
HAL Id: hal-00637255
https://hal.science/hal-00637255v1

Submitted on 31 Oct 2011 (v1), last revised 22 Dec 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Parameterized Complexity of the Repetition
Free Longest Common Subsequence Problem

Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, Florian Sikora

To cite this version:
Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, Florian Sikora. On the Parameterized Complexity
of the Repetition Free Longest Common Subsequence Problem. Université Paris-Est, LIGM UMR
CNRS 8049, France. 2011. �hal-00637255v1�

https://hal.science/hal-00637255v1
https://hal.archives-ouvertes.fr

On the Parameterized Complexity of the Repetition
Free Longest Common Subsequence Problem

Guillaume Blina, Paola Bonizzonib, Riccardo Dondic, Florian Sikoraa

aUniversité Paris-Est, LIGM UMR CNRS 8049, France
bDISCo, Università degli Studi di Milano-Bicocca, Milano - Italy

cDipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali,
Università degli Studi di Bergamo, Via Donizetti 3, 24129 Bergamo, Italy

Abstract

Longest common subsequence is a widely used measure to compare strings, in
particular in Computational Biology. Recently, several variants of the longest
common subsequence have been introduced to tackle with the comparison of
genomes. In particular, the Repetition Free Longest Common Subsequence
problem (RFLCS) is a variant of the LCS problem that asks for a longest
common subsequence problem of two input strings with no repetition of symbols.
In this paper, we investigate the parameterized complexity of RFLCS. First, we
show that the problem does not admit a polynomial kernel. Then, we present
an FPT algorithm for the RFLCS problem, improving the time complexity of
the existent FPT algorithm.

Keywords: Repetition Free Longest Common Subsequence, Longest Common
Subsequence, Parameterized Complexity.

1. Introduction

Longest Common Subsequence (LCS) has been widely used as a mea-
sure to compare strings in different fields [2], in particular for the comparison
of two (or more) genomes in Bioinformatics. Genomes are usually viewed as
strings, where each symbol represents a gene, and the comparison of the strings
associated with the genomes provides a measure of their similarities and differ-
ences. As the order in which genes appear in the genomes is considered relevant
in the comparison, LCS provides a natural measure to compare genomes.

Different variants of longest common subsequence have been proposed [5,
1, 6] to compare biological sequences, where, given two strings s1 and s2,
the computed longest common subsequence is required to satisfy some con-
straint. In particular, the Repetition Free Longest Common Subse-

Email addresses: gblin@univ-mlv.fr (Guillaume Blin), bonizzoni@disco.unimib.it
(Paola Bonizzoni), riccardo.dondi@unibg.it (Riccardo Dondi), sikora@univ-mlv.fr
(Florian Sikora)

Preprint submitted to Elsevier June 8, 2011

quence (RFLCS) problem, proposed in [1], requires that each symbol appears
at most once in the common subsequence of the input strings. The use of such
constraint is motivated by the exemplar hypothesis [15], that aims to identify
the original copy of a gene that has originated all the copies of that gene in
the genome through duplications. As a consequence, in the RFLCS problem,
the input consists of two strings s1 and s2, and the output consists of a longest
common subsequence of s1 and s2 containing no repetition of symbols. The
RFLCS is known to be APX-hard, even when each symbol occurs at most
twice in each of the two input strings [1]. Furthermore, the problem admits a
k-approximation algorithm, where k is the maximum number of occurrences of
each symbol in one of the two strings [1]. Concerning parameterized complexity,
the problem admits an FPT algorithm [6], if parameterized by the size k of the
solution, of time complexity O∗(4.12k) and space complexity O∗(2k) 1.

