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Abstract In this paper novel Earth–Mars transfers are presented. These transfers exploit the
natural dynamics of n-body models as well as the high specific impulse typical of low-thrust
systems. The Moon-perturbed version of the Sun–Earth problem is introduced to design ballistic
escape orbits performing lunar gravity assists. The ballistic capture is designed in the Sun–Mars
system where special attainable sets are defined and used to handle the low-thrust control. The
complete trajectory is optimized in the full n-body problem which takes into account planets’
orbital inclinations and eccentricities. Accurate, efficient solutions with reasonable flight times
are presented and compared with known results.

1 Introduction

Low energy transfers outperform classic patched-conics orbits in terms of propellant mass [1]. The
natural dynamics embedded in the n-body problems is exploited in these transfers. In particular,
the ballistic capture mechanism avoids having hyperbolic excess velocities, so reducing the cost
needed to insert the spacecraft into a final, stable orbit about the arrival planet [2]. Low energy
transfers can also be thought under the perspective of Lagrangian point orbits and their invariant
manifolds [3–11]. In this case, the structure of the phase space about the collinear points of the
restricted three-body problem is used to define efficient coast arcs. Trajectories obtained adopting
two distinct three-body systems are matched together to define the transfer orbit. This technique
is labeled “patched restricted three-body problems approximation” and represents a sophisticated
update to the patched-conics method. Ballistic escape can be used besides ballistic capture to
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further enhance the trajectory performances. This is a mechanism equivalent to ballistic capture,
and it is usually defined in a four-body model [12,13].

The chemical, patched restricted three-body problems approximation requires that the mani-
folds of the two systems intersect in the configuration space. This occurs in the Sun–Earth–Moon
scenario (in constructing Earth–Moon transfers) as well as in transfers between outer planets and
their moons [4,6,7,14]. No intersection exists among manifolds of inner planets. A method to de-
sign Earth–Mars transfers exploiting the Lagrangian point dynamics has been formulated in [11];
this is called “patched conic-manifolds” method. All these methods are based on instantaneous
velocity changes needed to connect the manifolds of two systems in the phase space. Low-thrust
propulsion is proposed in this paper to further improve the performances of low energy transfers.
As existing methods rely on impulsive maneuvers, the design strategy needs to be modified to
accommodate low-thrust control. This is done by defining special attainable sets. In short, an
attainable set is a collection of low-thrust orbits that are propagated from a set of admissible
initial conditions, with a specified guidance law and for a specified time. As the patched three-
body problems approximation requires the intersection of the manifolds, and this condition is not
verified in the Earth–Mars context [11, 15], the idea behind our approach is to replace invariant
manifolds with attainable sets, and to manipulate the latter in the same way the manifolds are
used to define space trajectories. Low-energy, low-thrust Earth–Mars transfers are so formulated.
Not only the intrinsic dynamics of n-body problems is exploited, but also the high specific im-
pulse of low-thrust systems is utilized in order to define efficient trajectories. These transfers are
made up by a ballistic escape portion and a low-thrust capture. Ballistic escape is defined in
the Moon-perturbed Sun–Earth model; low-thrust capture is instead defined in the Sun–Mars
problem. These two pieces are joined and optimized in the controlled n-body problem. In this
model, the spacecraft’s low-thrust propulsion as well as the planet’s gravitational attractions are
taken into account. The low-thrust represents the control term as it is used to adjust the natural
flow of the n-body equations of motion. This paper follows previous works by the same authors
aimed at combining dynamical system theory and optimal control problems to design efficient
space trajectories [16,17].

The literature on low-thrust, n-body trajectories is vast. A spiral arc is matched to a Moon
transit orbit in [18] (this concept has been later implemented in ESA’s SMART-1 mission [19]).
The use of invariant manifolds as first guess to initiate low-thrust optimization is described in [20].
Capture and escape orbits have been obtained with sophisticated optimization algorithms in [21].
Low-thrust propulsion has been used within the restricted three-body problem to design both
interplanetary transfers [22–24] and transfers to the Moon [25, 26]. Low-thrust, stable-manifold
transfers to halo orbits are also shown in [27–33]. Lunar gravity assists at departure in the frame
of Earth–Mars transfers have been proposed in [34].

1.1 Summary of the Approach

The approach is briefly sketched for the sake of clarity (details are given throughout the paper).
To construct a chemical, low-energy transfer between the Earth and Mars, it is required that the
invariant manifolds of the two restricted three-body problems (Sun–Earth and Sun–Mars mod-
els) intersect at least in the position space. Given the problem geometry, the unstable manifold
of the L2 orbits is considered in the Sun–Earth problem (Wu

L2
SE), and the stable manifold of the

L1 orbits is considered in the Sun–Mars problem (W s
L1

SM). If these intersected, an Earth–Mars
low energy transfer with at most one deep-space maneuver would exist. Unfortunately, these
two objects do not intersect, and this can be viewed on a common surface of section in Fig. 1(a)
where the two manifolds are reported in the Sun–Earth rotating frame. A first attempt to get the
two sets closer consists in the introduction of a lunar gravity assist at departure. The associated
ballistic escape orbits, defined in the Moon-perturbed Sun–Earth problem, are represented by the
dashed line in Fig. 1(b). Although the lunar gravity assist moves the set of ballistic escape orbits
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(a) Non-intersecting manifolds. (b) Effect of lunar gravity assist. (c) Effect of low-thrust capture.

