
HAL Id: hal-00637255
https://hal.science/hal-00637255v2

Submitted on 22 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Parameterized Complexity of the Repetition
Free Longest Common Subsequence Problem

Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, Florian Sikora

To cite this version:
Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, Florian Sikora. On the Parameterized Complexity
of the Repetition Free Longest Common Subsequence Problem. Information Processing Letters, 2012,
112 (7), pp.272-276. �10.1016/j.ipl.2011.12.009�. �hal-00637255v2�

https://hal.science/hal-00637255v2
https://hal.archives-ouvertes.fr

On the Parameterized Complexity of the Repetition
Free Longest Common Subsequence Problem

Guillaume Blina, Paola Bonizzonib, Riccardo Dondic, Florian Sikoraa,d

aUniversité Paris-Est, LIGM UMR CNRS 8049, France
bDISCo, Università degli Studi di Milano-Bicocca, Milano - Italy

cDipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali,
Università degli Studi di Bergamo, Via Donizetti 3, 24129 Bergamo, Italy

dLehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Germany

Abstract

Longest common subsequence is a widely used measure to compare strings,
in particular in Computational Biology. Recently, several variants of the
longest common subsequence have been introduced to tackle the comparison
of genomes. In particular, the Repetition Free Longest Common Subsequence
problem (RFLCS) is a variant of the LCS problem that asks for a longest
common subsequence of two input strings with no repetition of symbols. In
this paper, we investigate the parameterized complexity of RFLCS. First, we
show that the problem does not admit a polynomial kernel. Then, we present a
randomized FPT algorithm for the RFLCS problem, improving the time com-
plexity of the existent FPT algorithm.

Keywords: Repetition Free Longest Common Subsequence, Longest Common
Subsequence, Parameterized Complexity.

1. Introduction

Longest Common Subsequence (LCS) has been widely used as a mea-
sure to compare strings in different fields [2], in particular for the comparison
of two (or more) genomes in Bioinformatics. Genomes are usually viewed as
strings, where each symbol represents a gene, and the comparison of the strings
associated with the genomes provides a measure of their similarities and differ-
ences. As the order in which genes appear in the genomes is considered relevant
in the comparison, LCS provides a natural measure to compare genomes.

Different variants of longest common subsequence have been proposed [5, 1,
6] to compare biological strings, where, given two strings s1 and s2, the com-
puted longest common subsequence is required to satisfy some constraint. In

Email addresses: gblin@univ-mlv.fr (Guillaume Blin), bonizzoni@disco.unimib.it
(Paola Bonizzoni), riccardo.dondi@unibg.it (Riccardo Dondi), sikora@univ-mlv.fr
(Florian Sikora)

Preprint submitted to Elsevier December 22, 2011

particular, the Repetition Free Longest Common Subsequence (RFLCS)
problem, proposed in [1], requires that each symbol appears at most once in the
common subsequence of the input strings. The use of such constraint is moti-
vated by the exemplar hypothesis [17], that aims to identify the original copy
of a gene that has originated all the copies of that gene in the genome through
duplications. As a consequence, in the RFLCS problem, the input consists of
two strings s1 and s2, and the output consists of a longest common subsequence
of s1 and s2 containing no repetition of symbols. The RFLCS is known to be
APX-hard, even when each symbol occurs at most twice in each of the two in-
put strings [1]. Furthermore, the problem admits a k-approximation algorithm,
where k is the maximum number of occurrences of each symbol in one of the
two strings [1]. Concerning parameterized complexity, if parameterized by the
size k of the solution, the problem admits a deterministic FPT algorithm [6],
of time complexity O∗(ck), where c is a large constant, and space complexity
O∗(2k)1. The algorithm can be easily randomized, thus giving a randomized
FPT algorithm of time complexity O∗((2e)k)) and space complexity O∗(2k).

In this paper, we deepen the investigation on the parameterized complexity
of the RFLCS problem. For details on parameterized complexity, we refer the
reader to [16]. First, we investigate the kernelization complexity of RFLCS.
Kernelization is a widely used technique in parameterized complexity [16], that
aims to preprocess in polynomial time an instance of a problem, in order to
produce an instance having size depending only on the considered parameter.
Recently, several results [3, 4] on the kernelization complexity have been intro-
duced, in order to prove that a problem, although in FPT, does not admit a
polynomial size kernel. Applying a technique of [3], we show that the RFLCS
problem does not admit a polynomial size kernel, unless NP ⊆ coNP/Poly.
Notice that NP ⊆ coNP/Poly would imply a collapse to the third level of the
polynomial time hierarchy.