In this paper, we deepen the investigation on the parameterized complexity
of the RFLCS problem. For details on parameterized complexity, we refer the
reader to [14]. First, we investigate the kernelization complexity of RFLCS.
Kernelization is a widely used technique in parameterized complexity [14], that
aims to preprocess in polynomial time an instance of a problem, in order to
produce an instance having size depending only on the considered parameter.
Recently, several results [3, 4] on the kernelization complexity have been intro-
duced, in order to prove that a problem, although in FPT, does not admit a
polynomial size kernel. Applying a technique of [3], we show that the RFLCS
problem does not admits a kernel of polynomial size, unless NP ⊆ coNP/Poly.
Notice that NP ⊆ coNP/Poly would imply a collapse to the third level of
the polynomial time hierarchy. Then, we present a fixed-parameter algorithm
for the RFLCS problem parameterized by the size of the solution (denoted as
k). Our fixed-parameter algorithm has time complexity O∗(2k) and polynomial
space complexity, thus improving upon the existing algorithm proposed in [6].

The rest of the paper is organized as follows. In Section 2, we give some
preliminary definitions and we introduce the basics of kernelization complexity
and arithmetic circuits, that will be useful for the fixed-parameter algorithm.
In Section 3, we investigate the kernelization complexity of RFLCS, while in
Section 4, we present the fixed-parameter algorithm for RFLCS.

2. Preliminaries

In this section we introduce some basic definitions. Let ∆ denote a finite
alphabet and ∆∗ the set of all finite length strings over ∆. Let Π ⊆ ∆∗ × N
be a parameterized problem and let 1 6∈ ∆. The derived classical problem ΠC

associated with Π is {x1k : (x, k) ∈ Π}.
Let s be a string over alphabet Σ. We denote by |s| the length of s. The i-th

symbol of s is denoted by s[i]. Given two positions i, j in s, with 1 ≤ i ≤ j ≤ |s|,

1We recall that in the O∗() notation, the polynomially bounded terms are suppressed.

2

we denote by s[i, j] the substring of s that starts at position i and ends at
position j.

Consider two strings s1 and s2. A common subsequence of s1 and s2 is a
string s that can be computed by deleting some symbols (possibly none) in s1
or s2. A longest common subsequence s of s1, s2 is a common subsequence of s1
and s2 having maximum length. Given two strings s1 and s2, we define s1 � s2
as the concatenation of s1 and s2.

The RFLCS problem is a constraint version of the longest common subse-
quence problem that has been introduced in [1]. Given two strings s1, s2 over
alphabet Σ, RFLCS asks for a longest common subsequence of s1, s2 where
each symbol of Σ occurs at most once. Formally, the problem is defined as
follows:

Problem 1. RFLCS
Input: A pair of strings I = (s1, s2) over alphabet Σ.
Parameter: k.
Output: A common subsequence s of s1 and s2, such that each symbol σ ∈ Σ
occurs at most once in s and |s| ≥ k.

The derived classic problem RFLCSC is known to be NP-hard [1], even
when each symbol occurs at most twice in each string.

2.1. Kernelization Complexity

In order to prove lower bound on the polynomial kernel, we need to in-
troduce some preliminary notions and in particular the notion of composition
algorithm [3].

Definition 1. [3] A composition algorithm for a parameterized problem Π ⊆
∆×N is an algorithm that, given in input a sequence 〈(x1, k), (x2, k), . . . , (xt, k)〉

where each (xi, k) ∈ ∆× N, runs in time polynomial in
t∑

i=1

xi + k, and outputs

an instance (y, k′) ∈ ∆× N such that

1. (y, k′) ∈ Π iff (xi, k) ∈ Π, for some 1 ≤ i ≤ t;
2. k′ is polynomial in k.

A parameterized problem is compositional if it has a composition algorithm.

We will apply the following fundamental result on kernelization complex-
ity [9].

Theorem 2. [9] Let Π be a compositional parameterized problem whose derived
classical problem ΠC is NP-complete. If Π has a polynomial kernel, then NP ⊆
coNP/Poly.

3

2.2. Arithmetic circuits

In order to present the fixed-parameter algorithm of Section 4, we need to
introduce some definitions and results concerning the multilinear detection tech-
nique. Intuitively, the aim of this technique is to efficiently detect a multilinear
monomial of a given degree in an arithmetic circuit, which is a compressed
encoding of a multivariate polynomial.