Fig. 1 Summary of the approach. Given the two non-intersecting manifolds (Fig. 1(a)) defined into two
restricted three-body problems, the Moon-perturbed Sun–Earth problem is introduced to design ballistic
escape orbits exploiting lunar gravity assist (Fig. 1(b), dashed line). This set is then connected with the
low-thrust capture orbits obtained in the controlled Sun–Mars problem (Fig. 1(c)). The intersection
between ballistic escape and low-thrust capture sets uniquely specifies a first guess solution which is
later optimized in the controlled, restricted n-body problem.

towards the Sun–Mars manifold, it is not enough to perform the intersection. Such intersection
can be achieved when low-thrust propulsion is introduced. The low-thrust capture set in Fig.
1(c) is obtained in the controlled Sun–Mars problem with tangential thrust as detailed in Section
3.2. The intersection between this set and the ballistic escape orbits defines the transfer point.
(Note that the low-thrust capture set intersects also the L2 orbits unstable manifold; neverthe-
less, considering its intersection with orbits flying-by the Moon produces solutions requiring less
propellant). This point uniquely identifies a first guess transfer orbit which is later optimized in
the controlled, restricted n-body problem.

The paper is organized as follows. In Section 2 the problem is stated and some background
notions to design ballistic capture and escape orbits using the Lagrangian points dynamics are
recalled. In the same section the Moon-perturbed Sun–Earth model is presented. Section 3 intro-
duces the low-thrust propulsion into the restricted three-body problem and defines the attainable
sets. In Section 4 the design strategy is formulated: ballistic escape orbits and Mars low-thrust
capture trajectories are matched together. The complete transfer optimization is defined in Sec-
tion 5 and the obtained results are discussed in Section 6. Concluding remarks are given in
Section 7.

2 Background

2.1 Statement of the Problem

In the linked-conics method used in interplanetary trajectory design, the spacecraft motion is
studied outside of the spheres of influence of the planets, and heliocentric rendez-vous transfers
are treated. In the patched-conics approximation, the two-body motion about the planets is
studied, and the associated solutions are connected using the concept of sphere of influence [35].
Interplanetary trajectories considered in this work connect an orbit around the Earth with an
orbit around Mars. Planet-centered frameworks are indeed considered to exploit the three- and
four-body dynamics governing ballistic capture and escape. This can be thought as a refinement
of both linked- and patched-conics methods.

The spacecraft is assumed to be initially on a circular parking orbit around the Earth at
a given altitude hE . An initial impulsive maneuver, whose magnitude is ∆vE , is provided to
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place the spacecraft on a trajectory that escapes from the Earth. The energy level of this Earth-
escaping orbit is lower than that associated to two-body trans-Mars injection hyperbolas. In
addition, this trajectory exploits the gravitational attractions of the Sun, Earth, and Moon. For
these reasons this phase is called ballistic escape.

After the launch, the spacecraft can only rely on its own low-thrust propulsion to rendez-
vous with Mars and to descend down to a stable orbit around it. This phase is called low-thrust
capture as the Sun–Mars interaction is exploited (besides the low-thrust) to reach the final orbit.
The final orbit has eccentricity, e, and periapsis (or apoapsis), rp (or ra), prescribed by mission
requirements. The transfer is assumed to terminate when the spacecraft reaches the periapsis of
the final orbit. Three out of the four parameters needed to specify an orbit in a planar context
are given. The fourth (orbit orientation, ω) is determined in the trajectory optimization.

As both chemical and low-thrust propulsions are considered, our approach may also be la-
belled as producing hybrid propulsion transfers.

2.2 The Planar Circular Restricted Three-Body Problem

The motion of the spacecraft, P3, of mass m3, is studied in the gravitational field generated by
two primaries, P1, P2, of masses m1, m2, respectively, assumed to move in circular motion about
their common center of mass (Fig. 2(a)). It is assumed that P3 moves in the same plane of P1,
P2 under the equations [36]

ẍ − 2ẏ =
∂Ω

∂x
, ÿ + 2ẋ =

∂Ω

∂y
, (1)

where the auxiliary function is

Ω(x, y, µ) =
1

2
(x2 + y2) +

1 − µ

r1
+

µ

r2
+

1

2
µ(1 − µ), (2)

and µ = m2/(m1 + m2) is the mass parameter of the three-body problem. Eqs. (1) are written
in a barycentric rotating frame with nondimensional units: the angular velocity of P1, P2, their
distance, and the sum of their masses are all set to the unit value. Thus, P1, P2 have scaled
masses 1 − µ, µ, and are located at (−µ, 0), (1 − µ, 0), respectively. The distances in Eq. (2) are
therefore

r2
1 = (x + µ)2 + y2, r2

2 = (x + µ − 1)2 + y2. (3)

For fixed µ, the energy of P3 is represented by the Jacobi integral which reads

J(x, y, ẋ, ẏ) = 2Ω(x, y) − (ẋ2 + ẏ2), (4)

and, for a given energy C, it defines a three-dimensional manifold

J (C) = {(x, y, ẋ, ẏ) ∈ R
4 |J(x, y, ẋ, ẏ) − C = 0}. (5)

The projection of J on the configuration space (x, y) defines the Hill’s curves bounding the
allowed and forbidden regions of motion associated with prescribed values of C. The restricted
three-body problem (RTBP) has five well-known equilibrium points, Lj , whose energy is Cj ,
j = 1, . . . , 5. This study considers the dynamics of the two collinear points L1 and L2, that
behave, linearly, as a saddle × center. There exists a family of retrograde Lyapunov orbits around
L1, L2, and two-dimensional stable and unstable manifolds emanating from them [36–38].

