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Abstract

We model the transmission of a message on the complete graph with n vertices and lim-
ited resources. The vertices of the graph stand for servers that may broadcast the message
at random. Each server has a random emission capital that decreases at each emission.
Given an initially informed server, the question is to decide of the number of servers that
receive the information before the capital of all the informed servers is exhausted. We estab-
lish limit theorems, as n → ∞, for the proportion of visited vertices before exhaustion and
for the total duration. The analysis relies on a description of the transmission procedure
as a dynamical selection of successful nodes in a Galton-Watson tree with respect to the
success epochs of the coupon collector problem. To the best of our knowledge, this is the
first time such a transmission model and such a description are considered. A similar study
is possible for expander graphs. Due to the lack of space, we will do it in a separate paper.
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1 Introduction

Dissemination of viruses and transmission of information in computer networks gave rise to
many practical as well as theoretical investigations over the two last decades (see [1, 5, 9, 10,
13, 15]).

In this paper, we model the transmission of a message on the complete graph with n vertices
and limited ressources. Every vertex represents a server, which can be in one of three states:
inactive (it did not receive the message yet), active (it has already received it, and is able to
transmit it), exhausted (it has already received it, but cannot transmit it anymore because
it has exhausted its own capital of emissions). Each server Si has a random emission capital
Ki. The message is initially received from outside by one server, which is then turned from
the inactive state to the active one (if it has a positive emission capital) or exhausted (if its
emission capital is 0), though the n− 1 other servers are inactive. At each integer time, one of
the active servers (say Si) casts the message, it looses one unit of its own emission capital Ki,
and it selects the target at random among the n servers. If the target is inactive, it discovers
the information, it becomes itself active or exhausted according to its own emission capital. If
not, this broadcast is unsuccessful and nothing else happens. When an active server exhausts
its emission capital, it enters the exhausted state. The transmission ends at a finite time τn,
which is at most equal to n plus the sum of all initial capitals.

From a practical point, the graph may be thought as a wireless network, the vertices of which
are battery powered sensors with a limited energy capacity. We refer the reader to [1, 5, 9, 10]
for applications of graph theory to the performance evaluation of information transmission in
wireless networks.

Here we carefully describe the asymptotic behavior of the proportion of visited vertices
at the end of the process when n tends to the infinity. The mathematical analysis relies on
a twofold structure: a subtree of the Galton-Watson tree, which models the vertices reached
by the emission procedure, and the success epochs of the coupon collector problem, which
model the successful transmissions. Put it in a probabilistic way, we propose a coupling of the
transmission model as a marginal tree of the Galton-Watson tree, obtained by pruning some
of the nodes according to the coupon collector problem. Such a coupling provides a direct
interpretation of the scenarios when the network ceases broadcasting in a macroscopic time:
basically, these scenarios correspond to the extinction event in the Galton-Watson tree. On
the survival event, we manage to specify the first-order behavior (in n) of the exhaustion time
τn and of the proportion of visited nodes. A central limit theorem is established as well for
τn under suitable square-integrability conditions on the distribution of the capital of a given
vertex. We refer to [2, 11] for advanced results concerning the coupon collector problem.

We also refer to [16] and [15] for related transmission models. Machado et al. [16] consider
the case where Ki = 2 and prove partial transmission results. Obviously, our approach extends
this result, as constant capitals are a specific case of random ones. A specific interest of random
capitals consists in allowing Ki to be 0 with a non-trivial probability: as we shall see below, a
quick stop of the transmission process then occurs with a positive probability, as the extinction
event of the Galton-Watson tree. As in [16], Kurtz et al. [15] investigate the case when the
Ki’s are constant, but possibly larger than 2, time running continuously. In their model, there
is one particle at each vertex of the graph at time 0; one of them is active, the others are
inactive. The active particle begins to move as a continuous-time, rate 1, random walk on the
graph; as soon as any active particle visits an inactive one, the latter becomes active and starts
an independent random walk. Each active particle dies at the instant it reaches a total of L
jumps (consecutive or not) without activating any particle. Each active particle starts with L
lives and looses one life unit whenever it jumps on a vertex which has already been visited by
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the process.
The note is organized as follows. The basic model is presented in Section 2. In Section

3, we provide an alternative construction based on a pruning procedure of the Galton-Watson
tree. Main results and sketches of proofs are given in Section 4. Prospects are discussed in
Section 5.

