Guillaume Blin

Paola Bonizzoni

Riccardo Dondi

Florian Sikora

On the Parameterized Complexity of the Repetition Free Longest Common Subsequence Problem

Keywords: Repetition Free Longest Common Subsequence, Longest Common Subsequence, Parameterized Complexity

Longest common subsequence is a widely used measure to compare strings, in particular in Computational Biology. Recently, several variants of the longest common subsequence have been introduced to tackle the comparison of genomes. In particular, the Repetition Free Longest Common Subsequence problem (RFLCS) is a variant of the LCS problem that asks for a longest common subsequence of two input strings with no repetition of symbols. In this paper, we investigate the parameterized complexity of RFLCS. First, we show that the problem does not admit a polynomial kernel. Then, we present a randomized FPT algorithm for the RFLCS problem, improving the time complexity of the existent FPT algorithm.

Introduction

Longest Common Subsequence (LCS) has been widely used as a measure to compare strings in different fields [START_REF] Bergroth | A Survey of Longest Common Subsequence Algorithms[END_REF], in particular for the comparison of two (or more) genomes in Bioinformatics. Genomes are usually viewed as strings, where each symbol represents a gene, and the comparison of the strings associated with the genomes provides a measure of their similarities and differences. As the order in which genes appear in the genomes is considered relevant in the comparison, LCS provides a natural measure to compare genomes.

Different variants of longest common subsequence have been proposed [START_REF] Bonizzoni | Exemplar Longest Common Subsequence[END_REF][START_REF] Adi | Repetition-free Longest Common Subsequence[END_REF][START_REF] Bonizzoni | Variants of Constrained Longest Common Subsequence[END_REF] to compare biological strings, where, given two strings s 1 and s 2 , the computed longest common subsequence is required to satisfy some constraint. In particular, the Repetition Free Longest Common Subsequence (RFLCS) problem, proposed in [START_REF] Adi | Repetition-free Longest Common Subsequence[END_REF], requires that each symbol appears at most once in the common subsequence of the input strings. The use of such constraint is motivated by the exemplar hypothesis [START_REF] Sankoff | Genome Rearrangement with Gene Families[END_REF], that aims to identify the original copy of a gene that has originated all the copies of that gene in the genome through duplications. As a consequence, in the RFLCS problem, the input consists of two strings s 1 and s 2 , and the output consists of a longest common subsequence of s 1 and s 2 containing no repetition of symbols. The RFLCS is known to be APX-hard, even when each symbol occurs at most twice in each of the two input strings [START_REF] Adi | Repetition-free Longest Common Subsequence[END_REF]. Furthermore, the problem admits a k-approximation algorithm, where k is the maximum number of occurrences of each symbol in one of the two strings [START_REF] Adi | Repetition-free Longest Common Subsequence[END_REF]. Concerning parameterized complexity, if parameterized by the size k of the solution, the problem admits a deterministic FPT algorithm [START_REF] Bonizzoni | Variants of Constrained Longest Common Subsequence[END_REF], of time complexity O * (c k), where c is a large constant, and space complexity O * (2 k)1 . The algorithm can be easily randomized, thus giving a randomized FPT algorithm of time complexity O * ((2e) k)) and space complexity O * (2 k).

In this paper, we deepen the investigation on the parameterized complexity of the RFLCS problem. For details on parameterized complexity, we refer the reader to [START_REF] Niedermeier | Invitation to Fixed-Parameter Algorithms[END_REF]. First, we investigate the kernelization complexity of RFLCS. Kernelization is a widely used technique in parameterized complexity [START_REF] Niedermeier | Invitation to Fixed-Parameter Algorithms[END_REF], that aims to preprocess in polynomial time an instance of a problem, in order to produce an instance having size depending only on the considered parameter. Recently, several results [START_REF] Bodlaender | On problems without polynomial kernels[END_REF][START_REF] Bodlaender | Kernel Bounds for Disjoint Cycles and Disjoint Paths[END_REF] on the kernelization complexity have been introduced, in order to prove that a problem, although in FPT, does not admit a polynomial size kernel. Applying a technique of [START_REF] Bodlaender | On problems without polynomial kernels[END_REF], we show that the RFLCS problem does not admit a polynomial size kernel, unless N P ⊆ coN P/P oly. Notice that N P ⊆ coN P/P oly would imply a collapse to the third level of the polynomial time hierarchy.