On the positive side, we present a randomized fixed-parameter algorithm
for the RFLCS problem parameterized by the size of the solution (denoted
as k). Our randomized fixed-parameter algorithm has time complexity O∗(2k)
and polynomial space complexity, thus improving upon the existing algorithm
proposed in [6].

The rest of the paper is organized as follows. In Section 2, we give some
preliminary definitions. In Section 3, we investigate the kernelization complexity
of RFLCS, while in Section 4, we present the fixed-parameter algorithm for
RFLCS.

2. Preliminaries

In this section we introduce some basic definitions. Let ∆ denote a finite
alphabet and ∆∗ the set of all finite length strings over ∆. Let Π ⊆ ∆∗ × N

1We recall that in the O∗() notation, the polynomially bounded terms are suppressed.

2

be a parameterized problem and let 1 6∈ ∆. The derived classical problem ΠC

associated with Π is {x1k : (x, k) ∈ Π}.
Let s be a string over alphabet Σ. We denote by |s| the length of s. The i-th

symbol of s is denoted by s[i]. Given two positions i, j in s, with 1 ≤ i ≤ j ≤ |s|,
we denote by s[i, j] the substring of s that starts at position i and ends at
position j.

Consider two strings s1 and s2. A common subsequence of s1 and s2 is a
string s that can be computed by deleting some symbols (possibly none) in s1
or s2. A longest common subsequence s of s1, s2 is a common subsequence of s1
and s2 having maximum length. Given two strings s1 and s2, we define s1 � s2
as the concatenation of s1 and s2.

The RFLCS problem is a constraint version of the longest common subse-
quence problem that has been introduced in [1]. Given two strings s1, s2 over
alphabet Σ, RFLCS asks for a longest common subsequence of s1, s2 where
each symbol of Σ occurs at most once. Formally, the problem is defined as
follows:

Problem 1. RFLCS
Input: A pair of strings I = (s1, s2) over alphabet Σ.
Parameter: k.
Output: A common subsequence s of s1 and s2, such that each symbol σ ∈ Σ
occurs at most once in s and |s| ≥ k.

The derived classic problem RFLCSC is known to be NP-hard [1], even
when each symbol occurs at most twice in each string.

3. Kernelization Complexity

In order to prove a lower bound on the polynomial kernel of RFLCS, we
need to introduce in Section 3.1 some preliminary notions.

3.1. Preliminaries on Kernelization Complexity

In this section we introduce some preliminary notions about Kernelization
Complexity, and in particular the notion of composition algorithm [3].

Definition 1. [3] A composition algorithm for a parameterized problem Π ⊆
∆×N is an algorithm that, given in input a sequence 〈(x1, k), (x2, k), . . . , (xt, k)〉

where each (xi, k) ∈ ∆× N, runs in time polynomial in
t∑

i=1

xi + k, and outputs

an instance (y, k′) ∈ ∆× N such that

1. (y, k′) ∈ Π iff (xi, k) ∈ Π, for some 1 ≤ i ≤ t;
2. k′ is polynomial in k.

A parameterized problem is compositional if it has a composition algorithm.

We will apply the following fundamental result on kernelization complex-
ity [9].

3

Theorem 2. [9] Let Π be a compositional parameterized problem whose derived
classical problem ΠC is NP-complete. If Π has a polynomial kernel, then NP ⊆
coNP/Poly.

3.2. Kernelization Complexity of RFLCS

In this section we prove that the RFLCS does not admit a polynomial
kernel, unless NP ⊆ coNP/Poly. Since the derived classical problem RFLCSC

is NP-complete [1], we can prove the result applying the concept of composition
algorithm given in Section 3.1.

