Martin Schumacher 
email: mschuma3@gwdg.de
  
Structure of scalar mesons and the Higgs sector of strong interaction

HAL is

Introduction

After more than 30 years of research the structures and masses of the f 0 (980) and a 0 (980) mesons are still a matter of discussion. As a good candidate for the structure of these mesons the fourquark configuration q 2 q2 or (q q) 2 has been introduced [1]. An other option is the K K molecule which has the advantage that twice the K-meson mass is approximately equal to the masses of the f 0 (980) and a 0 (980) mesons. In case of the four-quark configuration use has been made of the assumption that diquarks like (qq) and (q q) experience a binding between the partners of the diquarks and thus shift the energy of the meson to the experimentally determined value (for an extensive list of references see e.g. [2][3][START_REF] Tuan | Hadron spectroscopy, chiral symmetry and relativistic description of bound systems[END_REF]). Further aspects of the interplay between the q q and q 2 q2 strutures of scalar mesons may be found in [START_REF] Black | [END_REF][6][7] and references therein.

A unified model of the scalar mesons above and below 1 GeV has been introduced by Close and Törnqvist [8]. In this model the scalar mesons above 1 GeV are described as a conventional q q nonet mixed with the glueball of lattice QCD. Below 1 GeV the states also form a nonet, as implied by the attractive forces of QCD, but of more complicated nature. Near the center they are (qq)3(q q) 3 in S-wave, with some q q in P -wave, but further out they rearrange as (q q) 1 (q q) 1 and finally as meson-meson states. In the present paper we adopt this model as a basis but make one essential refinement concerning the small q q component in P -wave. We follow Close and Törnqvist [8] in considering this component as a minor part of the meson structure but give it a new and important interpretation. As a q q structure this P -wave component has a large coupling strength to the two photons in a two-photon fusion reaction producing the scalar mesons σ(600), f 0 (980) and a 0 (980). The reason is that two photons are capable of producing a q q structure component via the coupling to a quark loop, whereas the one-step production of a complicated structure is comparatively weak. This situation resembles similar cases known in the atomic nucleus, where small components with a large coupling to the entrance channel are named doorway states. One illustrative example is provided by the photoexcitation of the giantdipole resonance of the nucleus. In a shell model this excitation corresponds to single-particle electric-dipole transitions, whereas the main structure of a giant-dipole resonance is a collective motion.

Compton scattering by the nucleon has provided a new access to scalar mesons below 1 GeV. Since the mesons σ(600), f 0 (980) and a 0 (980) couple to two photons with parallel planes of linear polarization, they provide a t-channel contribution to Compton scattering and to the electric (α) and magnetic (β) polarizability of the nucleon. In recent works the role of the σ(600), the f 0 (980) and the a 0 (980) mesons in nucleon Compton scattering has been investigated [3,[9][10][START_REF] Schumacher | [END_REF][START_REF] Schumacher | AIP Conference Proceedings 1030 (Workshop on Scalar Mesons and Related Topics Honoring Michael Scadrons's 70th Birthday -SCADRON70)[END_REF][START_REF] Schumacher | [END_REF][14][15]. It has been shown that the t-channel amplitude A 1 (t) of nucleon Compton scattering and the t-channel contributions to the polarizabilities α and β can be quantitatively predicted by considering the σ-meson as a q q state. Furthermore, the mass of the σ meson was predicted on an absolute scale via spontaneous and explicit symmetry breaking in agreement with experimental information obtained from Compton scattering and the related polarizabilities. One of these investigations clearly showed that the σ meson as a q q state has the properties of the Higgs boson of strong interaction [14]. However, these investigations did not give an answer to the question how the q q structure of the σ meson is related to other structures which are suggested by the fact that the σ meson decays into two pions within a very short lifetime. Furthermore, the properties and the role of the mesons f 0 (980) and a 0 (980) have not been investigated in detail. The purpose of the present study is to supplement on the previous work by studying properties of scalar mesons as the Higgs sector of strong interaction.

2 The q q, (q q) 2 and dimeson structures of scalar mesons

According to the unified model of Close and Törnqvist [8] the q q, (q q) 2 and dimeson structures of scalar mesons are simultaneously part of the structure of the scalar mesons. The q q structure component is related with the entrance channel and the dimeson component with the exit channel. The four-quark structures in the form (qq)(q q) or (q q)(q q) serve as the main or central component. We will see that it is not of importance to distinguish between the two latter fourquark structures, because a special force between diquarks is not essential for an explanation of the masses of scalar mesons. Rather, it will be shown that these masses can be understood in terms of spontaneous and explicit symmetry breaking, where spontaneous symmetry breaking leads to one common component of the masses of all scalar mesons independent of the flavor structure, whereas the differences in mass may be understood in terms of explicit symmetry breaking. This insight brings us closer to the supposition that the scalar mesons in connection with the pseudo Goldstone bosons may be regarded as the Higgs sector of strong interaction.

Our first interest is directed to the electrically neutral scalar mesons σ(600), f 0 (980) and a 0 (980) which on the one hand can be produced in two-photon fusions reactions and on the other hand show up as intermediate states in Compton scattering experiments by the nucleon. For the discussion we start with an ansatz for the structures of the three non-charged scalar mesons in the following form

σ = uū + d d √ 2 ↔ uūd d ↔ ππ, (1) 
f 0 ≈ 1 √ 2 uū + d d √ 2 -ss ↔ ss(uū + d d) √ 2 ↔ ππ, K K, (2) 
a 0 ≈ 1 √ 2 -uū + d d √ 2 + ss ↔ ss (uū -d d) √ 2 ↔ ηπ, K K (3) 
which of course needs a detailed justification. The first configuration is the q q P-wave part of the central "core" state of the scalar meson, the second one possible version of a (q q)(q q) state which easily can be rearranged into a (qq)(q q) configuration. For sake of convenience we will write (q q) 2 in the following for both configurations. These (q q) 2 configurations may be considered as the main components of the central "core" state. The third configurations represent the dimeson states observed in the exit channels. First we notice that the transition from the q q configurations to the (q q) 2 configurations is possible by a rearrangement of the quark structure without a q q pair creation of annihilation. This makes them a natural 3 P 0 partner of the main (q q) 2 structures. Later on we will see that these q q structures are compatible with the transition amplitudes M(M → γγ) observed for the three scalar mesons M in two-photon fusion reactions as well as in Compton scattering experiments. In (3) the minus sign attached to the ū quark in the q q configuration follows from the sign convention of Close [START_REF] Close | An Introduction to Quarks and Partons Academic Press[END_REF]. This minus sign is also present in the flavor wave-function of the π 0 meson which has a strong impact on the differential cross section for Compton scattering by the nucleon and, therefore, can be investigated with high precision. As shown in [3] this sign convention has the advantage that the signs of t-channel Compton scattering amplitudes are predicted in agreement with the experimental observation. Of course, also the opposite sign in the q q structures of the π 0 and a 0 (980) meson would be possible if we reverse the sign of the isospin operator τ as explained in [3] and proposed in [START_REF] Halzen | Quarks & Leptons[END_REF]. The q q configuration of the a 0 (980) meson violates isospin conservation. This is of no problem because we consider the q q configuration as a doorway state which is coupled to two photons on the one side and on the other side to the main configuration of the meson core via rearrangements of the quark structure. For the coupling to two photons the mixing of two isospins is allowed because in an electromagnetic transitions the isospin may change by ∆I = 0, ±1, so that the first term and the second term in the q q configuration of the a 0 (980) meson can be exited simultaneously. In the charged a ± 0 (980) mesons the isospin violating doorway state is not of relevance so that only the isospin conserving dominant (q q) 2 structure components have to be taken into account.