On the positive side, we present a randomized fixed-parameter algorithm for the RFLCS problem parameterized by the size of the solution (denoted as k). Our randomized fixed-parameter algorithm has time complexity O * (2 k) and polynomial space complexity, thus improving upon the existing algorithm proposed in [START_REF] Bonizzoni | Variants of Constrained Longest Common Subsequence[END_REF].

The rest of the paper is organized as follows. In Section 2, we give some preliminary definitions. In Section 3, we investigate the kernelization complexity of RFLCS, while in Section 4, we present the fixed-parameter algorithm for RFLCS.

Preliminaries

In this section we introduce some basic definitions. Let ∆ denote a finite alphabet and ∆ * the set of all finite length strings over ∆. Let Π ⊆ ∆ * × N be a parameterized problem and let 1 ∈ ∆. The derived classical problem Π C associated with Π is {x1 k : (x, k) ∈ Π}.

Let s be a string over alphabet Σ. We denote by |s| the length of s. The i-th symbol of s is denoted by s[i]. Given two positions i, j in s, with 1 ≤ i ≤ j ≤ |s|, we denote by s[i, j] the substring of s that starts at position i and ends at position j.

Consider two strings s 1 and s 2 . A common subsequence of s 1 and s 2 is a string s that can be computed by deleting some symbols (possibly none) in s 1 or s 2 . A longest common subsequence s of s 1 , s 2 is a common subsequence of s 1 and s 2 having maximum length. Given two strings s 1 and s 2 , we define s 1 s 2 as the concatenation of s 1 and s 2 .

The RFLCS problem is a constraint version of the longest common subsequence problem that has been introduced in [START_REF] Adi | Repetition-free Longest Common Subsequence[END_REF]. Given two strings s 1 , s 2 over alphabet Σ, RFLCS asks for a longest common subsequence of s 1 , s 2 where each symbol of Σ occurs at most once. Formally, the problem is defined as follows:

Problem 1. RFLCS Input: A pair of strings I = (s 1 , s 2) over alphabet Σ. Parameter: k. Output: A common subsequence s of s 1 and s 2 , such that each symbol σ ∈ Σ occurs at most once in s and |s| ≥ k.

The derived classic problem RFLCS C is known to be NP-hard [START_REF] Adi | Repetition-free Longest Common Subsequence[END_REF], even when each symbol occurs at most twice in each string.

Kernelization Complexity

In order to prove a lower bound on the polynomial kernel of RFLCS, we need to introduce in Section 3.1 some preliminary notions.

Preliminaries on Kernelization Complexity

In this section we introduce some preliminary notions about Kernelization Complexity, and in particular the notion of composition algorithm [START_REF] Bodlaender | On problems without polynomial kernels[END_REF].

Definition 1. [3] A composition algorithm for a parameterized problem Π ⊆ ∆×N is an algorithm that, given in input a sequence (x 1 , k), (x 2 , k), . . . , (x t , k) where each (x i , k) ∈ ∆ × N, runs in time polynomial in t i=1 x i + k, and outputs an instance (y, k) ∈ ∆ × N such that 1. (y, k) ∈ Π iff (x i , k) ∈ Π, for some 1 ≤ i ≤ t; 2. k is polynomial in k.
A parameterized problem is compositional if it has a composition algorithm.

We will apply the following fundamental result on kernelization complexity [START_REF] Fortnow | Infeasibility of instance compression and succinct PCPs for NP[END_REF]. Theorem 2. [START_REF] Fortnow | Infeasibility of instance compression and succinct PCPs for NP[END_REF] Let Π be a compositional parameterized problem whose derived classical problem Π C is NP-complete. If Π has a polynomial kernel, then N P ⊆ coN P/P oly.

Kernelization Complexity of RFLCS

In this section we prove that the RFLCS does not admit a polynomial kernel, unless N P ⊆ coN P/P oly. Since the derived classical problem RFLCS C is NP-complete [START_REF] Adi | Repetition-free Longest Common Subsequence[END_REF], we can prove the result applying the concept of composition algorithm given in Section 3.1.

