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Abstract. This paper deals with linguistic constraints encoded in the
form of (binary) tables, generally called lexicon-grammar tables. We de-
scribe a unified method to compile sets of tables of linguistic constraints
into Finite State Automata. This method has been practically imple-
mented in the linguistic platform Unitex.

1 Motivation

Finite State Models have been intensively used in Natural Language Process-
ing [13]. Nevertheless, because of the complexity of languages, it is often more
convenient for linguists to describe linguistic constraints with simpler and more
ergonomic representations. For instance, simple regular expressions are some-
times used to express morphological rules [6], inflected forms of dictionaries are
preferred to be written in a textual form [3] and syntactic constraints depend-
ing on lexicon are represented in the form of binary matrices [4]. Finite State
linguistic phenomena are sometimes described with more powerful and more
compact formalisms such as (weighted) context-free grammars [10] and recur-
sive transition networks[5]. These representations are then compiled into Finite
State Automata or Transducers in order to optimize processing.

This paper deals with linguistic constraints encoded in the form of (binary)
tables made of rows and columns, generally called lexicon-grammar tables. A row
of such table corresponds to the formal description of the lexical and syntactic
properties accepted by a lexical item. Each column corresponds to a property.
At the intersection of a row and a column, the encoded value indicates whether
or not a lexical entry (row) accepts a property (column)1. In this paper, we will
describe a unified method to compile sets of tables of linguistic constraints into
Finite State Automata. We will also show how it has been practically imple-
mented in the linguistic platform Unitex [11].

2 State-of-the-Art

The first idea of combining binary matrices and automata was pointed out in
[7], but the first compilation method has been found in [12] and has been imple-
mented in the linguistic platforms INTEX [14] and Unitex [11]. It was limited
1 Usually, symbol + stands for True and symbol - stands for False.
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to systems of constraints encoded in one table such as the ones in [4]. It used
hand-built parameterized reference automata, representing the sets of the pos-
sible syntactic constructions where can enter a fictive lexical entry accepting all
properties of the table. Each path is parameterized by one or several parameters
that refer to properties that correspond to syntactic constructions (e.g. Prep
Det Noun2) or lexical information (e.g. if the constituent Prep accepts the lexi-
cal value in). The compilation process consists, for each lexical entry (or raw), in
resolving the parameters according to the encoding in the tables. For instance, a
false value at a given column indicates that the transitions labeled with the para-
meter associated with the column, must be removed. A true value indicates that
these transitions must be made epsilon-transitions. Then, a specific automaton
is constructed for each lexical entry. The automaton representing all described
phenomena is simply the union of all constructed automata. It is then optimized
by a deterministic minimization operation for text processing efficiency.

Several linguistic studies have shown that it is sometimes more convenient to
encode constraints of a same linguistic phenomena into systems of multiple tables
because some properties can be factorized in different tables to avoid encoding
duplication [7,1]. In this case, Roche’s compilation does not work because it does
not handle multiple tables. [8] implemented an algorithm compiling systems of
multiple tables of specific constraints. These constraints were limited to very
local constraints. Tables described the restrictions on the combinations of pairs
of lexical elements in sequences where both elements occur consecutively (or
sometimes with a grammatical word in between). For instance, for French time
expressions, sequence milieu de matin (middle of morning) is forbidden while
sequence milieu d’après-midi (middle of afternoon) is accepted. A schemata au-
tomaton is used to represent all possible patterns for a type of expressions. This
automaton also recognizes bad sequences because it does not take lexical re-
strictions into account. All forbidden sequences encoded in the tables are put in
an automaton that is then applied using the failure algorithm [9] that cuts all
forbidden paths in the schemata automaton. [2] proposed an algorithm with no
restrictions on the constraints; constraints were represented in relational systems
of tables. The algorithm consisted in directly constructing the automaton that
recognizes accepted sequences, by using a parameterized reference automaton
with parameters resembling Roche’s ones. Nevertheless, the complexity of the
construction of the parameterized automaton could grow very fast with the num-
ber of tables. For instance, it is not well adapted to Maurel’s time expressions.

In this paper, we present a unified algorithm for compiling systems of tables
of constraints with no restrictions on the type of constraints.

3 Set of Constraints and Parameterized Automaton

This section focuses on the general description of inputs of our algorithm, that
are a set of linguistic constraints and a parameterized schemata. They are re-
spectively described in section 3.1 and in section 3.2.
2 Prep Det Noun stands the construction preposition determiner noun
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3.1 Sets of Linguistic Constraints

A syntactic construction is a sequence of syntactic symbols (and sometimes of
lexical symbols): for instance, the syntactic construction N0 V N1 is composed
of a noun phrase (N0) followed by a verb (V) and then another noun phrase (N1).
Each syntactic symbol have a set of possible lexical realizations, e.g. V could
be eat or walk. Though, syntactic constructions have lexical restrictions; their
acceptability can depend on the lexical realizations of a syntactic element. For
example, the transitive verb eat can enter the constructions N0 V N1, while the
intransitive verb walk cannot3:

John is eating an apple.
*John is walking an apple.