Table 1 summarizes the (q q) 2 configurations of the scalar nonet (see [1]). As frequently Table 1: Summary of scalar mesons in the (q q) 2 representation according to [1]. Y : hypercharge, I 3 : isospin component, f s : fraction of strange and/or antistrange quarks in the tetraquark structure.

Y \ I 3 -1 -1/2 0 + 1 /2 +1 meson f s +1 dsuū u sd d κ(800) 1/4 0 u ddū σ(600) 0 0 dūss s s(uū -d d)/ √ 2 u dss a 0 (980) 1/2 0 ss(uū + d d)/ √ 2 f 0 (980) 1/2 -1 sūd d s duū κ(800) 1/4
emphasized, the different numbers of strange quarks in the (q q) 2 structures may be used for an explanation of the different masses of the scalar mesons. The σ-meson has no strange quark and, therefore, the smallest mass. The members of the κ(800) meson-quartet have one strange quark in the (q q) 2 configuration and, therefore, an intermediate mass. The members of the (a 0 (980), f 0 (980)) meson-quartet have two strange quarks in the (q q) 2 configuration and, therefore, the largest mass.

The doorway mechanism applied to scalar mesons

The doorway mechanism has been developed in nuclear physics to describe the excitation of complex structures in nuclei via the excitation of simple structures. We apply this approach to particles, especially here to neutral scalar mesons. The formal ansatz is as follows (see [START_REF] Feshbach | [END_REF])

ψ = ψ 1 + ψ 2 + ψ 3 , (4) 
where the total wave function is written as the sum of three terms. Furthermore, it is assumed that the Hamiltonian has matrix elements between ψ 1 and ψ 2 , between ψ 2 and ψ 3 , but not between ψ 1 and ψ 3 . The state ψ 2 is orthogonal to ψ 1 , and ψ 3 orthogonal to both ψ 1 and ψ 2 . We interpret the three terms in the following way. The state ψ 1 is the ground state, ψ 2 the doorway state and ψ 3 the main complex structure of the meson. For our case this means ψ 1 = |0 , ψ 2 = |q q and ψ 3 = |(q q) 2 . Then the amplitude for the γγ → (q q) 2 transition may be written in the generic form

A γγ→(q q) 2 ∝ 0|H 1 |q q q q|H 2 |(q q) 2 s 0 -s , (5) 
where in the nominator the first matrix element corresponds to the transition from the ground state into the doorway state and the second matrix element to the transition from the doorway state into the main complex structure of the meson which here is represented in terms of a (q q) 2 configuration.

Hypothetically, we may assume that the (q q) 2 configuration is a non-decaying state. In this case the quantity s 0 may be identified with a definite square of a mass of the particle which commonly is denoted as the bare mass m 0 . The bare mass corresponds to a bare propagator, being of the form

P (s) = 1 m 2 0 -s (6) 
with a pole on the real axis (see e.g. [19,20]), corresponding to a non-decaying state.

The propagator given in (6) has the disadvantage that it does not take into account the twophoton decay which is possible even when the decay of the (q q) 2 configuration into two mesons does not take place. In this case the time-dependent state of the particle may be described in the form ψ 0 (t) = ψ 0 0 e -i(m 0 -1 2 i Γγγ )t (7) corresponding to the propagator

P (s) = 1 m 2 0 -1 4 Γ 2 γγ -i m 0 Γ γγ -s . ( 8 
)
This latter refinement has to be kept in mind when we make use of the approximation given in (6) in the following. The pole corresponding to the propagator in (8) is located in lower half of the √ s-plane at √ s 0 = m 0 -1 2 i Γ γγ or on the second Riemann sheet of the s-plane [START_REF] Roman | Advanced Quantum Theory: An Outline of the Fundamental Ideas[END_REF].

Structure and two-photon width of the σ meson

The σ-meson is a strongly decaying particle so that the decay into two pions cannot be simply taken into account by replacing the two-photon width Γ γγ in (8) by a constant total width Γ tot . It rather has been proposed to introduce a vacuum polarization function [19,20] Π(s) which accounts for all the contributions to the propagator P (s). The imaginary part of Π(s) may be obtained from unitarity considerations. Since the vacuum polarization function, Π(s), is an analytic function, its real part can be deduced from the imaginary part by making use of a dispersion relation. At this point, we can write the propagator in terms of the vacuum polarization function:

P (s) = 1 m 2 0 + Π(s) -s = 1 m 2 (s) -s -i m BW Γ tot (s) , (9) 
having identified

Γ tot (s) = - ImΠ(s) m BW (10) 
and

m 2 (s) = m 2 0 + ReΠ(s). ( 11 
)
Here m 2 (s) is the running squared mass, given by the sum of the bare mass squared and the real part of the vacuum polarization function ReΠ(s), which is responsible for the mass shift.