Consider two instances

I 1 = (s 1,a , s 1,b), k , I 2 = (s 2,a , s 2,b), k of the RFLCS problem, such that s 1,a , s
Indeed assume that Σ 1 ∩ Σ 2 = ∅. Define a new alphabet Σ 1 such that for each α ∈ Σ 1 , there is a symbol α ∈ Σ 1 , where α / ∈ Σ 1 ∪ Σ 2 .
Then, define the string s 1,x , with x ∈ {a, b}, as follows: if • s a 1,2 = s 1,a s 2,a , that is s a 1,2 is the concatenation of s 1,a and s 2,a ;

s 1,x [i] = α, with 1 ≤ i ≤ |s 1,x |, then s 1,x [i] = α . By construction, s 1,a , s 1,b are over alphabet Σ 1 , with Σ 1 ∩ Σ 2 = ∅.
• s b 1,2 = s 2,b s 1,b , that is s b 1,2 is the concatenation of s 2,b and s 1,b . Example 1. Consider the instances I 1 = (s 1,a , s 1,b), k and I 2 = (s 2,a , s 2,b), k of RFLCS, where • s 1,a = abc • s 1,b = bca • s 2,a = def • s 2,b = ddf Then (s 1,a , s 1,b) ⊗ (s 2,a , s 2,b
) produces the following strings:

s a 1,2 = s 1,a s 2,a = abcdef s b 1,2 = s 2,b s 1,b = ddf bca. Theorem 3.
The RFLCS problem does not admit a polynomial kernel unless N P ⊆ coN P/P oly.

Proof. Let (s 1,a , s 1,b), k , (s 2,a , s 2,b), k , . . . , (s t,a , s t,b), k be t instances of RFLCS, defined over pairwise disjoint alphabets Σ 1 , . . . , Σ t . Let (s y,a , s y,b) be a pair of strings defined as follows: (s y,a , s

y,b) = (s 1,a , s 1,b) ⊗ (s 2,a , s 2,b) ⊗ • • • ⊗ (s t,a , s t,b), that is s y,a = s 1,a s 2,a • • • s t,a , while s y,b = s t,b s t-1,b • • • s 1,b .
We claim that there is a solution for RFLCS over instance (s y,a , s y,b), k if and only if there exists a j ∈ [t] such that RFLCS admits a solution over instance (s j,a , s j,b), k) . First, assume that there is a solution of RFLCS over instance (s j,a , s j,b), k , for some j ∈ [t]. Consider the substrings s j y,a , s j y,b of s y,a , s y,b respectively, consisting only of symbols in Σ j . Since by construction the instances (s 1,a , s 1,b), k , (s 2,a , s 2,b), k , . . . , (s t,a , s t,b), k are over pairwise disjoint alphabets Σ 1 , . . . , Σ t , it follows by construction that s j y,a , s j y,b are identical to s j,a , s j,b respectively. Since there is a repetition free common subsequence of s j,a , s j,b of length at least k, then there is a repetition free common subsequence of s j y,a , s j y,b of length at least k, which implies that there is a solution for RFLCS over instance (s y,a , s y,b), k .

Assume now that there is a solution s of RFLCS over instance (s y,a , s y,b), k . Then we claim that s consists of symbols from exactly one alphabet Σ j , for some j ∈ [t]. Assume to the contrary that such a solution s contains a symbol α i ∈ Σ i and a symbol α j ∈ Σ j with i, j ∈ [t] and w.l.o.g. i < j. Recall that the instances (s 1,a , s 1,b), k , (s 2,a , s 2,b), k , . . . , (s t,a , s t,b), k are defined over pairwise disjoint alphabets Σ 1 , . . . , Σ t . By construction α i appears on the left of α j is s y,a , while α i appears on the rigth of α j is s y,b . Hence s cannot contain both a symbol α i ∈ Σ i and a symbol α j ∈ Σ j . It follows that s is a string over alphabet Σ j , for some j ∈ [t], hence s is a repetition free common subsequence of s j y,a , s j y,b , which implies that s is a repetition free common subsequence of s j,a , s j,b .

By Theorem 2, it follows that RFLCS does not admit a polynomial kernel unless N P ⊆ coN P/P oly.

A Fixed-Parameter Algorithm

In order to present the fixed-parameter algorithm for RFLCS, we need to introduce in Section 4.1 some definitions and results concerning the multilinear detection technique.

Arithmetic circuits

Intuitively, the aim of this technique is to efficiently detect a multilinear monomial of a given degree in an arithmetic circuit, which is a compressed encoding of a multivariate polynomial.

More formally, let X be a set of variables {x 1 , x 2 , . . . , x z }. A multivariate polynomial is a sum of monomials. The degree of a monomial is the sum of the monomial variables degrees. A monomial is multilinear if the degree of all the variables is equal to 1. Thus, a multilinear monomial of degree k has exactly k different variables. For example, the degree of the monomial x 1 • x 2 2 is 3, and so is the degree of the multilinear monomial

x 1 • x 2 • x 3 .
An arithmetic circuit over X is a pair C = (C, r), where C is a labeled directed acyclic graph (DAG) such that each leaf (with an out-degree equal to zero) is labeled by a variable of X, each internal node is labeled either by + or ×, and r is a distinguished node of C (the root of C).