2 A formal definition of the dynamics

Conditionally on the states up to time t ∈ N, the total emission capital evolves according to

Sn(t+ 1) = Sn(t) +

{

−1
K(t)− 1

with probability

{

Nn(t)/n
1−Nn(t)/n

,

with K(t) the initial emission capital of the target activated at time t+1, and Nn(t) the number
of servers which have received the information by time t; respectively, in the above cases,

Nn(t+ 1) =

{

Nn(t)
Nn(t) + 1

.

The variables (K(t), t ∈ N) are i.i.d., the common distribution being denoted by µ. The
transmission process lasts for a duration τn which is the first time t when the emission capital
is equal to 0.

A natural question consists in determining whether the information will reach all servers,
or a proportion of them only. More precisely: Define the full transmission event

Transn = {Nn(τn) = n},

that stands for “all the servers finally receive the information”. Then, three regimes are ex-
pected:

• (FT; full transmission) This regime is defined by: P(Transn) → 1 as n → ∞.

• (PT; partial transmission) P(Transn) → 0 as n → ∞.

• (ST; successful transmission) limn→∞ P(Transn) ∈ (0, 1).

In all cases, the limits
lim
n→∞

Nn(τn)/n, lim
n→∞

τn/n

are to be evaluated.
Fundamental questions of interest are: Under which conditions on the tails of K does one

of the above regimes hold? In each of these cases, what is the magnitude of the random
fluctuations, and what is their asymptotic law?

3 Labeled Galton-Watson tree

In this section, we give an alternative construction of the information transmission process.
We start, for each n, with a Galton-Watson tree with labels, and define a pruning procedure.
The pruning uses the labels, and it corresponds in fact to a coupon collector process with
an independent Galton-Watson tree. In Proposition 3.1, we will see that the labeled Galton-
Watson tree yields an equivalent description of the process defined by the dynamics.
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More precisely:
Let W = ∪k≥0(N

∗)k be the set of all finite words on the alphabet {1, 2, . . .}. Its elements are of
the form w1w2 . . . wk, wi ∈ N

∗ when k ≥ 1, and, for k = 0, (N∗)k reduces to the empty word ∅,
that we call the root. We then denote by |w| = k the length of w = w1w2 . . . wk ∈ W . (With
|∅| = 0.) For w,w′ ∈ W , we write w < w′ if: |w| < |w′|, or |w| = |w′| and w≤lexw

′ in the
lexicographic order. We denote by 4 the usual predecessor relation in W, that is w 4 w′ if w
is a prefix of w′.

Let (K(w), w ∈ W) be a family of i.i.d. random variables on N = {0, 1, 2, . . .} with common
law µ. Assume µ(0) < 1 and µ(1) < 1 for a nontrivial setup. The associated Galton-Watson
tree T GW is the set of w ∈ W such that, for all i = 1, . . . , |w|, wi ≤ K(v) with v the predecessor
of w of length i− 1. (In other words, given a parent w′ at the (i− 1)th generation, that is w′ is
a word of length i− 1, the children of w′ are the words w′1, . . . , w′K(w′), of length i, obtained
by concatenation.) In particular, ∅ ∈ T GW. Denote by ZGW

k the size of the kth generation of
this tree, ZGW

k = card {w ∈ T GW : |w| = k}, which is given by

ZGW
k+1 =

∑

v∈T GW,|v|=k

K(v), ZGW
0 = 1.

It is well known that the survival event Surv
GW =

⋂

k{Zk ≥ 1} = {card T GW = ∞} has
complement probability

σGW = 1− P(SurvGW) =

{

= 1 if EK ≤ 1,
< 1 if EK > 1.

On the same probability space, we consider an independent coupon collector process with
n images (n ≥ 1): Let ∆i,n, i = 1, . . . n− 1, be independent, geometrically distributed r.v.’s on
N
∗ with parameter 1− i/n (success probability) respectively. The success epochs are

T1,n = 0, Ti,n =

i−1
∑

j=1

∆j,n, i = 2, . . . n,

and the counting function is

Nn(t) =

n
∑

i=1

1{Ti,n≤t}, t = 0, 1, . . .

In fact, Nn(t) represents the number of servers having received the information by time t (note
that 1 ≤ Nn(t) ≤ min{t+ 1, n}).