The imaginary part of the vacuum polarization function ImΠ(s) is directly proportional to the width of the state. The mass shift function ReΠ(s) is generally negative and is approximately constant in the energy regions far from any threshold. The Breit-Wigner mass m BW entering into ( 9) and ( 10) is defined by the relation [19,20]

m 2 (s) -s = m 2 0 + ReΠ(s) -s = 0 (12) 
i.e. by the intersection point of the running square mass with the variable s. This leads to the definition of the Breit-Wigner mass

m 2 BW = m 2 0 + ReΠ(m 2 BW ). (13) 
The final goal is to describe the σ meson in terms of a particle with a particle mass M R and a mean lifetime 1/Γ R . The mass M R and the width Γ R of this decaying particle are determined, in a process independent way, by the pole of the propagator. The reason for this property is that a decaying particle can be represented in the form

Ψ(t) = Ψ 0 e -i (M R -1 2 i Γ R )t . (14) 
Dispersion theory shows (see e.g. [START_REF] Roman | Advanced Quantum Theory: An Outline of the Fundamental Ideas[END_REF]) that the complex mass in the exponent of ( 14) corresponds to a pole in lower half of the √ s-plane, or equivalently, to a pole on the second s-sheet. Consequently, in order to find the pole position, we have to continue Eq. ( 9) into the complex s-plane onto the second s-sheet. Then the propagator may be written in the form

P (s) = 1 s R -s (15) 
where

√ s R = M R -iΓ R /2.
For the σ meson the pole is found on the second sheet at the pole position

√ s σ = M σ -i Γ σ /2 with M σ = 441 +16 -8
MeV and Γ σ = 544 +18 -25 MeV [22]. Details of this procedures have been described in a large number of recent publications and applied to extract the two-photon width Γ γγ of the σ meson (for a list of references see [14]). Therefore, it is not necessary to give more information here. Following the notation of Oller et al. [23,24] the two-photon decay width of the σ meson is given by

Γ(σ → γγ) = |g σγγ | 2 16πM σ , (16) 
where g σγγ is the residue at the pole s R .

Experimentally Eq. ( 16) is investigated by carrying out dispersive theoretical studies of the reactions γγ → π 0 π 0 , γγ → π + π -, and of pion scattering data. A complete list of recent results obtained in this way is given in [14] leading to an average result for the two photon width of

Γ(σ → γγ) = (2.3 ± 0.4) keV. ( 17 
)
Because of the consistency of the large number of recent evaluations this result may be considered as a reliable value.

Observation of the non-decaying σ meson via Compton scattering by the nucleon

It is of interest to point out how the bare mass m 0 of the non-decaying meson enters into the t-channel part of the amplitude for Compton scattering and apply this to the σ meson in the first place. For this purpose Eq. ( 5) may be compared with the amplitude for t-channel Compton scattering being

A γγ = 0|H 1 |q q q q|H 3 |N N t -m 0 sin 2 θ 2 ≡ M(M → γγ)g MNN t -m 0 sin 2 θ 2 , ( 18 
)
where θ is the c.m. scattering angle of Compton scattering [9]. In [START_REF] Feshbach | [END_REF] the transition amplitude 0|H 1 |q q is the same as in ( 5) and has been identified with the transition amplitude M(M → γγ) of the meson M to two photons. The transition amplitude q q|H 2 |(q q) 2 has been replaced by the relevant transition amplitude q q|H 3 |N N and the latter has been identified with the meson-nucleon coupling constant g MNN . The kinematical case of backward Compton scattering θ = π corresponds to the two-photon fusion reaction with vanishing 3-momentum transfer, i.e. k 1 + k 2 = 0. In this case we have sin 2 θ 2 = 1. For smaller scattering angles there are kinematical constraints which are taken into account by the factor sin 2 θ 2 . We see that in [START_REF] Feshbach | [END_REF] there are no effects of a vacuum polarization function. The reason is that the N N pair production process takes place in the unphysical region. Or, in other words, in case of Compton scattering the σ meson is in the status of a non-decaying particle.

As will be discussed in more detail in the next subsection the transition amplitude of the σ → γγ decay may be calculated via

M(σ → γγ) = α e πf π N c 2 3 2 + - 1 3 2 = 5 3 
α e πf π = 41.9 × 10 -6 MeV -1 (19) 
where N c = 3, α e = 1/137.04 being the fine-structure constant and f π = (92.42 ± 0.26) MeV the pion decay constant. In the quark-level linear σ model (QLLσM) [25] (see also [10,26] and references therein) the bare mass of the σ meson is predicted in the form

m σ = 16π 2 3 f 2 0 + m2 π 1 2
= 666 MeV (20) where the average pion mass is mπ = 138 MeV and the pion decay constant in the chiral limit f 0 = 89.8 MeV [27] have been inserted. Using these numbers we arrive at the two-photon width of the σ meson

Γ(σ → γγ) = m 3 σ 64π |M(σ → γγ)| 2 = 2.6 keV. ( 21 
)
which has to be compared with Γ(σ → γγ) = (2.6 ± 0.3) keV (22) obtained from the t-channel part of the electric polarizability α p of the proton [14]. The error given in (22) corresponds to the 10% precision of the experimental electric polarizability α p . The only theoretical result entering into the analysis leading to the value given in (22) is the QLLσM prediction m σ = 666 MeV of the bare mass of the σ meson.

The result for the two-photon width of the σ meson given in Eqs. ( 21) and ( 22) is based on the supposition that the σ mesons entering into the Compton scattering amplitude is identical with the bare, i.e. non-decaying particle. Apparently, this supposition has been confirmed experimentally with high precision. Furthermore, it has been confirmed that the two-photon excitation of the σ meson proceeds through the q q doorway configuration.

The content of this section is important for the following reasons. First it has been made transparent how the σ meson observed as a broad resonance in a two-photon fusion reaction is related to the σ meson of definite mass m 0 showing up as an intermediate state in Compton scattering. The experimentally verified identity of the transition matrix elements M(σ → γγ) in the two cases, i.e. Compton scattering and two-photon fusion reaction leading to the bare particle, has been traced back to the fact that the doorway state of the two-photon fusion reaction is identical with the intermediate state of Compton scattering.

Two-photon widths and doorway-structure of scalar mesons

The q q configurations adopted to describe the structure of the doorway states of a scalar meson M are acceptable only when they are capable of predicting the experimental two-photon widths Γ(M → γγ) of the meson.

The electromagnetic properties of the q q structures of the scalar mesons has been investigated in previous papers [3,[START_REF] Schumacher | AIP Conference Proceedings 1030 (Workshop on Scalar Mesons and Related Topics Honoring Michael Scadrons's 70th Birthday -SCADRON70)[END_REF] so that it is only necessary here to update the previous arguments. For the discussion of the electromagnetic structures it is of major advantage to compare pseudoscalar and scalar mesons with each other. For pseudoscalar mesons having the constituent quark structure

|q q = a|uū + b|d d + c|ss , a 2 + b 2 + c 2 = 1, (23) 
the two-photon decay amplitude may be given in the form [3,28] 

M(P → γγ) = α e πf π N c √ 2 e 2 q , with e 2 q = a e 2 u + b e 2 d + c ( m/m s ) e 2 s , (24) 
where m is the average constituent mass of the light quarks and m s the constituent mass of the strange quark. Numerically we have m s / m 1.44 [28,29].