Consider two instances I1 =
(

(s1,a, s1,b), k
)

, I2 =
(

(s2,a, s2,b), k
)

of the

RFLCS problem, such that s1,a, s1,b (s2,a, s2,b respectively) are over alpha-
bet Σ1 (Σ2 respectively). We assume that Σ1 ∩ Σ2 = ∅, otherwise, start-
ing from s1,a, s1,b, we can compute in time O(|s1,a| + |s1,b|) an instance I ′1 =(

(s′1,a, s
′
1,b), k

)
of RFLCS such that (1) s′1,a, s

′
1,b are over alphabet Σ′1, with

Σ′1 ∩ Σ2 = ∅; (2) RFLCS on input
(

(s′1,a, s
′
1,b), k

)
admits a feasible solution if

and only if RFLCS on input
(

(s1,a, s1,b), k
)

admits a feasible solution.

Indeed assume that Σ1 ∩ Σ2 6= ∅. Define a new alphabet Σ′1 such that for
each α ∈ Σ1, there is a symbol α′ ∈ Σ′1, where α′ /∈ Σ1 ∪ Σ2. Then, define the
string s′1,x, with x ∈ {a, b}, as follows: if s1,x[i] = α, with 1 ≤ i ≤ |s1,x|, then
s′1,x[i] = α′. By construction, s′1,a, s

′
1,b are over alphabet Σ′1, with Σ′1 ∩ Σ2 = ∅.

Furthermore, it is easy to see that RFLCS on input
(

(s′1,a, s
′
1,b), k

)
admits a

feasible solution if and only if RFLCS on input
(

(s1,a, s1,b), k
)

admits a feasible

solution.
Given (s1,a, s1,b) and (s2,a, s2,b), the composition algorithm defines the op-

eration (s1,a, s1,b) ⊗ (s2,a, s2,b), which starting from (s1,a, s1,b) and (s2,a, s2,b)
outputs the strings sa1,2, sb1,2, defined as follows:

• sa1,2 = s1,a � s2,a, that is sa1,2 is the concatenation of s1,a and s2,a;

• sb1,2 = s2,b � s1,b, that is sb1,2 is the concatenation of s2,b and s1,b.

Example 1. Consider the instances I1 =
(

(s1,a, s1,b), k
)

and I2 =
(

(s2,a, s2,b), k
)

of RFLCS, where

• s1,a = abc

• s1,b = bca

• s2,a = def

• s2,b = ddf

4

Then (s1,a, s1,b)⊗ (s2,a, s2,b) produces the following strings:

sa1,2 = s1,a � s2,a = abcdef

sb1,2 = s2,b � s1,b = ddfbca.

Theorem 3. The RFLCS problem does not admit a polynomial kernel unless
NP ⊆ coNP/Poly.

Proof. Let
(

(s1,a, s1,b), k
)

,
(

(s2,a, s2,b), k
)
, . . . ,

(
(st,a, st,b), k

)
be t instances of

RFLCS, defined over pairwise disjoint alphabets Σ1, . . . ,Σt. Let (sy,a, sy,b) be
a pair of strings defined as follows: (sy,a, sy,b) = (s1,a, s1,b)⊗ (s2,a, s2,b)⊗ · · · ⊗
(st,a, st,b), that is sy,a = s1,a�s2,a�· · ·�st,a, while sy,b = st,b�st−1,b�· · ·�s1,b.
We claim that there is a solution for RFLCS over instance

(
(sy,a, sy,b), k

)
if and

only if there exists a j ∈ [t] such that RFLCS admits a solution over instance(
(sj,a, sj,b), k)

)
.

First, assume that there is a solution of RFLCS over instance
(

(sj,a, sj,b), k
)

,

for some j ∈ [t]. Consider the substrings sjy,a, sjy,b of sy,a, sy,b respectively, con-

sisting only of symbols in Σj . Since by construction the instances
(

(s1,a, s1,b), k
)

,(
(s2,a, s2,b), k

)
, . . . ,

(
(st,a, st,b), k

)
are over pairwise disjoint alphabets Σ1, . . . ,Σt,

it follows by construction that sjy,a, sjy,b are identical to sj,a, sj,b respectively.
Since there is a repetition free common subsequence of sj,a, sj,b of length at

least k, then there is a repetition free common subsequence of sjy,a, sjy,b of
length at least k, which implies that there is a solution for RFLCS over in-

stance
(

(sy,a, sy,b), k
)

.