For any fixed integer n, with these two ingredients, we can define the transmission process
together with the transmission time length τn. Let us start with an informal description. We
browse a part of the Galton-Watson tree following the order <, and we paint the nodes in ◦
or in △ according to the coupon collector process (success of failure); we only browse nodes
which are in stand-by; as soon as a node is painted ◦, its number of children nodes in T GW is
revealed, and these children are put in stand-by. We then move to the next node in stand-by
(next for <). The procedure runs untill there are no more nodes in stand-by.

Here is a precise definition. Recursively for t = 0, 1, . . ., we construct X(t) ∈ T GW, and
disjoint T ◦(t), T ⊠(t), T △(t) ⊂ T GW as follows. (X(t) encodes the vertex where the t-th tenta-
tive emission takes place, T ◦(t) denotes the set of servers already informed by time t, T ⊠(t) is
the set of tentative emissions scheduled but not yet performed at time t, T △(t) is set of failed
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emissions, i.e. those performed by time t for which the target was already informed.) Start
with

X(0) = ∅, T ◦(0) = {∅}, T ⊠(0) = {w ∈ T GW : w ≤ K(∅)}, T △(0) = ∅,

with ∅ denoting the empty set. With the process (X(t), T ◦(t), T ⊠(t), T △(t)) at time t, its value
at the next step t+ 1 is defined by:

• If T ⊠(t) is nonempty, we let X(t+ 1) be its first element,

X(t+ 1) = inf{w ∈ T ⊠(t)}, denoted by v

to ease the notations, and we perform a test:

– If Nn(t+ 1) = Nn(t) + 1, we define

T ◦(t+ 1) = T ◦(t) ∪ {v},
T ⊠(t+ 1) =

(

T ⊠(t) \ {v}
)

∪
{

v1, v2, . . . , vK(v)
}

,
T △(t+ 1) = T △(t).

(1)

(Above, the notation vk denotes the word of length |v| + 1 obtained by concatena-
tion.)

– If Nn(t+ 1) = Nn(t), we define

T ◦(t+ 1) = T ◦(t),
T ⊠(t+ 1) = T ⊠(t) \ {v},
T △(t+ 1) = T △(t) ∪ {v}.

(2)

• If T ⊠(t) is empty, we set τn = t, and the construction is stopped (as well as the trans-
mission). The set T ◦(t) = T ◦(τn) = T ◦(∞) is the set of servers finally informed. Note
that τn ≤ Tn,n is a.s. finite.

We observe that for all t, T ◦(t) is a tree, as well as T ◦(t) ∪ T ⊠(t). Moreover, T ⊠(t) ∪ T △(t) is
a cutset of T GW.
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∅

X(t)

Figure 1. The Galton-Watson tree is represented up to the 4th generation.

T ◦(t), T ⊠(t) and T △(t) and X(t) are represented at time t = 11.

We now relate the above construction to the dynamical model for transmission. Consider
a new, independent, i.i.d. sequence (K̄i, i ∈ N \ {0}) with law µ, and define, for i = 1, . . . n,

Ki =

{

K(X(Ti,n)) if i ≤ card T ◦(∞),
K̄i if i > card T ◦(∞),

and also

Sn(t) :=

Nn(t)
∑

i=1

Ki − t, t ≥ 0. (3)

By construction, we have

Nn(t) = card T ◦(t), Sn(t) = card T ⊠(t). (4)

Proposition 3.1 The sequence (Ki, i ≤ n) is independent, identically distributed with law µ,
and is independent of (Ti,n, i ≤ n). Moreover,

τn = inf{t ≥ 0 : Sn(t) = 0}.

� The formula for τn is easily checked by (4). We now investigate the distribution of the
sequence (Ki, i ≤ n). Below, we denote by Fw = σ(K(w′), w′ ≤ w) for w ∈ W. On the
event A = {(T1,n, . . . , Ti,n) = (k1, . . . , ki), X(ki − 1) = w, τn ≥ ki}, 0 = k1 < · · · < ki and
w ∈ W , |w| ≤ ki − 1, X(Ti,n) coincides with an Fw-measurable r.v., denoted by χ, which
satisfies w < χ almost-surely. (This follows from the monotonicity of the browsing procedure.)
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Similarly, all the variables K(X(Tj,n)), 1 ≤ j ≤ i − 1 coincide with Fw-measurable r.v.’s on
A. Clearly, K(χ) is independent of Fw ∨ σ(T1,n, . . . , Tn,n) and has µ as distribution, since
the r.v.’s (K(w′), w′ ∈ W) are i.i.d and are independent of the success epochs (T1,n, . . . , Tn,n).
Obviously, the event A belongs to Fw ∨ σ(T1,n, . . . , Tn,n). This proves that, for any bounded
and measurable Borel function φ,