In case of scalar mesons the same result is obtained except for the effects of the kinematical factor (see [3] and references therein)

2µ 1ν (g µν k 2 • k 1 -k µ 1 k ν 2 ) ( 2 5 ) 
contained in the respective decay amplitude. This kinematical factor replaces the corresponding factor

µναβ * µ 1 k ν 1 * α 2 k β 2 (26) 
valid for pseudoscalar mesons. Numerically these factors are the same, except for the fact that they distinguish between the two cases of linear polarization of the two photons, i.e. perpendicular planes of linear polarization in case of pseudoscalar mesons and parallel planes of linear polarization in case of scalar mesons (see [3] for details). This difference in the kinematical factors leads to a correction factor

V q (ξ) = 2ξ[2 + (1 -4ξ)I(ξ)], (27) 
which enters as a multiplicative factor in (24). The quantity ξ is given by ξ = m 2 q /m 2 M , with m q being the constituent quark mass and m M the meson mass. The quantity I(ξ) is the triangle loop integral given in [26] Vq (ξ) Figure 1: Triangle loop integral V q (ξ) versus ξ 1/2 = m q /m M , where m q is the constituent quark mass and m M the meson mass.

I(ξ)    = π 2 2 -2 log 2 1 4ξ + 1 4ξ -1 + 2π i log 1 4ξ + 1 4ξ -1 (ξ ≤ 0.25), = 2 arcsin 2 1 4ξ
(ξ ≥ 0.25). (28) The correction factor V q (ξ) is depicted in Figure 1. From Figure 1 it can be obtained that the correction factor amounts to V q (ξ) = 1 for √ ξ = 0.373 and √ ξ = 0.5. For the σ meson √ ξ = 0.5 is fulfilled to a very good approximation so that V q (ξ) = 1 may be used. For the f 0 (980) and a 0 (980) mesons the constituent quark mass is expected to be between 330 MeV and 490 MeV, i.e. between the non-strange prediction and one-half of the meson mass, so that according to Figure 1 the possible correction factor V q may be disregarded in view of other possible uncertainties. This consideration justifies that Eq. ( 24) may be used for pseudoscalar mesons as well as for scalar mesons.

Using (24) for pseudoscalar mesons as well as scalar mesons and adjusting the two-photon widths

Γ(M → γγ) = m 3 M 64π |M(M → γγ)| 2 (29) 
to the experimental data we arrive at the |q q structures of pseudoscalar and scalar mesons as given in Table 2. In Table 2 the quantity Γ(M → γγ) is the experimental two-photon decay width. From Table 2 it can be seen that the q q structures adopted in Eqs. (1) to (3) are confirmed by the two-photon widths Γ(M → γγ) to a good or at least reasonable approximation. Furthermore, it is confirmed that the η and η mesons have the q q structures |η ≈

1 √ 2 uū + d d √ 2 -ss , |η ≈ 1 √ 2 uū + d d √ 2 + ss . (30) 
Table 2: q q-structures of scalar and pseudoscalar mesons calculated from the experimental twophoton decay width Γ(M → γγ) 

meson q q structure Γ(M → γγ) [keV] Reference |π 0 = |IV (7.74 ± 0.55) × 10 -3 [10] |η = 1 √ 2 (
|IS = 1 √ 2 (|uū + |d d |IV = 1 √ 2 (-|uū + |d d

Approaches to mass predictions for scalar mesons

The prediction of the structures and the masses of scalar mesons has attracted many researchers. This is especially true for the f 0 (980) and a 0 (980) mesons. In most of these approaches potential models and the interplay between (q q) 2 states and the K K channel plays a major role (see e.g. [30][31][32] and references therein).

In the following we supplement on these considerations by investigating the effects of spontaneous (dynamical) and explicit symmetry breaking. Here we use the term spontaneous symmetry breaking in connection with the linear σ model (LσM) and dynamical symmetry breaking in connection with the Nambu-Jona-Lasinio (NJL) model. Similar approaches have been discussed at an early stage of the development [33].

Dynamical symmetry breaking in the light-quark sector

The mass generation of scalar mesons is well investigated in the light-quark sector where we have the SU(2) linear σ model, the Nambu-Jona-Lasinio (NJL) model and the bosonized version of the NJL model. The bosonized NJL model is essentially equivalent to the quark-level linear σ model (QLLσM) of Delbourgo and Scadron [25,26]. Because of the importance of these three models for the further investigations we give a brief description and the main results in the following.

For two flavors the Lagrangian of the Nambu-Jona-Lasinio (NJL) model has been formulated in two equivalent ways [34][35][36][37][38][39] 

L NJL = ψ(i/ ∂ -m 0 )ψ + G 2 [( ψψ) 2 + ( ψiγ 5 τ ψ) 2 ], (31) 
and

L NJL = ψi/ ∂ψ -g ψ(σ + iγ 5 τ • π)ψ - 1 2 δµ 2 (σ 2 + π 2 ) + gm 0 G σ, (32) 
where

G = g 2 /δµ 2 and δµ 2 = (m cl σ ) 2 . ( 33 
)
Eq. ( 31) describes the four-fermion version of the NJL model and Eq. ( 32) the bosonized version.

The quantity m 0 = (m 0 u + m 0 d )/2 is the average current quark mass. The quantity ψ denotes the spinor of constituent quarks with two flavors. The quantity G is the coupling constant of the four-fermion version, g the Yukawa coupling constant and δµ a mass parameter entering into the mass counter-term of Eq. (32). The coupling constants G, g and the mass parameter δµ are related to each other and to the σ meson mass in the chiral limit (cl), m cl σ , as given in (33). Using diagrammatic techniques the following equations may be found [38,39] for the nonstrange (π, σ) sector

M * = m 0 + 8 i GN c Λ d 4 p (2π) 4 M * p 2 -M * 2 , M = - 8 iN c g 2 (m cl σ ) 2 d 4 p (2π) 4 M p 2 -M 2 , ( 34 
)
f 2 π = -4 i N c M * 2 Λ d 4 p (2π) 4 1 (p 2 -M * 2 ) 2 , f 0 = -4iN c gM d 4 p (2π) 4 1 (p 2 -M 2 ) 2 , ( 35 
)
m 2 π = - m 0 M * 1 4 i GN c I(m 2 π ) , I(k 2 ) = Λ d 4 p (2π) 4 1 [(p + 1 2 k) 2 -M * 2 ][(p -1 2 k) 2 -M * 2 ]
.