Assume now that there is a solution s of RFLCS over instance
(

(sy,a, sy,b), k
)

.

Then we claim that s consists of symbols from exactly one alphabet Σj , for
some j ∈ [t]. Assume to the contrary that such a solution s contains a symbol
αi ∈ Σi and a symbol αj ∈ Σj with i, j ∈ [t] and w.l.o.g. i < j. Recall that the

instances
(

(s1,a, s1,b), k
)

,
(

(s2,a, s2,b), k
)
, . . . ,

(
(st,a, st,b), k

)
are defined over

pairwise disjoint alphabets Σ1, . . . ,Σt. By construction αi appears on the left
of αj is sy,a, while αi appears on the rigth of αj is sy,b. Hence s cannot contain
both a symbol αi ∈ Σi and a symbol αj ∈ Σj . It follows that s is a string over
alphabet Σj , for some j ∈ [t], hence s is a repetition free common subsequence

of sjy,a, sjy,b, which implies that s is a repetition free common subsequence of
sj,a, sj,b.

By Theorem 2, it follows that RFLCS does not admit a polynomial kernel
unless NP ⊆ coNP/Poly.

4. A Fixed-Parameter Algorithm

In order to present the fixed-parameter algorithm for RFLCS, we need to
introduce in Section 4.1 some definitions and results concerning the multilinear

5

detection technique.

4.1. Arithmetic circuits

Intuitively, the aim of this technique is to efficiently detect a multilinear
monomial of a given degree in an arithmetic circuit, which is a compressed
encoding of a multivariate polynomial.

More formally, let X be a set of variables {x1, x2, . . . , xz}. A multivariate
polynomial is a sum of monomials. The degree of a monomial is the sum of the
monomial variables degrees. A monomial is multilinear if the degree of all the
variables is equal to 1. Thus, a multilinear monomial of degree k has exactly k
different variables. For example, the degree of the monomial x1 · x22 is 3, and so
is the degree of the multilinear monomial x1 · x2 · x3.

An arithmetic circuit over X is a pair C = (C, r), where C is a labeled
directed acyclic graph (DAG) such that each leaf (with an out-degree equal to
zero) is labeled by a variable of X, each internal node is labeled either by + or
×, and r is a distinguished node of C (the root of C).

We can encode a polynomial with an arithmetic circuit. Recursively, the
polynomial corresponding to a leaf is the label of the leaf, and the polynomial
of an internal node labeled by + (resp. ×) is the sum (resp. the product) of its
childrens’ polynomials.

Now, we can introduce the Multilinear Detection problem (MLD). In-
formally, given an arithmetic circuit C and an integer k, the Multilinear
Detection problem asks if the polynomial PC encoded by C has a multilinear
monomial of degree k. More formally, we give the definition of the Multilinear
Detection problem.

Problem 2. MLD
Input: An arithmetic circuit C encoding a polynomial PC over a set of variables
X.
Parameter: k.
Output: Does PC contains a multilinear monomial of degree k?

In [14, 18], it is shown the following fundamental result for the MLD prob-
lem.

Theorem 4 ([14, 18]). There exists a randomized algorithm that solves MLD
in O(2k|C|) time and in O(|C|) space.

In Section 4.2, we apply this result in order to obtain a new fixed-parameter
algorithm for RFLCS.

4.2. A Fixed-Parameter Algorithm for RFLCS

In this section we present a randomized fixed-parameter algorithm for
RFLCS of time complexity O∗(2k) and of polynomial space complexity. The al-
gorithm is based on the detection of multilinear monomials technique, presented
in Section 4.1. Let s1, s2 be the two input strings of RFLCS over alphabet
Σ, we construct a circuit C as follows. C is defined over the set of variables

6

{xa : a ∈ Σ}. Moreover, the circuit has a root P and a set of intermediary
nodes Pi,j,l, for 0 ≤ i ≤ |s1|, 0 ≤ j ≤ |s2| and 0 ≤ l ≤ |Σ|. Informally, the
multilinear monomial Pi,j,l encodes a repetition free common subsequence of
the strings s1[1, . . . , i], sj [1, . . . , j], having length l. Pi,j,l is defined as follows:

Pi,j,l =


Pi−1,j,l + Pi,j−1,l + Pi−1,j−1,l if i > 0, j > 0, s1[i] 6= s2[j] and l ≥ 1,

Pi−1,j,l + Pi,j−1,l + Pi−1,j−1,l−1 · xa if i > 0, j > 0, s1[i] = s2[j] = a and l ≥ 1,

1 if l = 0 and i, j ≥ 0,

0 if i = 0 or j = 0, and l > 0.