E
[

φ(Ki)1{Ti,n≤τn}|(Tj,n, 1 ≤ j ≤ n), (Kj , 1 ≤ j ≤ i− 1)
]

= 1{Ti,n≤τn}

∫

N

φdµ

On the event {(T1,n, . . . , Ti,n) = (k1, . . . , ki), τn < ki}, Ki coincides with K̄i, which is obviously
independent of σ((Tj,n, 1 ≤ j ≤ n), (Kj , 1 ≤ j ≤ i − 1)), so that the above equality also holds
with Ti,n ≤ τn replaced by Ti,n > τn. �

The above proposition shows that the process we have constructed here, corresponds to
the description of the information transmission process given in Introduction. We then have
a graphical construction of the transmission process from a Galton-Watson tree and a coupon
collector process. The next one indicates how we can use this coupling to study the transmission
process.

Proposition 3.2 Let τ̂k = max{t ≥ 0 : |X(t)| = k}. Then

card T ⊠(τ̂k) ≤ ZGW
k+1 . (5)

Hence,

card

(

(

T ◦(τ̂k) ∪ T ⊠(τ̂k)
)

)

≤
k+1
∑

ℓ=0

ZGW
ℓ . (6)

� The inequalities directly follow from the construction. �

Remark 3.3 We emphasize that the coupling with the Galton-Watson tree could be modified
according to specific purposes. For instance, the node X(t) could be chosen as a random vertex
among all the vertices belonging to T ⊠(t) and not as the smallest vertex in T ⊠(t). In some
sense, this would be a more natural selection procedure as the active broadcasting site in the
original model is chosen randomly itself. Such a genealogy would favor sites with a large number
of children, so that the resulting global shape of the tree T ◦ would not be so flat as it is under
the coupling we described above. Anyhow, there is no need to consider such a modification of
our coupling for the results we prove below: in what follows, we thus make use of the original
coupling as its ordered structure is quite comfortable to handle.

4 Results and sketch of Proofs

Lemma 4.1 We have the following convergence in law of sequences of processes on the Sko-
rohod space:

(i) On D([0, 1)),

n−1/2
(

T[nq],n − n ln
1

1− q

) law
−→ B

(

σT (q)
2
)

,

with B a standard Brownian motion, and

σT (q)
2 =

q

1− q
+ ln(1− q) > 0.
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(ii) Denote Nn(t) = Nn([nt]). Then, on D(R+),

n−1/2
(

Nn(ns)− n(1− e−s)
) law
−→ B

(

σN (s)2
)

,

with B a standard Brownian motion, and

σN (s)2 = e−s(1− e−s)− se−2s > 0.

Both limits are independent increments Gaussian processes with zero mean, and they are mar-
tingales.

� Assertion (i) is a direct application of the invariance principle for triangular array of inde-
pendent, but not i.d., square-integrable r.v.’s. (See Dacunha-Castelle and Duflo [4, Théorème
7.4.28] or Jacod and Shiryaev [8, Chapter VII, Theorem 5.4].) The variance is computed as a
Riemann sum,

σT (q)
2 = lim

n

1

n

qn
∑

i=1

Var(∆i,n) = lim
n

1

n

qn
∑

i=1

i/n

(1− i/n)2
=

∫ q

0

y

(1− y)2
dy.

Assertion (ii) follows from (i), using that Nn(·) and T[n·],n are reciprocal in a generalized sense.
With f(q) = − ln(1 − q), f−1(s) = 1 − e−s, we have σN (s)2 = σT (f

−1(s))2 × [f ′ ◦ f−1(s)]−2.
(See Billingsley [3, Theorem 17.3]). �

The next lemma shows that when the Galton-Watson tree is infinite, transmission takes
place on a macroscopic time level.

Lemma 4.2 There exists ε0 > 0 such that for all ε ∈ (0, ε0),

lim
n→∞

P(τn ≥ nε, SurvGW) = P(SurvGW) = 1− σGW.

