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Testing for equality between two transformations of random

variables

Mohamed BOUTAHAR ∗∗and Denys POMMERET † †
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Abstract

Consider two random variables contaminated by two unknown transformations.

The aim of this paper is to test the equality of those transformations. Two cases are

distinguished: first, the two random variables have known distributions. Second, they

are unknown but observed before contaminations. We propose a nonparametric test

statistic based on empirical cumulative distribution functions. Monte Carlo studies are

performed to analyze the level and the power of the test. An illustration is presented

through a real data set.

Keywords : empirical cumulative distribution; nonlinear contamination; nonparametric
estimation

1 Introduction

There exists an important literature concerning the deconvolution problem, when an un-
known signal Y is contaminated by a noise Z, leading to the observed signal

X = Y + Z. (1)

A major problem is to reconstruct the density of Y . Many authors studied the univariate
problem when the noise Z has known distribution (see for instance Fan [10], Carroll and
Hall [3], Devroye [7], or more recently Holzmann et al. [12] for a review). Bissantz et
al. [1] proposed the construction of confidence bands for the density of Y based on i.i.d.
observations from (1). The case where both Y and Z have unknown distributions is
considered in Neumann [15], Diggle and Hall [8] or Johannes et al. [13] among others. When
the error density and the distribution of Y have different characteristics the model can be
identified as shown in Butucea and Matias [2] and Meister [14]. But without information
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on Z, the model suffers of identification conditions. One solution is to assume another
independent sample is observed from the measurement error Z (as done in Efromovich and
Koltchinskii [9] and Cavalier and Hengartner [5]).

A more general model than (1) occurs when the contaminated random variables are
observed through a transformation; that is, there exists g such that

X = g(Y + Z). (2)

When g is known the problem is to estimate the distribution of Y , observing a sample from
(2). An application of this model to fluorescence lifetime measurements is given in Comte
and Rebafka [6]. The authors developed an adaptative estimator that take into account
the perturbation from the unknown additive noise, and the distortion due to the nonlinear
transformation.

In this paper we consider a two sample problem of contamination that can be related
to models (1) and (2) as follows: We assume that two contaminated random variables are
observed, say X and X̃, which are transformations of two known, or observed, signals, that
is:

X = g(Y ), X̃ = g̃(Ỹ ), (3)

where g and g̃ are continuous monotone unknown functions. Our purpose is to test

H0 : g = g̃ against H1 : g 6= g̃, (4)

based on two i.i.d. samples satisfying (3). The problem of testing (4) is of interest in many
applications when a signal is noised in another way than the additive noise model (1). We
will distinguish two important cases:

Case 1 The distributions of Y and Ỹ are known and we observe two samples reflecting X
and X̃. This situation may be encountered when two signals are controlled in entry
but observed with perturbations in exit of a system.

Case 2 The distributions of Y and Ỹ are unknown and we first observe two independent
samples based on Y and Ỹ , and then we observe contaminated samples X and X̃
satisfying (3). This situation may be encountered when two unknown signals are
observed both in entry and in exit of a system.

For both cases we construct a test statistics based on non parametric empirical estimators
of g and g̃ and we adapt a limit result on empirical processes due to Sen [16]. Our test
statistics are very easily implemented and we observe through simulations that they have
a good power against various alternatives. It is clear that when H0 is not rejected; that is
when the two noise functions are identical, it is then of interest to interpret the common
estimation of g. We illustrate this point with a study of the Framingham dataset (see
Carroll et al. [4], and more recently Wang and Wang [17]).

The paper is organized as follows: in Section 1 we consider the problem when the two
original signals have known distributions. In Section 2 we relax the last assumption by
assuming unknown distributions but we observe the two original signals after and before
perturbations. In Section 3 a simulation study is presented and a real data set is analyzed.
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2 The test statistic

2.1 Case 1: the two signal distributions of Y and Ỹ are known

We consider n (resp. ñ) i.i.d. observations X1, · · · , Xn (resp. X̃1, · · · , X̃ñ) from (3). We
assume that Y and Ỹ are independent. Write FY and FỸ the cumulative distribution

functions of Y and Ỹ respectively. We assume that these functions are known and invert-
ible. We also write FX and FX̃ the cumulative distribution functions of X and X̃. Also
we assume that the transformations g and g̃ are monotone and, without loss of generality,
that they are increasing. Note that g(y) = F−1

X (FY (y)) and g̃(y) = F−1
X̃

(FỸ (y)). Hence a
natural nonparametric estimators of the contaminating functions are given by

ĝ(·) = X([nFY (·)]+1) and ̂̃g(·) = X̃([ñF
Ỹ
(·)]+1), (5)

where X(i) and X̃(i) denote the ith order statistics, and [x] denotes the integer part of the
real x. A fundamental theorem of Sen [16] states the following convergence in distribution

√
n
(
X([np]+1) − F−1

X (p)
) D→ N

(
0,

p(1− p)

f2(F−1
X (p))

)
, ∀p ∈ (0, 1), (6)

where
D→ denotes the convergence in distribution, f denotes the density of X and N (m,σ2)

the Normal distribution with mean m and variance σ2. We will need the following two
standard assumptions:

• (A1) there exists a < ∞ such that n/(n+ ñ) → a

• (A2) f > 0 and f is Ck, for some positive integer k.

