that recent works explaining the MINOS result with NSIs require values of |εµµ| or
|εµτ | way above 0.1 [13, 14]. We conclude that all solutions to the MINOS anomaly using
CPT conservation are in conflict with existing limits, though one cannot completely rule
them out, given the (admittedly somewhat unlikely) possibilities of cancellations, 3-flavor
effects, additional symmetries etc.
However, there is one important difference between the scenario presented here and stan-
dard NSIs: in a gauge invariant framework the ε parameters of the neutrino NSIs are
responsible also for charged lepton decays, which are subject to stringent constraints and
improve the bounds by typically one or two orders of magnitude. This can be evaded only
by an additional symmetry protecting the charged leptons, or highly fine-tuned cancella-
tions of different higher order terms [32]. To illustrate the problems of NSIs, consider the
Lagrangian7

LNSI
CC ⊃ −2

√
2 GF εd

τµ Vud [ū γµ d] [µ̄ γµ PL ντ ] ,

which leads to interference between νµ CC events and events in which νµ oscillate into ντ ,
subsequently creating muons via εd

τµ. For anti-neutrinos, εd
τµ → (εd

τµ)∗, and hence different
neutrino and anti-neutrino parameters arise. Values of |εd

τµ| around 0.1 are enough to ex-
plain the MINOS results [14]. However, the Lagrangian written in a gauge invariant way
induces the tree-level decay τ → µ π0, from which a limit of |εd

τµ| <∼ 10−4 is derived [33].
We note here that the scenario of gauged Lµ − Lτ discussed here does not suffer from
such problems (the reason being diagonal and small couplings to leptons), and does not
require strong and fine-tuned cancellations or extra symmetries protecting charged leptons.

It is worth discussing the anomalous magnetic moment of the muon, where since many years
a conflict between theory (i.e., its Standard Model calculation) and experiment exists [22].
The current experimental value of aµ differs by 3.2σ from the Standard Model prediction,
although there is some uncertainty in the hadronic contributions. Nevertheless, since the Z ′

couples to the muon, it contributes to ∆aµ [6]. In the limit of M ′
Z � mµ, the contribution

is

∆aµ =
g′2

8π2
, (51)

which in our light case translates into a constraint on the coupling g′. From the constraint
∆aµ

<∼ 255×10−11 it follows that g′ <∼ 4.49×10−4. This would imply |ξ−sW χ| >∼ 3.3×10−47

in order to explain the MINOS anomaly.
Turning to neutrino masses, the conservation of Lµ − Lτ dictates the effective neutrino
Majorana mass matrix to be [9, 10]

mν =




a 0 0
· 0 b
· · 0


 , (52)

7This is a charged current (CC) NSI, because neutral current NSIs required to explain the MINOS data
are at least of order 0.1 and hence in conflict with bounds obtained from neutrino data alone [13–15].
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regardless of its origin, such as some form of see-saw. It would result in neutrino masses
a and ±b, hence one expects (close to) quasi-degenerate masses. Though the mass matrix
is µ–τ symmetric, and hence implies θ13 = 0 and θ23 = π/4, it is too simple and can not
reproduce all data. Breaking Lµ − Lτ is achieved by introducing extra Higgs particles Φ′,
which obtain a vev. Necessarily, the implied scale of the Z ′ mass (which is generated by
breaking of Lµ − Lτ ) and the additional entries in mν are correlated via m′

Z ∼ g′ 〈Φ′〉 and
(mν)αβ

<∼ 〈Φ′〉 if it is a weak triplet, (mν)αβ
<∼ vwk 〈Φ′〉/Λ if it is a doublet and couples to

the SM Higgs, or (mν)αβ
<∼ 〈Φ′〉2/Λ if it does not. Here Λ denotes the high energy scale

which acts as the necessary suppression of the neutrino mass. Simultaneous ultra-light
Z ′ of order 10−19 eV and sizable (mν)αβ ' 0.1 eV implies for, say, Λ = 1015 GeV that
for doublets 〈Φ′〉 is of order 103 GeV and hence g′ ∼ 10−30, while g′ ∼ 10−17 for triplets.
Hence, the Z ′ will essentially not contribute to the anomalous magnetic moment of the
muon.

The effective mass parameter for neutrinoless double β-decay will to zeroth order be given
by mββ ' |a|, modified by Lµ − Lτ -breaking terms. Due to the quasi-degeneracy of the
neutrino masses, we expect mββ to be large enough to be observable in future 0νββ-
experiments. Concrete limits and implications due to the form of (mν)αβ are, of course,
highly dependent on the specified Higgs-sector/see-saw model and lie outside the realm of
this work.