� The claim being trivial for σGW = 1, we just need to consider the case when EK > 1. Letting
here k = ln2 n, we estimate

P(τn ≤ nε, SurvGW) ≤ P(Nn(k) ≤ k) + P(k < τn ≤ nε, SurvGW), (7)

using that {Nn(k) = k + 1, SurvGW} ⊂ {τn > k, SurvGW} which implies that

P{Nn(k) ≤ k, SurvGW} ≥ P{τn ≤ k, SurvGW}.

We start with

P(Nn(k) ≤ k) = 1− (1− 1/n)× . . . (1− k/n)

≤ 1− (1− k/n)k

∼ k2/n as k2/n → 0. (8)

Fix ε > 0 with (1− 2ε)EK > 1. It remains to prove the convergence

P(k < τn ≤ nε, SurvGW) =
nε
∑

i=k

P(τn = i, SurvGW) ≤
nε
∑

i=k

P(Sn(i) ≤ 0) → 0, (9)

where the inequality holds since card T ⊠(i) = Sn(i) holds provided i ≤ τn. We start to show
that

P(Nn(i) < (1− 2ε)i) ≤ exp(−Cεi) , ∀i ≤ nε.
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Indeed, using the short notation Ts,n for T[s],n, the above probability is equal to

P(T(1−2ε)i,n > i) ≤ P(T̄ ε
(1−2ε)i > i)

with T̄ ε
(1−2ε)n a sum of a number (1− 2ε)n of i.i.d. geometric r.v.’s with parameter 1− ε; now,

the desired estimate follows from Chernov’s bound. Next, we note that, for z ∈ (0, 1), i ≤ nε
and G(z) = EzK ,

P(Sn(i) ≤ 0, Nn(i) > (1− 2ε)i) ≤ E[zSn(i);Nn(i) > (1− 2ε)i]

≤ z−i
E[zR((1−2ε)i);Nn(i) > (1− 2ε)i]

≤ z−iG(z)(1−2ε)i.

Since (1 − 2ε)EK > 1, we have r := z−1G(z)(1−2ε) < 1 by picking z < 1 close enough to 1.
Thus, the left-hand side of (9) is bounded by

P(k < τn ≤ nε) ≤
nε
∑

i=k

[ri + exp(−Cεi)] ≤ 2(1− r1)
−1rk1 ,

with r1 = max{r, exp(−Cε)} < 1. Collecting the above estimates in (7) and taking k = ln2 n,
we conclude that P(τn ≤ nε) = O(n−a) for all a ∈ (0, 1). �

For EK > 1, define θ ∈ (0,∞) by

1− e−θ

θ
=

1

EK
. (10)

Extend this definition by θ = 0 if EK ≤ 1, θ = ∞ if EK = ∞. The function EK 7→ θ is
increasing from [0,∞] to [0,∞]. Let also

p = 1− e−θ ∈ [0, 1],

and note from (10), that when EK ∈ (1,∞), p = 1− e−θ ∈ (0, 1) is the unique solution of

p EK = − ln(1− p), (11)

Theorem 4.3 Let EK ∈ (0,∞].
(i) As n → ∞,

τn/n −→ θ 1
SurvGW

in probability, with θ defined by (10), though

Nn(τn)/n −→ p 1
SurvGW

in probability, with p = 1− e−θ.
(ii) If EK ≤ 1,

lim
n→∞

τn = lim
n→∞

Nn(τn) =
∑

k≥0

ZGW
k

in probability.
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� (i) Assume first EK < ∞. Then, we can apply the law of large numbers to the process

R(m) =
m
∑

i=1

Ki, (12)

to show that P-a.s., R(nq)/n → qEK uniformly on [0, 1]. Observe that

Sn(t) = R(Nn(t))− t. (13)

In addition to Lemma 4.1, this shows that, in probability,

Sn(ns)/n −→ (1− e−s)EK − s, uniformly on compacts of R+ (14)

as n → ∞. Now, we write

P(|τn − nθ 1
SurvGW | > nδ) = P(|τn − nθ| > nδ, SurvGW) + P(τn > nδ, (SurvGW)c)

≤ P(τn < nε, SurvGW) + P(|τn − nθ| > nδ, SurvGW, τn ≥ nε)