(1)
Finally, define P = P|s1|,|s2|,k. The resulting instance of MLD is I = (C, k).

Next, we prove the correctness of the reduction.

Theorem 5. RFLCS is solvable by a randomized algorithm in O(2kk|s1||s2|)
time and O(k|s1||s2|) space.

Proof. We will prove that there is a RFLCS for the strings s1, s2 of length k if
and only if there is a multilinear monomial in C of length k. To do so, we prove
by induction on i+ j that there exists a repetition free common subsequence of
s1[1 . . . i], s2[1 . . . j] containing the set of symbols {a1, . . . al} (hence of length l)
if and only if there is a multilinear monomial xa1

. . . xal
in Pi,j,l.

When i = j = 1, assume that there is a repetition free common subsequence
consisting w.l.o.g. of a1. Then s1[1] = s2[1] = a1, and, by Equation 1, P1,1,1 =
P0,0,0 · xa1

= xa1
. Similarly, if P1,1,1 = P0,0,0 · xa1

= xa1
, then by construction

it must hold s1[1] = s2[1] = a1.
Now, assume that the lemma holds for i+ j = h, we prove that the lemma

also holds for i + j = h + 1. Assume that there is a repetition free common
subsequence s of s1[1 . . . i], s2[1 . . . j] consisting of the set of symbols {a1, . . . al}.
It follows, that either s[l] = s1[i] = s2[j] = az for a given 1 ≤ z ≤ l, or s[l] 6=
s1[i], or s[l] 6= s2[j]. In the first case, by Equation 1, Pi,j,l = Pi−1,j−1,l−1 · xaz

.
By induction, if there is a repetition free common subsequence s′ of s1[1 . . . i−1],
s2[1 . . . j−1] consisting of symbols {a1, . . . , al}\{az}, then Pi−1,j−1,l−1 contains
a multilinear monomial of length l− 1 not including xaz

. If s[l] 6= s1[i] or s[l] 6=
s2[j], then s is a repetition free common subsequence of s1[1 . . . i], s2[1 . . . j− 1],
or of s1[1 . . . i − 1], s2[1 . . . j], or of s1[1 . . . i − 1], s2[1 . . . j − 1]. By induction
hypothesis, one of Pi,j−1,l, Pi−1,j,l, Pi−1,j−1,l contains a multilinear monomial
xa1 . . . xal

. By Equation 1, Pi,j,l also contains such a multilinear monomial.
Assume that Pi,j,l contains a multilinear monomial mx = xa1

. . . xal
. By

construction (Equation 1) it holds that mx is either contained in one of Pi−1,j,l,
Pi,j−1,l, Pi−1,j−1,l or it is obtained from Pi−1,j−1,l−1 · xa and Pi−1,j−1,l−1 con-
tains a multilinear monomial over the set of variables {xa1

. . . xal
}\{xa}. In the

first three cases, by induction hypothesis there is a repetition free longest com-
mon subsequence of s1[1 . . . i], s2[1 . . . j] consisting of symbols a1, . . . , al. Hence,
assume that the latter case holds, that is Pi,j,l = Pi−1,j−1,l−1 · xa. Hence
Pi−1,j−1,l−1 contains a monomial over the set of variables {xa1

. . . xal
} \ {xa}.

7

As a consequence, by induction hypothesis, there is a repetition free longest
common subsequence s of s1[1 . . . i − 1], s2[1 . . . j − 1] over the set of symbols
{a1, . . . , al} \ {a}. But then s′ = s� a is a repetition free longest common sub-
sequence of s1[1 . . . i], s2[1 . . . j] over the set of symbols {a1, . . . , al}, concluding
the proof for the induction.

By applying Theorem 4 of Section 4.1, and by observing that |C| = k|s1||s2|,
we can solve RFLCS with a randomized algorithm with the claimed complexi-
ties.