We can encode a polynomial with an arithmetic circuit. Recursively, the polynomial corresponding to a leaf is the label of the leaf, and the polynomial of an internal node labeled by + (resp. ×) is the sum (resp. the product) of its childrens' polynomials. Now, we can introduce the Multilinear Detection problem (MLD). Informally, given an arithmetic circuit C and an integer k, the Multilinear Detection problem asks if the polynomial P C encoded by C has a multilinear monomial of degree k. More formally, we give the definition of the Multilinear Detection problem. Problem 2. MLD Input: An arithmetic circuit C encoding a polynomial P C over a set of variables X. Parameter: k. Output: Does P C contains a multilinear monomial of degree k?

In [START_REF] Koutis | Limits and Applications of Group Algebras for Parameterized Problems[END_REF][START_REF] Williams | Finding paths of length k in O * (2 k) time[END_REF], it is shown the following fundamental result for the MLD problem.

Theorem 4 ([14, 18]

). There exists a randomized algorithm that solves MLD in O(2 k |C|) time and in O(|C|) space.

In Section 4.2, we apply this result in order to obtain a new fixed-parameter algorithm for RFLCS.

A Fixed-Parameter Algorithm for RFLCS

In this section we present a randomized fixed-parameter algorithm for RFLCS of time complexity O * (2 k) and of polynomial space complexity. The algorithm is based on the detection of multilinear monomials technique, presented in Section 4.1. Let s 1 , s 2 be the two input strings of RFLCS over alphabet Σ, we construct a circuit C as follows. C is defined over the set of variables {x a : a ∈ Σ}. Moreover, the circuit has a root P and a set of intermediary nodes P i,j,l , for 0 ≤ i ≤ |s 1 |, 0 ≤ j ≤ |s 2 | and 0 ≤ l ≤ |Σ|. Informally, the multilinear monomial P i,j,l encodes a repetition free common subsequence of the strings s 1 [1, . . . , i], s j [1, . . . , j], having length l. P i,j,l is defined as follows:

P i,j,l =          P i-1,j,l + P i,j-1,l + P i-1,j-1,l if i > 0, j > 0, s1[i] = s2[j] and l ≥ 1, P i-1,j,l + P i,j-1,l + P i-1,j-1,l-1 • x a if i > 0, j > 0, s1[i] = s2[j] = a and l ≥ 1, 1
if l = 0 and i, j ≥ 0, 0 if i = 0 or j = 0, and l > 0.

(1) Finally, define P = P |s1|,|s2|,k . The resulting instance of MLD is I = (C, k). Next, we prove the correctness of the reduction. Proof. We will prove that there is a RFLCS for the strings s 1 , s 2 of length k if and only if there is a multilinear monomial in C of length k. To do so, we prove by induction on i + j that there exists a repetition free common subsequence of s 1 [1 . . . i], s 2 [1 . . . j] containing the set of symbols {a 1 , . . . a l } (hence of length l) if and only if there is a multilinear monomial x a1 . . . x a l in P i,j,l .

When i = j = 1, assume that there is a repetition free common subsequence consisting w.l.o.g. of a 1 . Then s 1 [1] = s 2 [1] = a 1 , and, by Equation 1, P 1,1,1 = P 0,0,0 • x a1 = x a1 . Similarly, if P 1,1,1 = P 0,0,0 • x a1 = x a1 , then by construction it must hold s 1

[1] = s 2 [1] = a 1 .
Now, assume that the lemma holds for i + j = h, we prove that the lemma also holds for i + j = h + 1. Assume that there is a repetition free common subsequence s of s 1 [1 . . . i], s 2 [1 . . . j] consisting of the set of symbols {a 1 , . . . a l }. It follows, that either s

[l] = s 1 [i] = s 2 [j] = a z for a given 1 ≤ z ≤ l, or s[l] = s 1 [i], or s[l] = s 2 [j].
In the first case, by Equation 1, P i,j,l = P i-1,j-1,l-1 • x az . By induction, if there is a repetition free common subsequence s of s 1 [1 . . . i-1], s 2 [1 . . . j -1] consisting of symbols {a 1 , . . . , a l }\{a z }, then P i-1,j-1,l-1 contains a multilinear monomial of length l -

1 not including x az . If s[l] = s 1 [i] or s[l] = s 2 [j], then s is a repetition free common subsequence of s 1 [1 . . . i], s 2 [1 . . . j -1], or of s 1 [1 . . . i -1], s 2 [1 . . . j], or of s 1 [1 . . . i -1], s 2 [1 . . . j -1]
. By induction hypothesis, one of P i,j-1,l , P i-1,j,l , P i-1,j-1,l contains a multilinear monomial x a1 . . . x a l . By Equation 1, P i,j,l also contains such a multilinear monomial.