The RTBP is used alternatively to model the spacecraft motion in the Sun–Earth (SE)
and Sun–Mars (SM) systems, whose mass parameters are µSE = 3.0034 × 10−6 and µSM =
3.2268 × 10−7, respectively. As for the SE model, the generic periodic orbit about Lj, j = 1, 2,
is referred to as γj , whereas its stable and unstable manifolds are labeled W s(γj), Wu(γj),
respectively. In the SM model, the periodic orbits are called λj and their manifolds are W s(λj),
Wu(λj), j = 1, 2.
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(a) Planar circular RTBP. (b) Moon-perturbed Sun–Earth problem.

Fig. 2 Three- and four-body problems described in Sections 2.2 and 2.3.

2.3 The Moon-perturbed Sun–Earth Model

When the RTBP is used to model the motion in the Sun–Earth system, the Moon is considered
with the Earth as a whole. In this case, P2 is the Earth–Moon barycenter and m2 considers the
masses of the Earth and the Moon. Merging the Earth and the Moon is a good approximation,
and in general works well. However, it would be desirable to explicitly exploit the presence of
the Moon, at least in its neighborhood. Ballistic escape trajectories may take advantage of Moon
gravity assists to reduce the trans-Mars injection cost [34]. Therefore, a Moon-perturbed Sun–
Earth problem is formulated. This model preserves the structure of the SE RTBP, and considers
the lunar perturbation in the same way the Sun-perturbed Earth–Moon model is formulated in
literature [39]. Some assumptions are made: (i) the Sun, the Earth, and the Moon orbit in the
same plane; (ii) the Sun and the Earth move on circular orbits around their center of mass; (iii)
the Moon moves in a circular orbit around the Earth (Fig. 2(b)). With these assumptions the
model is not coherent but it catches basic dynamics of the restricted four-body problem (RFBP)
as the primaries have low eccentricities (0.0167 and 0.0549 for the Earth and Moon, respectively)
and the Moon is inclined on the ecliptic by 5 deg.

The equations of motion of this RFBP are

ẍ − 2ẏ =
∂ΩM

∂x
, ÿ + 2ẋ =

∂ΩM

∂y
, θ̇ = ωM (6)

with

ΩM (x, y, θ) = Ω(x, y, µSE) +
mM

rM
−

mM

ρ2
M

(x cos θ + y sin θ). (7)

The last term in Eq. (7) considers the fact that the Moon does not orbit around a fixed Earth, but
both the Earth and the Moon rotate around their common center of mass. The dimensionless
physical constants introduced to describe the Moon influence are in agreement with those of
the SE model. These are derived starting from primitive values [40]. Thus, the scaled distance
between the Moon and the Earth is ρM = ρ3/l = 2.5721 × 10−3, where ρ3 is the Earth–Moon
distance and l is the Sun–Earth distance; the scaled mass of the Moon is mM = m3/(m1 +m2) =
3.6942 × 10−8, where m1, m2, and m3 are the masses of the Sun, the Earth, and the Moon,
respectively; the angular velocity of the Moon is ωM = ωM/n − 1 = 1.2367 × 101, where ωM

and n are the angular velocities of the Earth–Moon and Sun–Earth systems, respectively [17].
The instantaneous location of the Moon is (1 − µSE + ρM cos θ, ρM sin θ), such that the distance
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(a) W s(γ2) and W u(γ2). (b) W u(γ2).

Fig. 3 Stable and unstable manifolds W s(γ2), W u(γ2), and a sample ballistic escape orbit.

between P3 and the Moon is

r2
M = (x − 1 + µSE − ρM cos θ)2 + (y − ρM sin θ)2. (8)

Equilibrium points, periodic orbits around them, their invariant manifolds, and the Jacobi
integral disappear when Eqs. (6) are considered. This also causes the loss of geometrical properties
of the phase space in the libration points region: the separatrix role of the invariant manifolds [5,6]
no longer applies. The reader can refer to [17] for the derivation of equations (6)–(8).

2.4 Ballistic Escape from the Earth

In the SE model, an energy value CSE . C2 is fixed such that γ1, γ2 exist, and the Hill’s regions
are opened at both L1 and L2. The periodic orbits and their invariant manifolds, W s,u(γ1,2),
can be computed with standard algorithms [41, 42]. In the following, we construct a ballistic
escape orbit exploiting W s(γ2) and Wu(γ2) in the same way translunar orbits are obtained in
Earth–Moon low energy transfers. The reader can refer to [25] for details.

Two surfaces of section are introduced to study the cuts of W s(γ2), Wu(γ2) (Fig. 3). Section
SA, making an angle ϕA (clockwise) with the x-axis and passing through the Earth, is considered
to cut W s(γ2) (in Fig. 3(a), ϕA = π/2). Section SB , inclined by ϕB (clockwise) from the x-axis
and passing through the Sun, is assumed for Wu(γ2) (in Fig. 3(b), ϕB = π/4). Cutting W s(γ2),
Wu(γ2) with SA, SB produces the curves ∂Γ s

2 , ∂Γu
2 which are diffeomorphic to circles [5, 6].