Such constraint is called a one-dimensional constraint because it depends on
only one element (the verb).

There can also exist lexical restrictions on the combination of two syntac-
tic elements in the context of a construction. For instance, in the construc-
tion N0 V N1 Prep N24, there exist lexical constraints on the pair (V,Prep):
pairs (receive,from) and (give,to) are acceptable, while (receive,to) and
(give,from) are forbidden as it is shown in the sentences below.

John received a present (*to+from) Mary.
John gave a present (to+*from) Mary.

Such constraint is called a two-dimensional constraint because it depends on the
combination of two elements (the pair verb-preposition).

Practically, a given constraint is not only limited to a single construction, but
also a set of equivalent constructions. For instance, the constraint on the pair
(V,Prep) in the example above is available as well for the equivalent interroga-
tive construction :

Who received a present (*to+from) Mary ?

Moreover, linguistic constraints can also restrict the combination of more syntac-
tic elements cooccurring in a same construction. Theoretically, such constraints
can be decomposed into elementary constraints that are one-dimensional and
two-dimensional ones, all related with logical AND operators. For example, the
acceptability of frozen constructions of the form N0 be Prep N Prep1 N1, can
depend on the lexical combination of Prep, N and Prep1 such as in:

The text is (in+*on) contradiction (with+*to) the law.

Verifying if this constraint is valid is equivalent to checking if elements in and
contradiction can cooccur in this context and if contradiction and with

3 In linguistic examples, the symbol * is the forbidden symbol and symbol + is the
disjonction symbol.

4 N0, N1 and N2 are noun phrases, V is a verb and Prep a preposition.
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cooccur. Thus, in the next sections, we will consider that there exist only one-
dimensional and two-dimensional constraints. One-dimensional ones are encoded
in the form of binary vectors, each element corresponding to a lexical value;
two-dimensional lexical constraints are encoded in the form of binary matrices,
encoding the restrictions on the combination of pairs of lexical values.

Examples of such representations are given in figure 1. The binary repre-
sentations describe lexical constraints on geographical names. Such names can
enter two constructions Detc Npr Nc (labeled NN) and Detc Nc of Npr (labeled
NPN), where Detc is a definite determiner (e.g. the), Npr is a proper name such
as Adriatic, Marmara, Paris... and Nc is a location noun classifier like city,
sea... Figure 1(a) presents two-dimensional constraints between lexical realiza-
tions of Nc and Npr (sea and Adriatic); figure 1(b) and figure 1(c) present
one-dimensional constraints depending on Npr, indicating whether or not it can
enter constructions NPN (city of Paris) or NN (Adriatic sea).

(a) Names-Classifiers (b) NPN constraint (c) NN constraint

Fig. 1. One- and two-dimensional constraints

3.2 Parameterized Schemata Automaton

A parameterized schemata automaton is a hand-built acyclic automaton that ex-
plicitely represents all possible syntactic realizations that the studied linguistic
phenomenon can have. It is used as a basis to build an automaton representing
all accepted constructions of this phenomenon, taking encoded lexical restric-
tions into account. Each path represents a possible construction. Labels of this
automaton are either lexical or syntactic elements, or parameters. Syntactic el-
ements that may cause lexical constraints in the construction are marked as
parameters. They are called syntactic parameters. Such parameters are denoted
with the name of the syntactic element preceded by symbol @: for instance, @X is
the parameter associated with the syntactic symbol X. Sets of constructions (i.e.
sets of paths) can also be parameterized because their acceptability may depend
on the lexical realizations of some syntactic ”parameterized” elements. We call
them construction parameters. They are denoted with the label assigned to the
set of constructions, preceded and followed by symbol @: for example, @P@ is
the parameter associated with the constructions labeled P. An example of such
automaton is given in figure 2: it consists of the parameterized schemata automa-
ton used for geographical names. @Nc@ and @Npr@ are syntactic parameters; @NN@
and @NPN@ are construction parameters.
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70 1
Detc

2@Nc

4

@Npr

3
of

5
@Npr

@NPN@

6
@Nc

@NN@

Fig. 2. A parameterized schemata automaton

A pair of parameters defines a set of lexical constraints. A pair composed
of a syntactic parameter @X and a construction parameter @P@ defines all 1-
dimensional lexical constraints depending on the syntactic element X in the
context of the constructions parameterized with P5. A pair composed of two
syntactic parameters (@X and @Y) defines all 2-dimensional lexical constraints for
combining the syntactic elements X and Y in the studied linguistic phenomenon6.