The expression given on the l.h.s. of ( 34) is the gap equation with M * being the mass of the constituent quark with the contribution m 0 of the current quarks included. The r.h.s. shows the gap equation for the constituent quark mass M in the chiral limit. The l.h.s. of Eq. ( 35) represents the pion decay constant and the r.h.s. the same quantity in the chiral limit. The expression given in Eq. ( 36) is a generalized version of the Gell-Mann-Oakes-Renner (GOR) relation

f 2 π m 2 π = - 1 2 (m 0 u + m 0 d ) ūu + dd , (37) 
where m 0 u and m 0 d are the current-quark masses of the u and d quark, respectively. For further details we refer to [10,38].

Making use of dimensional regularization the Delbourgo-Scadron [25] relation

M = 2π √ N c f 0 , N c = 3 ( 38 
)
may be obtained from the r.h.s of Eqs. (34) and (35). This important relation shows that the mass of the constituent quark in the chiral limit and the pion decay constant in the chiral limit are proportional to each other. This relation is valid independent of the flavor content of the constituent quark, e.g. also for a constituent quark where the d-quark is replaced by an s quark. Furthermore, it has been shown [40,41] that (38) is valid independent of the regularization scheme. Then with the pion decay constant in the chiral limit f 0 = 89.8 MeV

m cl σ = 2 M = 652 MeV ( 39 
)
can be derived [10,25]. With the average pion mass mπ = 138 MeV inserted into

m 2 σ = (2 M ) 2 + m2 π , (40) 
the σ meson mass is predicted in the QLLσM to be m σ = 666 MeV (41) as given already in Eq. ( 20).

The value given in ( 41) is the most frequently cited "standard" mass of the σ-meson as predicted by the QLLσM. This value implies that explicit symmetry breaking due to non-zero current-quark masses enters into the σ-meson mass through the pseudo Goldstone boson mass mπ only, whereas the mass M of the constituent quark is not modified by explicit symmetry breaking. This result may be compared with the predictions of the NJL model [38]. Making use of the l.h.s. of Eq.( 35) and of Eq. ( 38) we arrive at

f 2 π M * 2 = N c 4π 2 d 4 p (2π) 4 1 (p 2 -M * 2 ) 2 d 4 p (2π) 4 1 (p 2 -M 2 ) 2 . ( 42 
)
Applying dimensional regularization in the form [START_REF] Thomas | The Structure of the Nucleon[END_REF] 

d D k (2π) D 1 (k 2 -m 2 + i ) 2 = i (m 2 ) - (4π) 2- Γ( ) Γ(2) , D = 4 -2 (43) 
instead of regularization through a cut-off Λ we arrive at

f 2 π M * 2 = N c 4π 2 M * 2 M 2 - → N c 4π 2 (44) 
for → 0. This means that the expression given in Eq. ( 38) valid in the chiral limit can be transferred to the case where explicit symmetry breaking is included, leading to

M * ≡ M * (u,d) = 2π √ 3 f π . (45) 
In the NJL model the relation for the mass of the σ meson in the presence of explicit symmetry breaking is given in the form [38] 

m 2 σ = 4M * 2 (u,d) + m2 π . (46) 
Making use of f π = 92.42 ± 0.26 MeV we arrive at

m σ = 685 MeV. ( 47 
)
The σ meson mass given in (47) is larger than the one given in (41) by less than 3%. Therefore, for most of the applications this difference is not of relevance. However, in case of a strangequarks content in the constituent quark the effects of explicit symmetry breaking become sizable. This can be shown by repeating the arguments given above in a two-flavor theory where the d quark is replaced by a s quark. In this case we have

M * (u,s) = 2π √ 3 f K ( 48 
)
where M * (u,s) is the mass of a constituent quark with an equal number of u quarks and s quarks. For a meson with an equal number of u quarks and s quarks this leads to the mass relation

m 2 (u,s) = 4M * 2 (u,s) + m 2 K . ( 49 
)

Spontaneous symmetry breaking in a SU(2) linear σ model (LσM)

The LσM [START_REF] Schwinger | [END_REF][44][START_REF] De Alfaro | Currents in Hadron Physics[END_REF] is the first theory of symmetry breaking in particle physics, explaining the mass of the σ meson and of the constituent quarks. The underlying mechanism is spontaneous symmetry breaking due to which the σ field obtains a vacuum expectation value of 0|σ|0 = f 0

U(M,φ) Μ/g σ π K η a) b)

G g

Figure 2: Left panel: Spontaneous symmetry breaking in the chiral limit illustrated by the LσM: In the SU(2) sector there is one "strong Higgs boson", the σ meson having a mass of m cl σ = 652 MeV taking part in spontaneous symmetry breaking, accompanied by an isotriplet of massless π mesons serving as Goldstone bosons. In the SU(3) sector there are 8 massless Goldstone bosons π, K, η, and nine scalar mesons σ, κ, f 0 and a 0 , all of them having the same mass as the σ meson in the chiral limit. The mass degeneracy is removed by explicit symmetry breaking. Right panel: Tadpole graphs of chiral symmetry breaking. a) Four fermion version of the Nambu-Jona-Lasinio (NJL) model, b) bosonized NJL model. in the chiral limit. Later on spontaneous symmetry breaking has been adopted to the electroweak sector where it describes the mass generation of the Higgs boson and the related mass generations of current quarks, leptons and electroweak gauge bosons.

For our approach it is of advantage to first outline the common case [START_REF] De Alfaro | Currents in Hadron Physics[END_REF][START_REF] Donoghue | Dynamics of the Standard Model Cambridge Monographs on Particle Physics[END_REF] of the SU (2) linear σ model and to supplement information obtained from the NJL model. In the chiral limit the Lagrangian may be written in the form

L = 1 2 ∂ µ π • ∂ µ π + 1 2 ∂ µ σ∂ µ σ + µ 2 2 (σ 2 + π 2 ) - λ 4 (σ 2 + π 2 ) 2 . ( 50 
)
For µ 2 > 0 and λ > 0, the model exhibits the phenomenon of spontaneous symmetry breaking which will be explained in the following in more detail.