(For some values of CSE and ϕA, W s(γ2) may experience close encounters or collisions with
the Earth; in this case its section curve is no longer a circle). These cuts can be represented
in (r2, ṙ2) and (r1, ṙ1) coordinates, respectively (in Fig. 4(b), ∂Γ s

2 is reported). Both sections
represent two-dimensional maps for the flow of the RTBP. Indeed, any point on these sections
uniquely defines an orbit. This property holds as J (CSE) and SA,B lower the dimension of the
phase space by two. By definition, points on ∂Γ s

2 originate orbits that asymptotically approach
γ2 in forward time. Points inside ∂Γ s

2 generate transit orbits that pass from the Earth region to
the exterior region, whereas points outside Γ s

2 correspond to nontransit orbits (the manifolds act
as separatrices for the states of motion [5, 37,38]).



7

(a) Initial maneuver geometry. (b) ∂Γ s
2 , Γ̇ s

2 , l, l′, and point P = l ∩ l′.

Fig. 4 Ballistic escape trajectory performed with a tangential ∆vE maneuver and its associated section
point P .

Ballistic escape takes place on orbits inside both W s(γ2) and Wu(γ2). Let Γ̇ s
2 be the set of

points in the (r2, ṙ2)-plane that are enclosed by ∂Γ s
2 (see Fig. 4(b)). Points on Γ̇ s

2 are of interest.
More specifically, all points lying on

l = {(r2, ṙ2) ∈ SA, (r2, ṙ2) ∈ Γ̇ s
2 |r2 = RE + hE} (9)

are ballistic escape orbits that intersect the initial parking orbit (RE is the radius of the Earth).
This intersection happens only in the position space, as the initial parking orbit and the escape
trajectory show two different energy levels.

The pair {CSE , ϕA} uniquely defines the curve ∂Γ s
2 on SA (CSE defines the orbit γ2; ϕA

defines the surface SA to cut W s(γ2)). It can be shown that {CSE , ϕA} may be suitably tuned to
produce transit orbits tangent to the Earth-parking orbit [25]. Typical values of Jacobi constant
range in the interval CSE ∈ [3.0001, 3.0002] (C2 ≃ 3.0008 in the SE model); as for the surface of
section, ϕA ∈ [π/2, 3/2π]. With reference to Figure 4(a), these values guarantee that the stable
manifold W s(γ2), backward integrated, is tangent to the parking orbit; this yields tangential
insertion maneuvers: the initial ∆vE is aligned with the velocity of the circular parking orbit.
The search is therefore restricted to the points P ∈ SA defined by P = l ∩ l′, where l′ is the set
of points having zero radial velocity with respect to the Earth

l′ = {(r2, ṙ2) ∈ SA, (r2, ṙ2) ∈ Γ̇ s
2 |ṙ2 = 0}. (10)

As at this stage a first guess solution is designed to be later optimized, orbits sufficiently
close to P can also be considered. In particular, points P ′ ∈ SA are considered as well, such that
|P ′ − P | ≤ ε, where ε is a certain prescribed distance. (Numerical experiment show that values
of ε ranging from 10−6 to 10−5 guarantee convergence of subsequent optimizations). A number
of P ′ points can be generated by varying ϕA. These points, flown forward, generate orbits that
are close to W s(γ2) until the region about γ2 is reached. From this point on, the orbits get close
to Wu(γ2), and their intersection with SB is studied. The set labeled ESE , ESE ∈ SB, represents
the set of orbits close to Wu(γ2) whose pre-image E−1

SE , E−1
SE ∈ SA, is made up by P ′ points.

Trajectories defined on E−1
SE , ESE , are of interest, as they lead to ballistic escape orbits.
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(a) W s(λ1) and a sample capture orbit. (b) ESE and K̃SM sets.

Fig. 5 Stable manifold W s(λ1), its section curve ∂Λ̃s
1, Mars-capture set K̃SM , and the Earth-escape set

ESE . Note that if ESE and K̃SE intersected (i.e., ESE ∩K̃SM 6= ∅), low energy Earth–Mars transfers with
at most one deep-space maneuver would exist.

2.4.1 Ballistic Escape with Lunar Gravity Assist

The set ESE is obtained in the SE RTBP. When the set ESE is integrated in the Moon-perturbed
SE model, its pre-image E−1

SE shows negligible differences with that obtained in the RTBP. How-
ever, there are some orbits in ESE that experience close encounters with the Moon. With the
values of ϕA given above, close encounters with the Moon take place at θ ∈ [−π/3, −π/6],
where θ is the phase angle of the Moon in Eq. (8). For these orbits, the points P ′ ∈ SA have
almost the same coordinates (r2, ṙ2) as before, but the tangential velocity reduces significantly.
More specifically, when a lunar gravity assist is explicitly taken into account, the difference in
energy level between the parking orbit and the orbit on E−1

SE is reduced. This yields a lower ∆vE

needed to place the orbit on a trans-Martian transfer. On the other hand, the effect of the Moon-
perturbation is negligible when the spacecraft flies far from the Earth (the two-body model is
already a suitable approximation of the problem, as discussed in [11]). In Fig. 5(b) the set ESE

is reported. In the RTBP, this set is supposed to be inside ∂Γu
2 . When the orbits are integrated

in the Moon-perturbed SE model, the lunar gravity assist let ESE to go outside ∂Γu
2 .