4 Algorithm

Our algorithm for compiling a set of constraints into a finite state automaton
(A+) is based on the use of a parameterized schemata automaton (Ap). It consists
of 3 steps:

1. building the automaton of all possible sequences (A) from Ap;
2. constructing the forbidden sequence automaton A−, from Ap and the sets

of different constraints;
3. constructing automaton A+ defined by L(A+) = L(A)−L(A−), where L(A)

stands for the language recognized by automaton A.

One can wonder why the desired automaton A+ is not directly constructed
from Ap. It is simply due to the fact that adding a new path requires checking
all constraints it undergoes. In case of complex systems like the one proposed
by [8] for date adverbials, the cost would be very important. At worse, the con-
struction process would have exponential complexity. The idea to build first the
automaton of forbidden constructions is because a path is invalid if it undergoes
only one forbidden constraint. Its construction is then linear with the number of
constraints7. The construction of the automaton of accepted sequences is simply
implemented using an intersection-type algorithm.

4.1 Construction of the Automata of All Possible Constructions

Automaton A (step 1) is built by replacing the syntactic parameters of Ap by
their actual associated symbols (standing for word classes), and replacing con-
struction parameters by ε symbol. The automaton produced for geographical
5 Path 5-7 comes from Fig. 1 (b) and path 6-7 comes from Fig. 1 (c).
6 Paths 1-2-3-5 and 1-4-6 come from Fig. 1 (a).
7 One should remark that the determinization operation computed after the automata

construction is theoretically exponential in complexity. Nevertheless, it has been
observed that, practically, it is very often not the case for natural language automata.
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names is given in figure 3. Symbol <E> stands for ε symbol. Note that syntac-
tic symbols are references to classes of words; they are also represented with
automata. These automata are automatically built from the set of lexical real-
izations used in the set of constraints. Automaton A is obtained by replacing
all syntactic symbols by their actual word class and then computing some opti-
mization operations as it is shown in figure 4.

70 1
Detc

2Nc

4

Npr

3
of

5
Npr

<E>

6
Nc

<E>

Fig. 3. A schemata automaton

5

0 1
the

2
sea

city

3

Paris

Marmara

Adriatic

4
of

sea

city

Marmara

Paris

Adriatic

Fig. 4. A lexicalized schemata automaton

4.2 Construction of the Automaton of Forbidden Syntactic Forms

The construction of A− consists in building, automatically from Ap, a para-
meterized automaton for each pair of parameters (X ,Y ) that undergoes lexical
restrictions; and then in lexicalizing this automaton according to the restrictions
encoded in the corresponding vectors or tables.

The construction of the pair-specific parameterized schemata automaton, called
Ap(X, Y ), consists in keeping only paths of Ap where X and Y cooccur. Marking
such paths is based on an automaton transversal-type algorithm: for each para-
meter of the pair, we mark the states and transitions of Ap, which can be reached
from transitions labeled by the parameter, or from which such a transition can
be reached. Then, Ap(X, Y ) is obtained by keeping states and transitions of Ap
marked for both parameters. Finally, other parameters are either replaced by an ε
(<E>) if they are construction parameters, or replaced by their associated syntac-
tic symbol (refering to a word class) if they are syntactic parameters. An example
of such automaton for the pair (Nc,Npr) is given in figure 5.

The construction of the automaton of forbidden syntactic forms is then based
on the lexicalization of such pair-specific parameterized schemata automata.
Such an automaton is associated with a binary vector or a binary table. In case
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Fig. 5. the (Nc,Npr) parameterized schemata automaton
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2city

4
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6
city
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Fig. 6. the (Nc,Npr) lexicalized schemata automaton for entry city
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Fig. 7. Automaton of forbidden constructions for geographic names

of a binary vector associated with a parameter pair (@X,@Y@), for each lexi-
cal entry x that are lexical realization of X , a new automaton is created from
Ap(X, Y ). Parameters @X are replaced by x. If the constructions labeled Y are
not accepted, parameters @Y @ are replaced by ε (<E>). If they are, transitions
labeled by @Y @ are removed. In case of a binary table associated with a pa-
rameter pair (@X,@Y), for each lexical realization x of X , a new automaton is
created from Ap(X, Y ). Transitions (q, @Y, p), where p and q are states of the
new automaton, are removed. For each lexical realization y of Y , if the combi-
nation between x and y is forbidden, a new transition (q, y, p) is added. Figure 6
shows an example of a lexicalized automaton specific to the pair (Nc,Npr) for
the lexical entry city in the case of geographic names.