We infer from the sigma model of Eq. ( 50) the potential energy

V (σ, π) = - µ 2 2 (σ 2 + π 2 ) + λ 4 (σ 2 + π 2 ) 2 . ( 51 
)
Minimization of V (σ, π) reveals the set of degenerate ground states to be those with

σ 2 + π 2 = µ 2 λ . ( 52 
)
Of these we select the particular ground state where v is the vacuum expectation value (VEV) of the σ field in the chiral limit which can be shown to be given by the pion decay constant f 0 in the chiral limit:

σ 0 = µ 2 λ ≡ v, π 0 = 0, (53) 
v = f 0 . ( 54 
)
The mexican hat potential is shown in Figure 2 together with the graphs describing symmetry breaking in the four-fermion NJL model and the bosonized NJL model. In Figure 2 use has been made of the Goldberger-Treiman (GT) relation on the quark level and in the chiral limit

M = gf 0 ( 55 
)
where M = 326 MeV is the constituent quark mass in the chiral limit and where the coupling constant g on the quark level is given by the Delbourgo-Scadron relation

g = 2π √ N c , N c = 3. ( 56 
)
Then the further evaluation of the LσM and NJL models in the chiral limit leads to [START_REF] De Alfaro | Currents in Hadron Physics[END_REF] 

µ = √ 2M = 461 MeV and λ = 2g 2 = 8π 2 3 = 26.3. ( 57 
)
The SU (2) l × SU (2) R symmetry of the sigma model is explicitly broken if the potential V (σ, π) is made slightly asymmetric, e.g. by the addition of the term

L breaking = aσ (58)
to the basic Lagrangian of Eq. ( 50). To first order in the quantity a, this shifts the minimum of the potential to

v = µ 2 λ + a 2µ 2 (59) 
where

a = f π m 2 π . (60) 
This leads to [START_REF] De Alfaro | Currents in Hadron Physics[END_REF] 

m 2 σ = 2λf 2 π + m 2 π = 16π 2 3 f 2 π + m2 π , (61) 
and to m σ = 685 MeV as derived before.

The SU(3) NJL model

An essential difference between the SU(2) and SU(3) sectors is that symmetry breaking due to the U (1) A anomaly has to be taken into account in the latter. As shown in Figure 3 this effect is quite sizable in case of the η 0 -η 8 mass splitting.

The Lagrangian is

L NJL = Ψ(i/ ∂ -m 0 )Ψ + L int. ( 62 
)
with the current quark mass matrix m 0 = diag(m 0 u , m 0 d , m 0 s ) ( see [36][37][38][39] and references therein). The interaction part

L int = L (4) int + L (6) int (63) 
has a local four-point interaction L

int and a U (1) A -breaking term L

int which is minimally a six-point interaction (see Figure 4). The four-point interaction term may be written in the form 

+ = q q q q 1 1 2 2 4 4 3 3 1 2 3 4 L int L (4) int L (6) int
int is approximated by an effective four-point interaction term.

L (4) int = G S 2 8 i=0 [( ψλ i ψ) 2 + ( ψiγ 5 λ i ψ) 2 ] ( 6 4 ) 
and the six-point interaction term in the form

L (6) = G D 2 {det[ ψ(1 + γ 5 )ψ] + det[ ψ(1 -γ 5 )ψ]}. ( 65 
)
It can be written in the form [36]

L (6) = G D 12 d ijk 1 3 ( ψλ i ψ)( ψλ j ψ) + ( ψγ 5 λ i ψ)( ψγ 5 λ j ψ) ( ψλ k ψ). (66) 
The d ijk are the symmetric SU(3) structure constants; d 000 = 2 3 and d0jk = -1 6 for j, k, = 0. This six-point interaction term can be decomposed [38] into terms that are proportional ( ψλ i ψ) 2 and ( ψγ 5 λ i ψ) 2 .

(67)

These terms are of the same structure as the terms provided by the four-point interaction term. But in addition one has mixed terms as ( ψλ 0 γ 5 ψ)( ψλ 8 γ 5 ψ), ( ψλ

8 γ 5 ψ)( ψλ 0 γ 5 ψ) ( 6 8 ) 
and their scalar counterparts

( ψλ 0 ψ)( ψλ 8 ψ), ( ψλ 8 ψ)( ψλ 0 ψ). (69) 
The terms given in (67) may be treated as part of the four-point interaction. This leads to the conclusion that not G S alone but a linear combination of G S and G D corresponds to an effective four-point interaction. This linear combinations is derived in the following paragraph. The pseudoscalar mixed terms in Eq. ( 68) lead to the well-known mass splitting of the pseudoscalar mesons η 0 and η 8 present in the chiral limit which remains to be essentially unmodified for the physical mesons η and η but -at the present status of the discussion -it remains unknown whether or not there is also a mass splitting due to the six-point interaction in case of scalar mesons. It is the purpose of the following discussion to clarify this important question.

In practical applications to the pseudoscalar and scalar meson sectors the model makes use of the two coupling parameters G S and G D corresponding to L 

G π = G S + G D ss , G K ± = G S + G D d d , G K 0 = G S + G D uū G η 0 = G S - 2 3 ( uū + d d + ss )G D , G η 8 = G S - 1 3 ( ss -2 uū -2 d d )G D . (70) 
We now go to the chiral limit where uū = d d = ss = q q . Furthermore, we rearrange the coupling parameters such that G = G S + G D qq and arrive at (see [36] for further justification of this step )

G π = G, G K ± = G, G K 0 = G, G η 0 = G -3 G D q q , G η 8 = G. (71) 
This means that G η 0 differs from the coupling parameters G of the other pseudoscalar mesons by the positive amount of -3G D q q . In the chiral limit all the pseudoscalar mesons have zero mass as appropriate for Goldstone bosons with the exception of η 0 which gets a mass through U (1) A symmetry breaking which is given here by the six quark interaction term. Apparently this effect is quite sizable as can be seen in Figure 3.

Now we come to scalar mesons and as a first step describe the flavor wave functions by the same SU(3) expressions as in case of the pseudoscalar mesons. This means that the pseudoscalar wave-functions

η 0 = 1 √ 3 (uū + d d + ss) 1 S 0 , η 8 = 1 √ 6 (uū + d d -2ss) 1 S 0 (72) 
have the scalar analogs

0 = 1 √ 3 (uū + d d + ss) 3 P 0 , 8 = 1 √ 6 (uū + d d -2ss) 3 P 0 . (73) 
The scalar analogs of the coupling parameters in Eq. (70) only differ in the sign of G D [36][37][38][39].