More formally, let X be a set of variables {x1, x2, . . . }. A multivariate
polynomial is a sum of monomials. The degree of a monomial is the sum of the
monomial variables degrees. A monomial is multilinear if the degree of all the
variables is equal to 1. Thus, a multilinear monomial of degree k has exactly k
different variables. For example, the degree of the monomial x1 · x22 is 3, and so
does the degree of the multilinear monomial x1 · x2 · x3.

An arithmetic circuit over X is a pair C = (C, r), where C is a labeled
directed acyclic graph (DAG) such that each leaf (with an out-degree equal to
zero) is labeled by a variable of X, each internal node is labeled either by + or
×, and r is a distinguished node of C (the root of C).

We can encode a polynomial with an arithmetic circuit. Recursively, the
polynomial corresponding to a leaf is the label of the leaf, and the polynomial
of an internal node labeled by + (resp. ×) is the sum (resp. the product) of its
polynomials children.

Now, we can introduce the Multilinear Detection problem. Informally,
given an arithmetic circuit C and an integer k, the Multilinear Detection
problem asks if the polynomial PC encoded by C has a multilinear monomial of
degree k. More formally, we give the definition of the Multilinear Detection
problem.

Problem 2. MLD
Input: An arithmetic circuit C encoding a polynomial PC over a set of variables
X.
Parameter: k.
Output: Does PC contains a multilinear monomial of degree k?

In [12, 16], it is shown the following fundamental result for the MLD prob-
lem.

Theorem 3 ([12, 16]). There exists a randomized algorithm that solves MLD
in O(2k|C|) time and in O(|C|) space.

In Section 4, we apply this result in order to obtain a new fixed-parameter
algorithm for RFLCS.

3. Kernelization Complexity

In this section we prove that the RFLCS does not admit a polynomial
kernel, unless NP ⊆ coNP/Poly. Since the derived classical problem RFLCSC

is NP-complete [1], we can prove the result applying the concept of composition
algorithm given in Section 2.

4

Consider two instances I1 =
(

(s1,a, s1,b), k
)

, I2 =
(

(s2,a, s2,b), k
)

of the

RFLCS problem, such that s1,a, s1,b (s2,a, s2,b respectively) are over alpha-
bet Σ1 (Σ2 respectively). We assume that Σ1 ∩ Σ2 = ∅, otherwise, start-
ing from s1,a, s1,b, we can compute in time O(|s1,a| + |s1,b|) an instance I ′1 =(

(s′1,a, s
′
1,b), k

)
of RFLCS such that (1) s′1,a, s

′
1,b are over alphabets Σ′1, with

Σ′1 ∩ Σ2 = ∅; (2) RFLCS on input
(

(s′1,a, s
′
1,b), k

)
admits a feasible solution if

and only if RFLCS on input
(

(s1,a, s1,b), k
)

admits a feasible solution.

Indeed assume that Σ1 ∩ Σ2 6= ∅. Define a new alphabets Σ′1 such that for
each a ∈ Σ1, there is a symbol a′ ∈ Σ′1, where a′ /∈ Σ1 ∪ Σ2. Then, define the
string s′1′,x, with x ∈ {a, b}, as follows: if s1,x[i] = a, with 1 ≤ i ≤ |s1,x|, then
s′1,x[i] = a′. By construction, s′1,a, s

′
1,b are over alphabets Σ′1, with Σ′1 ∩Σ2 = ∅.

Furthermore, it is easy to see that RFLCS on input
(

(s′1,a, s
′
1,b), k

)
admits a

feasible solution if and only if RFLCS on input
(

(s1,a, s1,b), k
)

admits a feasible

solution.
Starting from (s1,a, s1,b) and (s2,a, s2,b), the composition algorithm defines

the operation (s1,a, s1,b)⊗(s2,a, s2,b), which starting from (s1,a, s1,b) and (s2,a, s2,b)
outputs the strings sa1,2, sb1,2 defined as follows:

• sa1,2 = s1,a � s2,a, that is sa1,2 is the concatenation of s1,a and s2,a;

• sb1,2 = s2,b � s1,b, that is sb1,2 is the concatenation of s2,b and s1,b.