2.5 Ballistic Capture at Mars

Ballistic capture at Mars is designed in analogy with ballistic escape from the Earth. To approach
Mars from the interior, a capture via L1 is considered. In the SM model, the energy level is
restricted to values CSM . C1 such that λ1 exists, and the Hill’s regions are opened at L1.
The manifold W s(λ1) is computed until a certain surface of section is reached. Section SC ,
making an angle ϕC (clockwise) with the x-axis and passing through the Sun, is considered to
cut W s(λ1) (in Fig. 5(a), ϕC = π/4). The corresponding section curve, ∂Λs

1, is represented in

(r1, ṙ1) coordinates. The set KSM = Λ̇s
2 is defined, where Λ̇s

1 ∈ SC is the set of points inside
∂Λs

1. The points belonging to KSM are the ones that lead to Mars ballistic capture. These indeed
generate orbits inside W s(λ1) that are the only ones that approach Mars from the interior.

The set KSM is defined on section SC in the SM model. However, it is possible to represent
KSM on SB defined in the SE model through a transformation K̃SM = M(KSM ). The operator
M maps states on SC (SM model) to states on SB (SE model). It is constructed in five steps: i)
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the states of the SM model are written in the inertial reference frame with origin at the Sun–Mars
barycenter; ii) the scaled variables are transformed into physical coordinates; iii) the origin is
moved to the Earth; iv) the variables are scaled considering the SE physical constants; v) the
variables are reported into the Sun–Earth rotating frame. The same conversion is also applied to
∂Λs

1, in order to obtain ∂Λ̃s
1 = M(∂Λs

1) on section SB from section SC . In Fig. 5(b) both K̃SM

and ∂Λ̃s
1 are reported.

Considering section SB alone, Earth–Mars low energy transfers could be defined by ESE ∩
K̃SM . If this intersection had not been empty, the manifolds of the two systems would have been
joined by a single deep-space maneuver performed at the patching point. Unfortunately Fig.
5(b) demonstrates that this intersection does not happen, nor it occurs in short-scale times [15].
(In [43] it is shown that these orbits may match in million years, which is not likely the case of
real space missions). In [11], a two-impulse strategy was proposed to match the two manifolds.
In [24], a low-thrust halo-to-halo rendez-vous was obtained. In [44], Earth–Mars halo-to-halo
transfers are designed by applying impulsive maneuvers at the periapsis of the manifolds. In this
work, low-thrust capture down to low-altitude orbits about Mars is proposed. This is achieved
through the introduction of low-thrust propulsion and the definition of special attainable sets.

3 Low-Thrust Propulsion and Attainable Sets

3.1 The Controlled, Planar Circular Restricted Three-Body Problem

To model the motion of a massless particle P3 under both the gravitational attractions of P1,
P2, and the low-thrust propulsion, the controlled RTBP is introduced

ẍ − 2ẏ =
∂Ω

∂x
+

Tx

m
, ÿ + 2ẋ =

∂Ω

∂y
+

Ty

m
, ṁ = −

T

Isp g0
, (11)

where T = (T 2
x + T 2

y )1/2 is the thrust magnitude, Isp the specific impulse of the thruster, and g0

the Earth gravitational acceleration at sea level. Continuous variations of the spacecraft mass,
m, are taken into account through the last of Eqs. (11). This increases the system order by one,
and causes a singularity when m → 0 (in addition to the well-known singularities arising when
P3 collides with P1 or P2).

The thrust law T(t) = (Tx(t), Ty(t))T, t ∈ [ti, tf ], in Eqs. (11) is not given like in [22, 23],
but rather in this approach it represents an unknown that is found by solving an optimal control
problem (ti, tf are the initial, final times, respectively). T is determined in such a way that a
certain state is targeted and a certain objective function is minimized at the same time. However,
at this stage the profile of T over time is assigned to build first guess solutions. Attainable sets
can be defined under this assumption.

3.2 Definition of Attainable Sets

Let yi be a vector representing a generic initial state, yi = (xi, yi, ẋi, ẏi,mi), and let φT(τ)(yi, ti; t)
be the flow of system of Eqs. (11) at time t starting from (yi, ti) and considering the thrust profile
T(τ), τ ∈ [ti, t]. With this notation, it is possible to define the generic point of a low-thrust
trajectory through

y(t) = φ
T

(yi, ti; t), (12)

where T(t) is the thrust law assigned. The low-thrust orbit, at time t, can be expressed as

γ
T

(yi, t) = {φ
T

(yi, ti; τ)|τ < t}, (13)
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where the dependence on the initial state yi is kept. The attainable set, at time t, can be defined
as

A
T

(t) =
⋃

yi∈Y

γ
T

(yi, t), (14)

where Y is a domain of admissible initial conditions. Attainable set in Eq. (14) is associated with
a generic Y; this set can be defined for the low-thrust capture at Mars (see Section 4).

The thrust law in Eq. (12) is now tailored for the problem at hand. When the spacecraft flies
in heliocentric orbit, the low-thrust propulsion is used to rendez-vous with Mars. In this context
the thrust is aligned with the velocity vector expressed in Sun-centered inertial coordinates. This
strategy increases the semimajor axis in a given time. When the spacecraft approaches Mars, the
low-thrust is used to achieve planet capture, and therefore the velocity is aligned with the velocity
expressed in the Sun–Mars rotating frame. This tangential thrust is opposite to the velocity to
maximize the variation of Jacobi energy. This is desirable to close the Hill’s curves and stabilize
the spacecraft about Mars. The thrust law used to define attainable sets is therefore

{

T(t) = T (v + r⊥)/|v + r⊥|, t ∈ [ti, trv]

T(t) = −T v/|v|, t ∈ [trv, tpc]
(15)

where v = (ẋ, ẏ), r⊥ = (−y, x), and trv − ti, tpc − trv are the durations of the rendez-vous and
planet capture phases, respectively. The term v+ r⊥ is the velocity expressed in the heliocentric
inertial frame [22]. It is worth mentioning that the assigned guidance law in Eq. (15) will be let
free to vary in the subsequent optimization step.