In the chiral limit this leads to

G δ = G, G κ ± = G, G κ 0 = G, G 0 = G + 3 G D q q , G 8 = G, (74) 
where use has been made of G = G S -G D q q . This means that we obtain a mass splitting between 0 , the scalar analogs of η 0 , and 8 , the scalar analog of η 8 , such that 0 differs by a negative mass term from all the other scalar mesons. Following the arguments outlined in connection with the pseudoscalar mesons this would mean that in the chiral limit all the scalar mesons κ, f 0 and a 0 would have the mass of 2M = 652 MeV and 0 a smaller mass due to the effects of the U (1) A symmetry breaking. Up to this point the 0 mesons has been used to represent the σ meson in the chiral limit which, according to subsection 4.1, does not show any dependence on U (1) A symmetry breaking. Apparently, here we find a difference from the pseudoscalar case where the effects of U (1) A symmetry breaking predicted for the η 0 meson is found in the physical η meson, though the stuctures of the two mesons are close to each other but not identical. This difference between the pseudoscalar and the scalar case comes not as a surprise because even in the chiral limit the 0 and the 8 do not represent the flavor structures of the σ and the f 0 (980) mesons. The 3 P 0 components accompanying the (q q) 2 structures are

0 = uū + d d √ 2 , 8 = 1 √ 2 uū + d d √ 2 -ss (75) 
which do not have the necessary symmetry among the three flavors in order to make U (1) A symmetry breaking effective. Summarizing we can state that the only effect of SU (1) A symmetry breaking is to project the η meson out of the number of pseudo Goldstone bosons.

The SU(3) LσM

The transition from two flavors to three flavors is described in many recent papers [47][START_REF] Törnqvist | 1999 High energy physics[END_REF][START_REF] Törnqvist | [END_REF][START_REF] Dai | [END_REF][51][START_REF] Chen | [END_REF]. The scalar nonet is put into the hermitian part of a 3 × 3 matrix Φ and a pseudoscalar nonet into the anti-hermitian part of Φ. One has (for the notation used here see [START_REF] Törnqvist | [END_REF])

Φ = S + iP = 8 a=0 (σ a + ip a )λ a / √ 2, ( 76 
)
where λ a are the Gell-Mann matrices, and λ 0 = 2 3 1 1. Then the potential is

V (Φ) = - 1 2 µ 2 Tr[ΦΦ † ] + λTr[ΦΦ † ΦΦ † ] + λ (Tr[ΦΦ † ]) 2 + L SB , (77) 
where λ is a small parameter compared to λ and L SB contains an explicit symmetry breaking term and an U A (1) breaking term ∝ (detΦ + detΦ † ). There are different proposals for a further evaluation of this ansatz and in this connection we refer to the following works [START_REF] Törnqvist | 1999 High energy physics[END_REF][START_REF] Törnqvist | [END_REF][START_REF] Dai | [END_REF][51]. The problem encountered in these approaches is to get a physically justified criterion for the treatment of the U (1) A breaking term. Following [START_REF] Törnqvist | 1999 High energy physics[END_REF] we write down the symmetry breaking terms in the most simple form

L SB = σ σ uū+d d + ss σ ss + β(detΦ + detΦ † ) ( 7 8 
)

where σ = m 2 π f π , ss = (2m 2 K f K -m 2 π f π )/ √ 2.
We have given the relations (76) -(78) here as one example of the different approaches proposed in [47][START_REF] Törnqvist | 1999 High energy physics[END_REF][START_REF] Törnqvist | [END_REF][START_REF] Dai | [END_REF][51][START_REF] Chen | [END_REF]. The common goal of these approaches is to obtain relations for the masses of the scalar and pseudoscalar mesons in terms of parameters, especially the parameter β in (78) which describes the strength of the U (1) A symmetry breaking effect. In the framework of the SU(3) LσM alone the factor β is predicted to have an influence on the masses of most of the scalar and pseudoscalar mesons. It is the strategy of the present paper not to exclusively rely on one theoretical ansatz but to take into account in a phenomenological way all the available information. Differences between the present and previous approaches and results are due to this difference in the strategy and are not in conflict otherwise.

The elaborate investigation in the subsection 4.3 has made quite clear that the only effect of U (1) A symmetry breaking is to project the η meson out of the number of pseudo Goldstone bosons, thus making it unnecessary to take into account this effect after the η mesons has been removed from the list of particles to be considered. Furthermore, there is no reason to take into account the small flavour mixing effect due to the term proportional λ in (77). But there is agreement between the present approach and the approach described in (76) -( 78) that explicit symmetry breaking can be expressed through terms of the form m 2 π f π and m 2 K f K or appropriate linear combinations of m 2 π f π and m 2 K f K . This is the basis of the phenomenological approach described on the next subsection.

Prediction of masses of the scalar mesons

The SU(3) LσM as treated in the foregoing subsection has the disadvantage that explicit use is made of a q q structure of scalar mesons. Since we know that scalar mesons are mainly of a tetraquark structure with only a minor q q contribution we have to look for a structure-independent treatment of chiral symmetry breaking. For the SU(2) LσM this idea is not new (see e.g. [53]) because the Lagrangian written down in ( 50) is formulated in terms of fields rather than in terms of particles with a definite q q structure. Another approach to the prediction of masses of scalar mesons based on dynamical symmetry breaking has been described in subsection 4.1. As a result of those considerations we may state that in the chiral limit all the scalar mesons considered in this work have a mass which is equal to m cl σ = 652 MeV independent of the special flavour structure. Differences in the masses occur only due to the effects of explicit symmetry breaking. The rules according to which explicit symmetry breaking modifies the masses has partly already been investigated in subsection 4.1, so that in the present subsection only some amendments are necessary.