+P(τn > nδ, (SurvGW)c)

where the first term of the right-hand side vanishes from lemma 4.2. The last term vanishes
because τn is smaller than the extinction time of the Galton-Watson process, which is a.s.
finite. Since τn is the first time such that Sn(τn) = 0 (except if τn = Tn,n, an event of small
probability), the second term vanishes too by (14). This ends the proof for finite EK. In the
opposite case, for a truncation level L > 0 we consider K(L)(w) = min{K(w), L}, we can apply

the above proof, and we obtain limn τ
(L)
n /n = θ(L) in obvious notations. Since τ

(L)
n ≤ τn and

limL→∞ θ(L) = θ = ∞, the first claim is proved by letting L → ∞. For the second one, note

that N
(L)
n (τ

(L)
n ) ≤ Nn(τn), Surv

GW(L)
ր Surv

GW as L is increased, and the proof is clear.
(ii) follows directly from (8). �

Theorem 4.4 Assume EK > 1,EK2 < ∞ and P(K ≥ 2) > 0. Let σ2
K denote the variance of

K. As n → ∞, we have conditionnally on Surv
GW,

n−1/2
(

τn − nθ
) law
−→ N (0, σ2

τ ),

with σ2
τ = [(1− p)EK − 1]−2[pσ2

K + (1− p)2(EK)2σ2
N ].

� By the invariance principle, n−1/2
(

R(nq)−nqEK
) law
−→ B̄(qσ2

K), with B̄ a Brownian motion.
By independence of (Ki)i and (∆i,n)i, the vector

n−1/2

(

R(nq)− nqEK
Nn(ns)− n(1− e−s)

)

law
−→

(

B̄(qσ2
K)

B
(

σN (s)2

)

as n → ∞, where B and B̄ are independent. Inserting this in the relation R(Nn(τn)) = τn,
which holds with probability going to 1, we obtain the result. �

The above Theorem extends results in [15, 16]. We do not describe random fluctuations
any further, but we turn to illustrate the regimes of successful/full transmission.

Theorem 4.5 If there exist c > 0 and α ∈ (0, 1) such that lim infn→+∞[nα
P(K ≥ n)] ≥ c,

then, P(Transn) ≡ P(Nn(τn) = n) → P(SurvGW) as n → +∞.



EXTENDED ABSTRACT 10

� Clearly, E(K) = +∞. By Theorem 4.3, for any ε > 0, P(Nn(τn)/n ≥ 1− ε, SurvGW) →
P(SurvGW) as n → +∞. Thus, for any β ∈ (1, 1/α),

lim inf
n→+∞

P
(

Nn(τn) = n, SurvGW
)

≥ lim inf
n→+∞

P

(⌊n/2⌋
∑

i=1

Ki ≥ Tn,n, Surv
GW

)

.

≥ lim inf
n→+∞

P

(⌊n/2⌋
∑

i=1

Ki ≥ nβ , Tn,n ≤ nβ , SurvGW

)

.

By Markov inequality, P(Tn,n > nβ) → 0 as n → +∞. Moreover, P(K1 ≥ nβ) ≥ (c/2)n−αβ for
n large enough, so that, for n large,

P

(⌊n/2⌋
⋂

i=1

(Ki < nβ)

)

≤
(

1−
c

2nαβ

)⌊n/2⌋
∼ exp

(

−
c

4
n1−αβ

)

.

We deduce that lim infn→+∞ P(Nn(τn) = n, SurvGW) = P(SurvGW).
Finally, on (SurvGW)∁, Nn(τn)/n → 0 in probability, so that P(Nn(τn) = n, (SurvGW)∁) →

0. �

5 Conclusion and further research aspects

We have proposed and analysed a new probabilistic model for the information transmission on
complete graphs under capital emission constraints. The description of the limit behavior for
the proportion of vertices visited at the end of the process relies on a coupling with the Galton-
Watson tree: Theorem 4.3 specifies the (PT) regime and Theorem 4.5 gives typical conditions
for (FT) and (CT) regimes according to the survival probability of the Galton-Watson tree.
Several interesting subsequent questions are to be investigated in further works: (i) What is
the typical number of needed emissions before a given node of the graph is reached? (ii) What
is the scaling limit of the tree T ◦(τn)? We also plan to conduct experimentations on real com-
puter networks and to extend this analysis to expander graphs [7]. Finally, another prospect is
to investigate the case when the information is transmitted in a dynamical environment, that
is when the emission capitals Ki (1 ≤ i ≤ n) depend on some time-dependent environment
process.
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