All obtained lexicalized automata are then unioned; all syntactic symbols
are replaced by their actual automata; and finally, an optimization operation
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is computed (useless state removal and determinization). The global lexicalized
automaton of forbidden constructions for geographic names is given in figure 7.

4.3 Construction of the Automaton of Possible Syntactic Forms

Given deterministic automata A and A−, it is then possible to compute automa-
ton A+ representing all possible constructions, taking all lexical restrictions into
account. The process consists in computing the automaton that recognizes the
language L(A+) defined such that L(A+) = L(A) − L(A−). It implements a
variant of the standard algorithm for computing the intersection between two
automata. The automaton obtained for geographical names is given in figure 8.

21 3
the

6
sea

5Adriatic
Marmara

4

city

8
of

sea

7
of

Paris

Marmara

Fig. 8. Automaton of accepted constructions for geographic names

5 Implementation

Our algorithm has been implemented in C in Unitex, a GPL linguistic platform
[11]. The implementation was eased by the use of some modules, data structures
on finite state automata and common operations on them, already implemented
in Unitex. Parameterized schemata automata can be drawn with a graph editor
included in the platform. Unitex automata are recursive automata (automata
that can call other automata) that are equivalent to Recursive Transition Net-
works (RTN) [15]. Therefore, syntactic symbols are simply calls to automata
that represents their associated word classes. Automata can be unioned by sim-
ply creating an automaton that concurrently call all of them. There also exists
a ”Flatten” operation that computes the equivalent finite-state automaton of a
given RTN (when recognizing a regular language).

Besides, it is often more convenient for linguists to have different parameter-
pair constraints encoded in a same table in order to have a better view of the
studied linguistic phenomenon8. Moreover, tables are not always binary: they
can contain lexical values. For example, the example table and vectors (figure 1)
are practically gathered in one table as in figure 9. We therefore implemented a
module that transforms real tables into several binary vectors or tables.

8 As it has been shown in [2], elementary constraints can be also gathered in several
real tables.
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Fig. 9. A real table of linguistic constraints

6 Evaluation and Discussion

We tested9 our software with some lexicon-grammar tables describing constraints
on French geographical locative phrases [1] and French time adverbials [8]. The
test results are gathered in table 1. Samples of both systems are respectively
given in figure 10 and figure 11.

Table 1. Test results

type # of # of # of A− # of A− # of A+ # of A+ Compiling
lexical parameter states transitions states transitions time

constraints pairs
Loc 1,420 15 47,822 81,760 253 782 29 s

Time 818 5 2,868 27,280 100 694 2 s

Our unified algorithm has the advantage of working for all different types
of systems of lexicon-grammar tables. Although compiling times are reasonable
(cf. table 1), our algorithm is not always the most efficient one. For instance,
the conversion of simple systems of relational tables like geographical phrases
ones is faster using a process based on Roche’s algorithm preceded by a merge
operation on the related tables: 4s instead of 29s for our converter. Comparison
is not feasible for time adverbials because Roche’s algorithm and its extensions
do not work in that case.

Constructing automaton A− is the main factor for slowing down the process
because A− tends to be much bigger than the final A+ (cf. table 1). Roche’s
algorithm and its extension (to systems with multiple tables) directly deal with
A+. Maurel’s algorithm simply constructs the automaton recognizing forbidden
subsequences, which is clearly a smaller automaton than A− (542 states and 4191
transitions for 50 tables or parameter pairs [8]). The determinization of these
automata makes the difference clearer because of the exponential complexity of
this operation. Nevertheless, we consider that this relative lack of efficiency is
not really important because compiling can be done once for all before applying
9 Pentium III, 1.6 GHz, 512 Mb RAM.
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(a) Islands (b) French Departments

(c) Prepositional distribution

Fig. 10. Locative geographical phrases

matin midi soir
(morning) (12 a.m.) (evening)

aujourd’hui (today) - + -
hier (yesterday) + + +

demain (tomorrow) + + +

aujourd’hui hier demain
(today) (yesterday) (tomorrow)

à - - -
après + + -
d’ici + - +

Fig. 11. Time adverbials

the compiled automata on different texts. We are more interested in the fact
that the algorithm works for all types of systems.

7 Conclusion

In this paper, we have shown that linguistic constraints encoded in the form of
(binary) tables can be compiled into finite state automata. We have describe a
unified method, implemented in the linguistic platform Unitex, in three steps:
building the automaton of all possible sequences, the forbidden sequence au-
tomaton and the resulting automaton.
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verbes de dates du français. PhD. thesis, Paris: Université Paris 7.
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