In the present paragraph we present a discussion which is based on spontaneous symmetry breaking and supplement the results by arguments based on dynamical symmetry breaking where necessary. It is possible to write down the Lagrangian given in [START_REF] Dai | [END_REF] in the general form

L σ = 1 2 [(∂ µ φ 1 ) 2 + (∂ u φ 2 ) 2 + µ 2 (φ 2 1 + φ 2 2 )] - 1 4 λ(φ 2 1 + φ 2 2 ) 2 + a σ φ 1 . (79) 
where φ 1 corresponds to the scalar and φ 2 to pseudoscalar component. The last term in (79) takes into account explicit symmetry breaking where a σ = m 2 π f π . For the generalization of Eq. (79) it is necessary to find Goldstone-boson (GB) partners of the scalar mesons κ(800), f 0 (980) and a 0 (980) taking into account the (q q) 2 structure of the scalar mesons. For this purpose we define the quantity f s as the fraction of strange quarks and/or antistrange quarks in the four-quark configuration of the scalar meson. Using the wave functions from Table 1, we may easily evaluate the value of f s . Making the reasonable assumption that the scalar meson and the GB partner should have the same strange-quark fraction f s we arrive at the π meson as the GB partner of the σ meson what is well known and a combination of K and π for the κ(800) and the η for a 0 (980) and f 0 (980). These results are given in Table 3. In the framework of the Lagrangian given in Eq. ( 79) scalar and pseudoscalar mesons may be represented by a complex field

Φ σ = 1 √ 2 (φ 1 + i φ 2 ). (80) 
Table 3: Fraction f s of strange quarks and/or antistrange quarks in the (q q) 2 structure of scalar mesons and Goldstone bosons (GB) with the same fraction of strange quarks (q q) 2 meson f s GB σ 0 π κ(800)

1 4 K, π f 0 (980), a 0 (980) 1 2 η
The absence of flavor mixing makes it posible to write down analogous fields for the κ(800) and (a 0 (980, f 0 (980)) sectors leading to Lagrangians analogous to the one of the LσM as given (79). These are given in the form

L κ = 1 2 [(∂ µ φ 3 ) 2 + (∂ u φ 4 ) 2 + µ 2 (φ 2 3 + φ 2 4 )] - 1 4 λ(φ 2 3 + φ 2 4 ) 2 + a κ φ 3 , (81) 
L (a 0 ,f 0 ) = 1 2 [(∂ µ φ 5 ) 2 + (∂ u φ 6 ) 2 + µ 2 (φ 2 5 + φ 2 6 )] - 1 4 λ(φ 2 5 + φ 2 6 ) 2 + a (a 0 ,f 0 ) φ 5 . (82) 
The last terms in (81) and (82) take into account explicit symmetry breaking and are given by

a κ = 1 2 (m 2 K f K + m 2 π f π ), (83) 
a (a 0 ,f 0 ) = m 2 η f η . (84) 
Since the K and η mesons have about equal masses we expect f η ≈ f K . This conclusion follows from considerations contained in [54] where the relation between mass and decay constant of pseudoscalar mesons is investigated. The further evaluation proceeds in complete analogy to the case of the SU(2) LσM described in subsection 4.2, but now applied to the three cases given in (79), ( 81) and (82). This consideratiom leads to the three mass formulae

m 2 σ = 16π 2 3 f 2 π + m 2 π , (85) 
m 2 κ = 16π 2 3 1 2 (f 2 π + f 2 K ) + 1 2 (m 2 π + m 2 K ), (86) 
m 2 a 0 ,f 0 = 16π 2 3 f 2 K + m 2 η , (87) 
with f K = 113.0 ± 1.0 MeV [2]. The masses predicted in this way are m σ = 685 MeV, m κ = 834 MeV and m a 0 ,f 0 = 986 MeV in close agreement with the experimental data. It should be noted that the mass formulae given in (85) and (87) have already been derived in subsection 4.1 using arguments from dynamical symmetry breaking, so that only the formula in (86) new. The use of a linear combination of explicit symmetry breaking terms from the π-mesons and the K-meson has already been discussed subsection 4.4 where a related procedure proposed by Törnqvist [START_REF] Törnqvist | 1999 High energy physics[END_REF] is discussed.

Figure 5 illustrates the result obtained. In the chiral limit all the scalar mesons have the same mass given by m cl σ = 2 M , i.e. the σ mass in the chiral limit or, equivalently, twice the mass of the constituent quark in the chiral limit. Additional contributions to the mass arise due to the effects of explicit symmetry breaking which enters into mass formulae in two ways. The first way is due to the fact that the pion decay constant f 0 valid in the chiral limit has to be replaced by f π , f K and f η , respectively. The second way is caused by the masses of the pseudoscalar mesons which are equal to zero in the chiral limit. The predictions obtained are in a remarkable agreement with the experimental values.

Summary and discussion

Summarizing, we may state that the masses of scalar mesons may be calculated in terms of two mass components which have to be added in quadrature. The first mass component m 1 = 2 M * = 4π √ 3 f π,K is obtained via dynamical symmetry breaking in the presence of a correction due to explicit symmetry breaking contained in the decay constants f π,K . The second mass component m 2 is due to explicit symmetry breaking only and may be identified with the mass of a pseudo-Goldstone boson with the same fraction f s of strange quarks in the flavor wavefunction. There is a formal analogy with the mass generation in the electroweak sector, however with important differences. In the chiral limit we have m cl 1 = m cl σ and m cl 2 ≡ 0. In a formal way this corresponds to symmetry breaking in the electroweak sector with the σ meson being the analog of the Higgs boson. However, there is no analog to the Higgs mechanism which transfers the massless Goldstone boson into the longitudinal component of a massive gauge field. Instead, explicit symmetry breaking gives the Goldstone boson a mass which becomes a part of the mass of the scalar meson. Analogous relations are found for the scalar mesons κ(800), f 0 (980) and a 0 (980).

In the following we write down the GOR relations as given in [START_REF] Thomas | The Structure of the Nucleon[END_REF] for π and the K + mesons and supplement it by a corresponding relation for the η meson. These equations show that explicit symmetry breaking has two origins. The first is the QCD vacuum as in case of dynamical or spontaneous symmetry breaking. The second is the mass of the current quarks, which is a consequence of explicit symmetry breaking. At this point it is possible to relate the strong and the electroweak Higgs theories to each other by writing down

m 0 q = 1 √ 2 g hqq v h (92) 
with v h = ( √ 2G F ) -1/2 246 GeV, as following from the Weinberg-Salam model (see e.g. [START_REF] Halzen | Quarks & Leptons[END_REF] p. 331). The quantity g hqq is the Higgs-quark coupling constant and v h the vacuum expectation value of the Higgs field.
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 3 Figure 3: Pseudoscalar mesons after U(1) A symmetry breaking (left column) and after additional explicit symmetry breaking (right column).
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 4 Figure 4: Graphs representing the interaction Lagrangian of the SU(3) NJL model. The sixpoint interaction term L
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 4 int , and L(6) int , respectively, such that the pseudoscalar couplings are[39] 
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 5 Figure 5: Predicted masses of scalar mesons. Long horizontal line: Mass of σ meson m cl σ in the chiral limit (cl). M is the constituent quark mass in the chiral limit. f s is the fraction of strange quarks and/or antistrange quarks in the four-quark configuration of the scalar meson. Effects of U (1) A symmetry breaking are negligible in comparison with 2M = m cl σ .
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