Example 1. Consider the instances I1 =
(

(s1,a, s1,b), k
)

and I2 =
(

(s2,a, s2,b), k
)

,

where

• s1,a = abc

• s1,b = bca

• s2,a = def

• s2,b = ddf

Then (s1,a, s1,b)⊗ (s2,a, s2,b) produces the following strings:

sa1,2 = s1,a � s2,a = abcdef

sb1,2 = s2,b � s1,b = ddfbca.

Lemma 4. The RFLCS problem does not admit a polynomial kernel unless
NP ⊆ coNP/Poly.

Proof. Let
(

(s1,a, s1,b), k
)

,
(

(s2,a, s2,b), k
)
, . . . ,

(
(st,a, st,b), k

)
be t instances of

RFLCS, defined over pairwise disjoint alphabets Σ1, . . . ,Σt. Let (sy,a, sy,b) be
a pair of strings defined as follows: (sy,a, sy,b) = (s1,a, s1,b)⊗ (s2,a, s2,b)⊗ · · · ⊗

5

(st,a, st,b), that is sy,a = s1,a�s2,a�· · ·�st,a, while sy,b = st,b�st−1,b�· · ·�s1,b.
We claim that there is a solution for RFLCS over instance

(
(sy,a, sy,b), k

)
if and

only if there exists a j ∈ [t] such that RFLCS admits a solution over instance(
(sj,a, sj,b), k)

)
.

First, assume that there is a solution of RFLCS over instance
(

(sj,a, sj,b), k
)

,

for some j ∈ [t]. Consider the substrings sjy,a, sjy,b of sy,a, sy,b respectively, con-

sisting only of symbols in Σj . Since by construction the instances
(

(s1,a, s1,b), k
)

,(
(s2,a, s2,b), k

)
, . . . ,

(
(st,a, st,b), k

)
are over pairwise disjoint alphabets Σ1, . . . ,Σt,

it follows by construction that sjy,a, sjy,b are identical to sj,a, sj,b respectively.
Since there is a repetition free common subsequence of sj,a, sj,b of length at

least k, then there is a repetition free common subsequence of sjy,a, sjy,b of
length at least k, which implies that there is a solution for RFLCS over in-

stance
(

(sy,a, sy,b), k
)

.

Assume now that there is a solution s of RFLCS over instance
(

(sy,a, sy,b), k
)

.

Then we claim that s consists of symbols from exactly one alphabet Σj , for
some j ∈ [t]. Assume to the contrary that such a solution s contains symbols
from two alphabets Σi, Σj , with i, j ∈ [t] and w.l.o.g. i < j. Recall that the

instances
(

(s1,a, s1,b), k
)

,
(

(s2,a, s2,b), k
)
, . . . ,

(
(st,a, st,b), k

)
are defined over

pairwise disjoint alphabets Σ1, . . . ,Σt. Consider the substrings siy,a, siy,b of sy,a,
sy,b respectively, consisting only of symbols of Σi. Similarly, consider the sub-

strings sjy,a, s
j
y,b of sy,a, sy,b respectively, consisting only of symbols of Σj . By

construction of (sy,a, sy,b), s
i
y,a appears before sjy,a in sy,a, while siy,b appears

after sjy,b in sy,b. Hence s cannot contain both a symbol αi ∈ Σi and a symbol
αj ∈ Σj . Indeed, assume w.l.o.g. that αi appears before αj in s. Since αi

appears after αj in sy,b, this implies that αi and αj cannot belong to a subse-
quence of sy,b. A similar argument holds if we assume that αj appears before
αi in s. It follows that s is a string over alphabet Σj , for some j ∈ [t], hence

s is a repetition free common subsequence of sjy,a, sjy,b, which implies that s is
also a repetition free common subsequence of sj,a, sj,b.

By Theorem 2, it follows that RFLCS does not admit a polynomial kernel
unless NP ⊆ coNP/Poly.