5 Conclusions

Long-range forces mediated by the Z ′ boson associated with gauged Lµ − Lτ can lead
to interesting and largely unexplored phenomenology. Effects from gauged Le − Lτ and
Le −Lµ have been studied before, but suffer from unsuccessful neutrino mass matrices. In
contrast, the mass matrix for conservation of Lµ−Lτ is very promising. We succeeded here
to apply gauged Lµ −Lτ to neutrino oscillation phenomenology by noting the unavoidable
Z–Z ′ mixing. Neutrons in the Sun generate via this mixing a flavor-dependent potential
for terrestrial muon and tau neutrinos. This potential changes sign for anti-neutrinos,
and hence can lead to apparent differences in neutrino and anti-neutrino oscillations. It
is not necessary to introduce CP or CPT violation. Applying this new finding to the
recently found MINOS anomaly implies a value of around α ' 10−50, where α = g′ (ξ −
sW χ) is the product of the new gauge coupling and the parameters quantifying the Z–
Z ′ mixing. An interesting correlation between the atmospheric neutrino parameters ∆m2

and θ is found. The latter is required to be non-maximal, which is one of the handles
to probe this explanation of the anomaly. We have checked that the necessary values are
not in conflict with Big Bang Nucleosynthesis, charge differences of electron and muon,
electroweak precision data, or tests of the equivalence principle. However, all solutions to
the MINOS result which conserve CPT are in some trouble with existing data. Because
the scenario is different from the standard lore of non-standard interactions (e.g., we avoid
the problem of charged lepton decays due to SU(2)L gauge invariance, the effect is present
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even for vacuum oscillations), we nevertheless feel that our analysis is worthwhile. By
making use of the GLoBES software we have discussed future constraints on α.
Time will show whether the discrepancy in the MINOS results survives. Nevertheless, many
new physics effects imply different neutrino and anti-neutrino behavior, which underlines
the importance of analyzing them separately. The new effect arising from Lµ − Lτ (via
Z–Z ′ mixing) noted in the present paper is one more example for this, and we have given
estimates for future constraints.
It would be interesting to discuss a similar approach for other “anomalous” oscillation
results in which apparent differences of neutrinos and anti-neutrinos are found, such as the
recent MiniBooNE excess in a ν̄µ → ν̄e search [34], or the slightly larger θ12 found in solar
neutrino analyses with respect to the θ12 in reactor anti-neutrino experiments.
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Experiment Baseline Running-time [years] Beam-energy [GeV] mass

T2K 295 km 5 ν + 5 ν 0.2 − 2 22.5 kt
T2HK 295 km 4 ν + 4 ν 0.4 − 1.2 500 kt
SPL 130 km 2 ν + 8 ν 0.01 − 1.01 500 kt
NOνA 812 km 3 ν + 3 ν 0.5 − 3.5 15 kt
Nufact 3000 km 4 ν + 4 ν 4 − 50 50 kt

Table 1: Parameters of long-baseline oscillation experiments simulated by the GLoBES
software [29].

θ12 arcsin
√

0.318 ± 0.02 (3%)
θ13 0 ± 0.2

θ23 arcsin
√

0.500 ± 0.07 (9%)
δCP ∈ [0, 2π]
∆m2

21 [10−5 eV2] 7.59 ± 0.23 (3%)
∆m2

31 [10−3 eV2] 2.40 ± 0.12 (5%)

Table 2: Oscillation parameters [30] used as input to the GLoBES simulation.

A Derivation of the Potential

For the sake of completeness, let us give here a derivation of the static potential which
the particles in the Sun generate for terrestrial neutrinos. The potential (15) for gauged
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Experiment Sensitivity to α/10−50

T2K (ν-run) 11.8
T2K 4.3
T2HK 1.7
SPL 7.5
NOνA 1.9
Combined Superbeams 1.4
Nufact 0.53

Table 3: Future constraints on α at 99.73% C.L., obtained with GLoBES.

Le − Lµ or Le − Lτ can also be derived in this fashion. From Eq. (14) we consider the
time-like components, note that j0

EM = 0 and have that

j0
3 = −1

2
ēL γ0 eL +

1

2
p̄L γ0 pL − 1

2
n̄L γ0 nL = −1

4
(ne − np + nn) = −nn

4
, (A1)

since the axial-part will result in a spin-operator in the non-relativistic limit and we assume
the Sun is not polarized. The equation of motion for Z0

2 , following from the Euler-Lagrange
equation

∂ν
δ

δ(∂ν Z2µ)

(
−1

4
Z2αβ Zαβ

2

)
− δ

δ Z2µ

(
1

2
M2

2 Z2α Zα
2 + LZ2

)
= 0 , (A2)

is therefore

(∂2 + M2
2 ) Z0

2 = (ξ − sW χ)
e

sW cW

nn

4
. (A3)

In the static case outside of the Sun this is (nn(~x) = Nn δ(3)(~x)):

(∆ − M2
2 ) Z0

2 = −(ξ − sW χ)
e

sW cW

1

4
Nn δ(3)(~x) (A4)

with the well-known solution

V (r) = Z0
2 = (ξ − sW χ)

e

sW cW

1

4
Nn × e−rM2

4π r
. (A5)

In the limit M2 → 0 the potential for νµ on Earth is:8

Vµ = g′ (ξ − sW χ)
e

4 sW cW

Nn

4πRA.U.

+ O(ξ2, χ2, ξχ) , (A6)

while for ντ the sign changes (Vτ = −Vµ). The potential for anti-neutrinos can be obtained
from Eq. (A6) by the transition g′ → −g′.

8We assume that the mixing angles are somewhat smaller than g′ so we can drop the O(ξ2, χ2, ξχ) terms
against O(g′χ, g′ξ). In the actual neutrino oscillation the terms without g′ will be generation independent
and therefore drop out.
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