5. Conclusion

We have investigated the parameterized complexity of the RFLCS, a vari-
ant of the LCS problem that, given two strings s1, s2, asks for a common
subsequence s of s1, s2 of length at least k such that s contains at most one
occurrence of each symbol. We have proved that the RFLCS does not admit
a polynomial size kernel, unless NP ⊆ coNP/Poly and we have given a fixed-
parameter algorithm for RFLCS of resp. O(2kk|s1||s2|) time and O(k|s1||s2|)
space complexities. To obtain these complexities, we used the multilinear detec-
tion framework, which seems to be quite powerful to improve algorithms based
on dynamic programming and color-coding, widely used in computational biol-
ogy. Indeed, some authors already gave improvements of some algorithms using
this framework [11] [10].

An interesting open problem lies on the analysis of the approximation com-
plexity of RFLCS: it is still open whether RFLCS admits a constant factor
approximation algorithm or not.

References

[1] S. Adi, M. Braga, C. Fernandes, C. Ferreira, F. Martinez, M. Sagot, M.
Stefanes, C. Tjandraatmadja, and Y. Wakabayashi. Repetition-free Longest
Common Subsequence. In Discrete Applied Mathematics, 158(12): 1315–
1324, 2010.

[2] L. Bergroth, H. Hakonen, T. Raita. A Survey of Longest Common Subse-
quence Algorithms. In SPIRE, pages 39–48, 2000.

[3] H. L. Bodlaender, R. G. Downey, M. R. Fellows, D. Hermelin. On problems
without polynomial kernels. Journal of Computer and System Sciences,
75(8):423-434, 2009.

[4] H. L. Bodlaender, S.Thomassé, A. Yeo. Kernel Bounds for Disjoint Cycles
and Disjoint Paths. In ESA, volume 5757 of LNCS, pages 635-646. Springer,
2009.

[5] P. Bonizzoni, G. Della Vedova, R. Dondi, G. Fertin, R. Rizzi, and S. Vialette.
Exemplar Longest Common Subsequence. IEEE/ACM Transaction on Com-
putational Biology and Bioinformatics, 4(4):535–543, 2007.

8

[6] P. Bonizzoni, G. Della Vedova, R. Dondi, Y. Pirola. Variants of Constrained
Longest Common Subsequence. Inf. Process. Lett., 110(20): 877–881, 2010.

[7] F. Y. L. Chin, A. D. Santis, A. L. Ferrara, N. L. Ho, and S. K. Kim. A
Simple Algorithm for the Constrained Sequence Problems. Inf. Process.
Lett., 90(4):175–179, 2004.

[8] R. Downey, and M. Fellows, Parameterized Complexity, Springer-Verlag,
1999.

[9] L. Fortnow, R. Santhanam, Infeasibility of instance compression and suc-
cinct PCPs for NP. J. Comput. Syst. Sci. 77(1): 91–106, 2011

[10] B. Fu, L. Zhang, A Polynomial Algebra Method for Computing Exemplar
Breakpoint Distance. In ISBRA 2011, volume 6674 or LNCS, pages 297–305,
2011.

[11] S. Guillemot, F. Sikora, Finding and Counting Vertex-Colored Subtrees.
In MFCS 2010, volume 6281 or LNCS, pages 405–416, 2010.

[12] T. Jiang and M. Li, On the Approximation of Shortest Common Super-
sequences and Longest Common Subsequences. SIAM J. on Computing,
24(5):1122-1139, 1995.

[13] I. Koutis, Faster Algebraic Algorithms for Path and Packing Problems. In
ICALP 2008, volume 5125 of LNCS, pages 575-586, 2008.

[14] I. Koutis and R. Williams, Limits and Applications of Group Algebras
for Parameterized Problems. In ICALP 2009, volume 5555 of LNCS, pages
653-664, 2009.

[15] D. Maier, The Complexity of Some Problems on Subsequences and Super-
sequences. J. ACM, 25:322–336, 1978.

[16] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Univer-
sity Press, 2006.

[17] D. Sankoff, Genome Rearrangement with Gene Families. Bioinformatics,
11: 909–917, 1999

[18] R. Williams, Finding paths of length k in O∗(2k) time. IPL, 109(6):315-318,
2009

9