4. A Fixed-Parameter Algorithm

In this section we present a fixed-parameter algorithm for RFLCS of time
complexity O∗(2k) and having polynomial space complexity. The algorithm is
based on the detection of multilinear monomials technique, presented in Section
2.2. Let s1, s2 be the two input strings of RFLCS over alphabet Σ, we construct
a circuit C as follows. C is defined over the set of variables {xa : a ∈ Σ}.
Moreover, the circuit has a root P and a set of intermediary nodes Pi,j,l, for

6

0 ≤ i ≤ |s1|, 0 ≤ j ≤ |s2| and 0 ≤ l ≤ |Σ|. Informally, the multilinear monomial
Pi,j,l encodes a repetition free common subsequence of the strings s1[1, . . . , i],
sj [1, . . . , j], having length l. Pi,j,l is defined as follows:

Pi,j,l =

Pi−1,j,l + Pi,j−1,l + Pi−1,j−1,l if i > 0, j > 0, s1[i] 6= s2[j] and l ≥ 1,

Pi−1,j,l + Pi,j−1,l + Pi−1,j−1,l−1 · xa if i > 0, j > 0, s1[i] = s2[j] = a and l ≥ 1,

1 if l = 0 and i, j ≥ 0,

0 if i = 0 or j = 0, and l > 0.

(1)
Finally, define P = P|s1|,|s2|,k. The resulting instance of MLD is I = (C, k).

Next, we prove the correctness of the reduction.

Lemma 5. There is a RFLCS for the strings s1, s2 of length k if and only if
there is a multilinear monomial in C of length k.

Proof. We prove by induction on i+j that there exists a repetition free common
subsequence of s1[1 . . . i], s2[1 . . . j] containing the set of symbols {a1, . . . al}
(hence of length l) if and only if there is a multilinear monomial xa1

. . . xal
in

Pi,j,l.
When i = j = 1, assume that there is a repetition free common subsequence

consisting w.l.o.g. of a1. Then s1[1] = s2[1] = a1, and, by Equation 1, P1,1,1 =
P0,0,0 · xa1

= xa1
. Similarly, if P1,1,1 = P0,0,0 · xa1

= xa1
, then by construction

it must hold s1[1] = s2[1] = a1.
Now, assume that the lemma holds for i+j = h, we prove that the lemma also

holds for h+1. Assume that there is a repetition free common subsequence s of
s1[1 . . . i], s2[1 . . . j] consisting of the set of symbols {a1, . . . al}. It follows, that
either s[l] = s1[i] = s2[j] = az for a given 1 ≤ z ≤ l, or s[l] 6= s1[i], or s[l] 6= s2[j].
In the first case, by Equation 1, Pi,j,l = Pi−1,j−1,l−1·xaz

. By induction, if there is
a repetition free common subsequence s′ of s1[1 . . . i−1], s2[1 . . . j−1] consisting
of symbols {a1, . . . , al}\{az}, then Pi−1,j−1,l−1 contains a multilinear monomial
of length l−1 not including xaz . If s[l] 6= s1[i] or s[l] 6= s2[j], then s is a repetition
free common subsequence of s1[1 . . . i], s2[1 . . . j−1], or of s1[1 . . . i−1], s2[1 . . . j],
or of s1[1 . . . i−1], s2[1 . . . j−1]. By induction hypothesis, one of Pi,j−1,l, Pi−1,j,l,
Pi−1,j−1,l contains a multilinear monomial xa1

. . . xal
. By Equation 1, Pi,j,l also

contains such a multilinear monomial.
Assume that Pi,j,l contains a multilinear monomial mx = xa1 . . . xal

. By
construction (Equation 1) it holds that mx is either contained in one of Pi−1,j,l,
Pi,j−1,l, Pi−1,j−1,l or it is obtained from Pi−1,j−1,l−1 · xa and Pi−1,j−1,l−1 con-
tains a monomial over the set of variables {xa1

. . . xal
} \ {xa}. In the first

three cases, by induction hypothesis there is a repetition free longest com-
mon subsequence of s1[1 . . . i], s2[1 . . . j] consisting of symbols a1, . . . , al. Hence,
assume that the latter case holds, that is Pi,j,l = Pi−1,j−1,l−1 · xa. Hence
Pi−1,j−1,l−1 contains a monomial over the set of variables {xa1 . . . xal

} \ {xa}.
As a consequence, by induction hypothesis, there is a repetition free longest
common subsequence s of s1[1 . . . i − 1], s2[1 . . . j − 1] over the set of symbols

7

{a1, . . . , al} \ {a}. But then s′ = s� a is a repetition free longest common sub-
sequence of s1[1 . . . i], s2[1 . . . j] over the set of symbols {a1, . . . , al}, concluding
the proof.