Assume that P i,j,l contains a multilinear monomial m x = x a1 . . . x a l . By construction (Equation 1) it holds that m x is either contained in one of P i-1,j,l , P i,j-1,l , P i-1,j-1,l or it is obtained from P i-1,j-1,l-1 • x a and P i-1,j-1,l-1 contains a multilinear monomial over the set of variables {x a1 . . . x a l } \ {x a }. In the first three cases, by induction hypothesis there is a repetition free longest common subsequence of s 1 [1 . . . i], s 2 [1 . . . j] consisting of symbols a 1 , . . . , a l . Hence, assume that the latter case holds, that is P i,j,l = P i-1,j-1,l-1 • x a . Hence P i-1,j-1,l-1 contains a monomial over the set of variables {x a1 . . . x a l } \ {x a }.

As a consequence, by induction hypothesis, there is a repetition free longest common subsequence s of s 1 [1 . . . i -1], s 2 [1 . . . j -1] over the set of symbols {a 1 , . . . , a l } \ {a}. But then s = s a is a repetition free longest common subsequence of s 1 [1 . . . i], s 2 [1 . . . j] over the set of symbols {a 1 , . . . , a l }, concluding the proof for the induction.

By applying Theorem 4 of Section 4.1, and by observing that |C| = k|s 1 ||s 2 |, we can solve RFLCS with a randomized algorithm with the claimed complexities.

Conclusion

We have investigated the parameterized complexity of the RFLCS, a variant of the LCS problem that, given two strings s 1 , s 2 , asks for a common subsequence s of s 1 , s 2 of length at least k such that s contains at most one occurrence of each symbol. We have proved that the RFLCS does not admit a polynomial size kernel, unless N P ⊆ coN P/P oly and we have given a fixedparameter algorithm for RFLCS of resp. O(2 k k|s 1 ||s 2 |) time and O(k|s 1 ||s 2 |) space complexities. To obtain these complexities, we used the multilinear detection framework, which seems to be quite powerful to improve algorithms based on dynamic programming and color-coding, widely used in computational biology. Indeed, some authors already gave improvements of some algorithms using this framework [START_REF] Guillemot | Finding and Counting Vertex-Colored Subtrees[END_REF] [START_REF] Fu | A Polynomial Algebra Method for Computing Exemplar Breakpoint Distance[END_REF].

An interesting open problem lies on the analysis of the approximation complexity of RFLCS: it is still open whether RFLCS admits a constant factor approximation algorithm or not.

 Furthermore, it is easy to see that RFLCS on input (s 1,a , s 1,b), k admits a feasible solution if and only if RFLCS on input (s 1,a , s 1,b), k admits a feasible solution. Given (s 1,a , s 1,b) and (s 2,a , s 2,b), the composition algorithm defines the operation (s 1,a , s 1,b) ⊗ (s 2,a , s 2,b), which starting from (s 1,a , s 1,b) and (s 2,a , s 2,b) outputs the strings s a 1,2 , s b 1,2 , defined as follows:

Theorem 5 .

 5 RFLCS is solvable by a randomized algorithm in O(2 k k|s 1 ||s 2 |) time and O(k|s 1 ||s 2 |) space.

 1,b (s 2,a , s 2,b respectively) are over alphabet

1 (Σ 2 respectively). We assume that Σ

1 ∩ Σ 2 = ∅, otherwise, starting from s 1,a , s 1,b , we can compute in time O(|s 1,a | + |s 1,b |) an instance I 1 = (s 1,a , s 1,b), k of RFLCS such that (1) s 1,a , s 1,b are over alphabet Σ 1 , with Σ 1 ∩ Σ 2 = ∅; (2) RFLCS on input (s 1,a , s 1,b), k admits a feasible solution if

and only if RFLCS on input (s 1,a , s 1,b), k admits a feasible solution.

Email addresses: gblin@univ-mlv.fr (Guillaume Blin), bonizzoni@disco.unimib.it (Paola Bonizzoni), riccardo.dondi@unibg.it (Riccardo Dondi), sikora@univ-mlv.fr (Florian Sikora)Preprint submitted to ElsevierDecember 22, 2011

We recall that in the O * () notation, the polynomially bounded terms are suppressed.