Thanks to the definition of A
T

(t), low-thrust propulsion can be incorporated in a three-
body frame using the same methodology developed for the invariant manifolds. More specifically,
invariant manifolds are replaced by attainable sets which are manipulated to find a transfer point
on a suitable surface of section. The idea is to mimic the role played by invariant manifolds. This
is explained below.

4 Constructing Earth–Mars Transfers with Ballistic Escape and Low-Thrust

Capture

The Earth–Mars transfer is made up by a ballistic escape orbit followed by a low-thrust rendez-
vous and subsequent planet capture at Mars. The ballistic escape orbit is constructed in the
SE model through the method explained in Section 2.4. Low-thrust rendez-vous and capture
is instead obtained in the SM model with Eqs. (11) and using attainable sets (Section 3). The
preliminary solution is defined by patching together these two “building blocks”. The only task
left is to specialize the domain of admissible conditions Y in Eq. (14) needed to define attainable
sets.

The transfer ends when the spacecraft reaches the periapsis of the final orbit around Mars.
Eccentricity and periapsis (apoapsis) radius of this orbit are fixed. The final state (i.e., the
periapsis point) is function of the argument of periapsis, yf = yf (ωM ). The domain of admissible
final states is

YM = {yf (ωM ) |ωM ∈ [0, 2π]}. (16)

The attainable sets for low-thrust capture are integrated backward starting from yf with the
control law in Eq. (15). Thus, for some t = (trv − ti) + (tpc − trv), the attainable set containing
low-thrust rendez-vous and capture trajectories is

AM
T

(−t) =
⋃

yf ∈YM

γ
T

(yf (ωM ),−t). (17)
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(a) Sample low-thrust capture trajectory. (b) ESE and ÃM

T
(−t) sets.

Fig. 6 A first guess low-thrust capture at Mars and the transfer point T M
−t = ESE ∩ ÃM

T
(−t). By

comparing Fig. 5(b) with Fig. 6(b), it is evident that introducing low-thrust capture allows having an
intersection (and therefore a transfer point) which was missing with ballistic capture.

Since the first part of the transfer is defined on ESE (Section 2.4), the transfer points, if any,
that generate low-energy, low-thrust Earth–Mars transfers are defined by

T M
−t = ESE ∩ ÃM

T
(−t), (18)

where ÃM
T (−t) stands for AM

T (−t) mapped into the SE model through the map M in Eq. (??).
A sample low-thrust capture trajectory and the associated attainable set are reported in Fig. 6.
As first guess solutions are being generated with Eq. (18) (to be later optimized in the n-body
model), small discontinuities can be again tolerated when looking for the transfer point. This
means that it is possible to consider two states such that ‖yA − yE‖ ≤ ε, where yE ∈ ESE ,

yA ∈ ÃM
T

(t), and ε is a prescribed tolerance. The greater ε is, the higher number of first guess
solutions is found; however, ε should be kept sufficiently small to permit the convergence of the
subsequent optimization step. Again, values of ε of about 10−6 have been considered in this work.

5 Trajectory Optimization in the n-Body Problem

5.1 The Controlled, Restricted n-Body Problem

Once feasible first guess solutions are found, they are optimized in a n-body problem frame.
Assuming that the trajectories of the planets are given, the controlled, restricted n-body problem
describing the spacecraft motion is

Ẍ =
∑

j ∈ B

G
mj

R3
j

(Xj − X) +
TX

m
,

Ÿ =
∑

j ∈ B

G
mj

R3
j

(Yj − Y ) +
TY

m
,

Z̈ =
∑

j ∈ B

G
mj

R3
j

(Zj − Z) +
TZ

m
,

ṁ = −
T

Isp g0
,

(19)
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where R = (X,Y,Z) and Rj = (Xj , Yj , Zj) are the positions of both the spacecraft and the j-th
planet, respectively, expressed in an inertial reference frame; Rj = |Rj − R|, G is the universal
gravitational constant, and mj is the mass of the j-th planet. In Eqs. (19), B is the set containing
the celestial bodies of interest; i.e., B = {Sun,Earth,Moon,Mars}. The last of Eqs. (19) is needed
to introduce the low-thrust control, and to take into account the variation of the spacecraft mass
m. The analytical ephemeris model provides the positions of the primaries as functions of time,
i.e., Xj = Xj(t), Yj = Yj(t), Zj = Zj(t). This model is an approximation of JPL ephemeris
DE405, where the positions of the planets are given as third-order polynomial of the epoch. It
has been shown that such model is quite accurate for preliminary trajectory design purposes [45].

The low-thrust version of the classic restricted n-body problem consists of a seventh-order
system of differential equations which describe the spatial problem. The spacecraft is allowed to
move in three dimensions and the real eccentricities and orbital inclinations of the planets are
considered. This model is therefore more accurate than the three-/four-body problems used to
derive the first guess solutions. Thus, in the optimization step, first guesses are both improved
(from a performance index point of view) and refined (from a dynamical model point of view).