By applying Theorem 3 of Section 2.2, and by observing that |C| = k|s1||s2|,
we can solve RFLCS in time O(2kk|s1||s2|) and space O(k|s1||s2|).

5. Conclusion

We have investigated the parameterized complexity of the RFLCS, a vari-
ant of the LCS problem that, given two strings s1, s2, asks for a common
subsequence s of s1, s2 of length at least k such that s contains at most one
occurrence of each symbol. We have proved that the RFLCS does not admit
a polynomial size kernel, unless NP ⊆ coNP/Poly and we have given a fixed-
parameter algorithm for RFLCS of resp. O(2kk|s1||s2|) time and O(k|s1||s2|)
space complexities. An interesting open problem lies on the analysis of the ap-
proximation complexity of RFLCS: it is still open whether RFLCS admits a
constant factor approximation algorithm or not.

References

[1] S. Adi, M. Braga, C. Fernandes, C. Ferreira, F. Martinez, M. Sagot, M.
Stefanes, C. Tjandraatmadja, and Y. Wakabayashi. Repetition-free Longest
Common Subsequence. In Discrete Applied Mathematics, 158(12): 1315–
1324, 2010.

[2] L. Bergroth, H. Hakonen, T. Raita. A Survey of Longest Common Subse-
quence Algorithms. In SPIRE, pages 39–48, 2000.

[3] H. L. Bodlaender, R. G. Downey, M. R. Fellows, D. Hermelin. On problems
without polynomial kernels. Journal of Computer and System Sciences,
75(8):423-434, 2009.

[4] H. L. Bodlaender, S.Thomassé, A. Yeo. Kernel Bounds for Disjoint Cycles
and Disjoint Paths. In ESA, volume 5757 of LNCS, pages 635-646. Springer,
2009.

[5] P. Bonizzoni, G. Della Vedova, R. Dondi, G. Fertin, R. Rizzi, and S. Vialette.
Exemplar Longest Common Subsequence. IEEE/ACM Transaction on Com-
putational Biology and Bioinformatics, 4(4):535–543, 2007.

[6] P. Bonizzoni, G. Della Vedova, R. Dondi, Y. Pirola. Variants of Constrained
Longest Common Subsequence. Inf. Process. Lett., 110(20): 877–881, 2010.

[7] F. Y. L. Chin, A. D. Santis, A. L. Ferrara, N. L. Ho, and S. K. Kim. A
Simple Algorithm for the Constrained Sequence Problems. Inf. Process.
Lett., 90(4):175–179, 2004.

8

[8] R. Downey, and M. Fellows, Parameterized Complexity, Springer-Verlag,
1999.

[9] L. Fortnow, R. Santhanam, Infeasibility of instance compression and suc-
cinct PCPs for NP. J. Comput. Syst. Sci. 77(1): 91–106, 2011

[10] T. Jiang and M. Li, On the Approximation of Shortest Common Super-
sequences and Longest Common Subsequences. SIAM J. on Computing,
24(5):1122-1139, 1995.

[11] I. Koutis, Faster Algebraic Algorithms for Path and Packing Problems. In
ICALP 2008, volume 5125 of LNCS, pages 575-586, 2008.

[12] I. Koutis and R. Williams, Limits and Applications of Group Algebras
for Parameterized Problems. In ICALP 2009, volume 5555 of LNCS, pages
653-664, 2009.

[13] D. Maier, The Complexity of Some Problems on Subsequences and Super-
sequences. J. ACM, 25:322–336, 1978.

[14] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Univer-
sity Press, 2006.

[15] D. Sankoff, Genome Rearrangement with Gene Families. Bioinformatics,
11: 909–917, 1999

[16] R. Williams, Finding paths of length k in O (2k) time. IPL, 109(6):315-318,
2009

9