5.2 Optimal Control Problem Statement

The optimal control problem is divided into three different stages according to the formalism
proposed in [46, 47]. This is because solving the ballistic escape, the heliocentric phase, and
the low-thrust capture, all with Eqs. (19) is not efficient as the terms Rj show variations of
several orders of magnitude. The n-body problem equations of motion are therefore written in
frames centered at the Earth, Sun, and Mars. The three stages in which the optimal control
problem is subdivided are: departure from the Earth; heliocentric orbit; arrival at Mars. Let
y = (x, y, z, ẋ, ẏ, ż,m) be a generic state. Without loosing any generality, the stage notation is
not used for the sake of brevity.

The optimal control problem aims at finding the guidance law, T(t), t ∈ [ti, tf ], that minimizes
the following performance index

J = ρ∆vE +

∫ tf

ti

T (t)

Isp g0
dt, (20)

where ∆vE is the magnitude of the Earth-escape maneuver. The second contribution to the
objective function is the propellant mass, mp, spent in the low-thrust phase. (This can be derived
by integrating the last of Eqs. (19)). The parameter ρ is a weight quantity introduced to balance
the two contributions in the objective function.

The left boundary condition has to constrain the initial state on a circular parking orbit of
radius ri = RE + hE about the Earth with velocity perpendicular to the position vector (RE is
the Earth’s mean radius). In inertial Earth-centered coordinates, the initial boundary condition
reads

ψi(yi, ti) :=

{

x2
i + y2

i + z2
i = r2

i ,

xiẋi + yiẏi + ziżi = 0.
(21)

Under these conditions, the magnitude of the trans-Mars injection maneuver is

∆vE =
√

ẋ2
i + ẏ2

i + ż2
i −

√

µE

ri
(22)

where µE is the Earth’s gravitational parameter (µE = 3.986 × 105 km3/s2). Analogously, the
final state yf expressed in inertial Mars-centered coordinates has to verify the right boundary
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condition

ψf (yf , tf ) :=



















x2
f + y2

f + z2
f = r2

f ,

xf ẋf + yf ẏf + zf żf = 0

ẋ2
f + ẏ2

f + ż2
f =

µM (1 + e)

rf

(23)

where rf and e are the periapsis radius and the eccentricity of the final orbit about Mars,
respectively; µM is the gravitational parameter of Mars (µM = 4.282× 104 km3/s2). In addition,
the following path constraint is imposed

T (t) ≤ Tmax, (24)

to model the saturation of the low-thrust engine. Eqs. (20)–(24) define the optimal control
problem for the Earth–Mars transfer. This problem may be solved with a variety of methods. In
this work we have faced it with direct transcription and multiple shooting.

5.3 Solution by Direct Transcription and Multiple Shooting

The optimal control problem is transcribed into a nonlinear programming problem by means
of a direct approach [48]. This method generally shows robustness and versatility, and does not
require explicit derivation of the necessary conditions of optimality; its convergence to a final
solutions is also less sensitive to variations of the first guess solutions [46]. More specifically, a
multiple shooting scheme is implemented [49]. With this strategy, the n-body equations of motion
are forward integrated within N − 1 intervals in which [ti, tf ] is split. This is done assuming N
points and constructing the mesh ti = t1 < · · · < tN = tf . The solution is discretized over these
N grid nodes; i.e, yj = y(tj). The matching of position, velocity, and mass is imposed at the
endpoints of the intervals in the form of defects as

ηj = ȳj − yj+1 = 0, j = 1, . . . , N − 1 (25)

with ȳj = φT(τ)(yj , tj ; tj+1), τ ∈ [tj , tj+1]. This is done in each of the three stages in which
the problem is divided, and matching of position, velocity, and mass is also imposed at their
endpoints. To compute T(τ) a second-level time discretization is implemented by splitting each
of the N − 1 intervals into M − 1 subsegments. The control is discretized over the M subnodes;
i.e., Tj,k, j = 1, . . . , N , k = 1, . . . ,M . A third-order spline interpolation is achieved by selecting
M = 4. Initial and final time t1, tN , are included into the nonlinear programming variable, so
allowing the optimization of variable-time transfers.

The transcribed nonlinear programming problem finds the states and the controls at mesh
points (yj and Tj,k) in the respect of Eqs. (21)–(24) and minimizing the performance index (Eq.
(20)). It is worth stressing that not only the initial low-thrust portion, but rather the whole
transfer trajectory is discretized and optimized, so allowing the low-thrust to act also in regions
preliminarily made up by coast arcs. To find accurate optimal solutions without excessively
increasing the computational burden, an adaptive nonuniform time grid has been implemented.
When the trajectory is close to either the Earth or Mars the grid is refined, whereas in the
intermediate phase, where the Sun attraction mostly governs the motion of the spacecraft, a
coarse grid is used. This is done by hand; the implementation of an automatic mesh refinement
scheme would be beyond the scopes of the paper. The optimal solution found is assessed a
posteriori by forward integrating the optimal initial condition using an eighth-order Runge–
Kutta–Fehlberg scheme (tolerance set to 10−12) by cubic interpolation of the discrete optimal
control solution.
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6 Optimized Transfer Solutions

The optimal transfers presented connect the following orbits

– a circular orbit around the Earth at an altitude of hE = 167 km;
– a circular orbit around Mars at an altitude of hM = 10000 km.

The latter has been chosen for the sake of comparison (it corresponds to the arrival orbit of a
known example where ballistic capture at Mars is studied [11]), though the method is formulated
to reach any orbit about Mars once eccentricity and periapsis (apoapsis) altitude are specified.
The results are summarized in Table 1 where ‘fg’ is the first guess and ‘sol’ is the corresponding
optimized solution. Last two rows represent the reference, impulsive solutions.

Table 1 is organized as follows. In the second column, ∆vE is the magnitude of the initial
impulsive maneuver. This is a direct output of the optimization step and is calculated through
Eq. (22). In the third column, ∆vM is the magnitude of all impulsive maneuvers needed to reach
the final orbit around Mars (this applies to the second reference solutions only, where three
maneuvers are considered). In the fourth column, ff is the propellant mass fraction needed for
the rendez-vous and the low-thrust capture (this number does not take into account the initial
impulsive maneuver). For the optimized transfers, ff is calculated as

fF =
1

mTM

∫ tf

ti

T (t)

Isp g0
dt, (26)

where mTM is the mass injected into the trans-Mars orbit (mTM = 1000 kg). For the reference
solution, ff is calculated as

ff = 1 − exp

(

−
∆vM

Iht
sp g0

)

, (27)

where Iht
sp = 300 s is the specific impulse of high-thrust engines. In the fifth column, ft represents

the overall mass fraction necessary to carry out the transfer. For the optimized solutions, ft is
calculated through

ft =
mp

mi
=

[

1 − exp

(

−
∆vE

Iht
sp g0

)]

+
1

mi

∫ tf

ti

T (t)

I lt
sp g0

dt, (28)

where mi is the initial mass (calculated to inject mTM = 1000 kg with a ∆vE maneuver), and
I lt
sp = 3000 s is the specific impulse of the low-thrust engines. The transfer time, ∆t, is reported

in the sixth column. A maximum available thrust of Tmax = 0.25N has been considered in Eq.
(24). Sol 2 is reported in Fig. 7.

6.1 Discussion

In Table 1, the two optimized solutions show a shorter flight time and a higher mass consumption
than the corresponding first guesses. This is because the optimal control problem spreads the
discontinuity at the transfer point P ; more propellant than the first guess is spent, and the flight
time is shorten. In addition, sol 2 outperforms sol 1 in terms of both flight time and ∆vE . This is
due to the fact that fg 2 is designed to take explicitly advantage of a lunar flyby (see Fig. 7(c)).
This feature reduces the magnitude of ∆vE by 110m/s and gives reasons for the introduction of
the Moon-perturbed SE model presented in Section 2.3. Moreover, the flight time is reduced by
shrewdly tuning the angles ϕB , ϕC that define the plane where T M

−t = ESE ∩ ÃM
T

(−t) is defined.

Optimized solutions offer lower overall mass fraction ft than reference solutions. This happens
for two reasons. Firstly, I lt

sp is one order of magnitude greater than Iht
sp . Secondly, the first guess
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Table 1 Low-energy, low-thrust transfers to low-Mars orbits. First guesses and their optimized solutions
are reported together with two impulsive reference solutions (H: Hohmann).

Type ∆vE [m/s] ∆vM [m/s] ff [adim.] ft [adim.] ∆t [days]

fg 1 3260 – 0.150 0.719 756

fg 2 3150 – 0.150 0.709 553

sol 1 3253 – 0.199 0.734 703

sol 2 3141 – 0.200 0.724 496

H 3620 1878 0.472 0.846 259

[11] 3554 1915 0.478 0.844 823

solutions exploit the dynamics of the three-/four-body problems in which they are designed,
and the optimized solutions efficiently use the 5-body problem accordingly. The flight times lie
between those of the reference transfers. From Fig. 7(e) it can be inferred that the thrust profile
respects the saturation constraint described by Eq. (24). The control profile recalls an on-off
structure, which is valid for both the rendez-vous and low-thrust capture phases. We expect that
with arrival and departure orbits with nonzero eccentricity, the structure of the transfer would
not be too different from the solutions presented in this study, though a shorter flight time and
a lower propellant mass fraction could be achieved. As for the inclination of the departure and
arrival orbits, the optimized solution may have nonzero inclination (±15 deg determined through
numerical experiments) even though the first guess is planar. If polar orbits about Mars are of
interest, the described method is still valid provided that the first guess is constructed starting
from high inclined arrival orbits.

7 Conclusions

A method to incorporate low-thrust propulsion into standard invariant manifold technique to de-
sign interplanetary transfers has been presented in this paper. This is done through the definition
of special attainable sets that are manipulated together with invariant manifolds. This procedure
recalls the one used in the patched restricted three-body problems approximation, and uses at-
tainable sets to fill the gap in systems with nonintersecting manifolds (Sun–Earth and Sun–Mars
systems in this case). The proposed transfers are made up by three phases: a ballistic escape, a
low-thrust planetary rendez-vous, and a low-thrust capture. The ballistic escape exploits both
a lunar gravity assist and the Sun–Earth gravitational attractions. This is defined in a special
Moon-perturbed Sun–Earth problem developed purposely. The method has been specialized to
Earth–Mars transfers although it can be used in a broader context. Efficient solutions have been
shown to support the validity of the presented approach.
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(a) First guess solution (SE reference frame). (b) Optimal trajectory (heliocentric frame).

(c) Ballistic escape with lunar gravity assist (in-
ertial Earth-centered frame).

(d) Low-thrust capture (inertial Mars-centered
frame).

(e) Optimal guidance law. (f) Mass consumption trend.

Fig. 7 The optimized transfer corresponding to sol 2 in Table 1.
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