We deduce a first result which is a main tool for the construction of the test statistic.

Proposition 2.1 Let Assumption (A1)− (A2) hold. Under H0 we have

√
nñ

n+ ñ

(
ĝ(y)− ̂̃g(y)

)
D→ N (0, σ2(y)), as n → ∞, ñ → ∞, (7)

where

σ2(y) = (1− a)
FY (y)(1− FY (y))

f2
X(g(y))

+ a
FỸ (y)(1− FỸ (y))

f2
X̃
(g̃(y))

Proof. It follows directly from (6), replacing p by FY (y) and FỸ (y) respectively.
�

We will estimate the variance σ2 by using a nonparametric method. Consider a kernel
K(·), for instance the quartic kernel defined by K(y) = 15

16(1 − y2)21(−1,1)(y), and an
associated bandwidth hn. In the sequel, we will set Khn

(y) = K( y
hn

). To avoid small
values for denominators in the estimation of the variance we use
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f̂X(y) = max

(
1

nhn

n∑

i=1

Khn
(Xi − y), en

)

and

f̂X̃(y) = max

(
1

ñhñ

ñ∑

i=1

Khñ
(X̃i − y), eñ

)
,

where en > 0 and en → 0 when n tends to infinity. The estimator of σ2 is then

σ̂2(y) = (1− a)
FY (y)(1− FY (y))

f̂2
X(ĝ(y))

+ a
FỸ (y)(1− FỸ (y))

f̂2
X̃
(̂̃g(y))

,

and we consider the statistic

T1(y) =
nñ

n+ ñ
σ̂(y)−2

(
ĝ(y)− ̂̃g(y)

)2
. (8)

Proposition 2.2 Let Assumptions (A1)-(A2) hold. If hn ≃ n−c1 , en ≃ n−c2 for some
positive constants c1 and c2 such that c2

k < c1 <
1

1+2k , then under H0, when n → ∞, ñ →
∞, we have for all y:

T1(y)
D→ Z,

where Z is Chi-squared distributed with one degree of freedom.

Proof. We need the fundamental Lemma (see Härdle [11]):

Lemma 2.1

sup
y∈R

|f̂2(y)− f2(y)| = Op

(
h2kn +

log n

nhn

)
.

We can write

σ̂2(y) =
u(y)

f̂2
X(ĝ(y))

+
v(y)

f̂2
X̃
(̂̃g(y))

,

where u(y) = (1 − a)FY (y)(1 − FY (y)) and v(y) = aFỸ (y)(1 − FỸ (y)). Using Taylor
expansion there exist A and B such that

σ̂2(y) = σ2(y) +

(
f̂2
X(ĝ(y))− f2(g(y))

)(−1

A2

)
+

(
̂̃
f
2

X(̂̃g(y))− f̃2(g̃(y))

)(−1

B2

)
,

with
1

A2
≤ 1

e2n
and

1

B2
≤ 1

e2ñ
.

Then, from Lemma 2.1 we get

σ̂2(y) = σ2(y) + oP (1),

by assumption and the result follows from Proposition 2.1.
�
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2.2 Case 2: the two signal distributions Y and Ỹ are unknown

We consider nx (resp. ñx) i.i.d. observations X1, · · · , Xnx (resp. X̃1, · · · , X̃ñx) and ny

(resp. ñy) i.i.d. observations Y1, · · · , Yny (resp. Ỹ1, · · · , Ỹñy) from (3). Put

N = nxny/(nx + ny) and Ñ = ñxñy/(ñx + ñy).

The two samples Y1, · · · , Yny and Ỹ1, · · · , Ỹñy can be viewed as two independent training
sets which permit to estimate the initial densities of the signals before perturbations. Again
we want test H0 : g = g̃. We now estimate g and g̃ by

ĝ(·) = X
([nxF̂Y (·)]) and ̂̃g(·) = X̃

([ñxF̂Ỹ
(·)]), (9)

where

F̂Y (y) =
1

ny

ny∑

i=1

1{Yi≤y} and F̂Ỹ (y) =
1

ñy

ñy∑

i=1

1{Ỹi≤y}, (10)

are the empirical distribution functions of Y and Ỹ respectively. We assume that

limnx/(nx + ny) = a < ∞, lim ñx/(ñx + ñy) = ã < ∞,

and we make the following assumption, extending Assumption (A1):

• (A3) there exists b < ∞ such that N/(N + Ñ) → b.

We can extend Proposition 2.1 as follows:

Proposition 2.3 Let Assumption (A2)− (A3) hold. Under H0 we have

√
NÑ

N + Ñ

(
ĝ(y)− ̂̃g(y)

)
D→ N (0, σ2(y)), as N → ∞, Ñ → ∞, (11)

where

σ2(y) = (1− b)
FY (y)(1− FY (y))

f2
X(g(y))

+ b
FỸ (y)(1− FỸ (y))

f2
X̃
(g̃(y))

. (12)

Proof. We first show that

U =

√
nxny

nx + ny
(ĝ(y)− g(y))

D→ N (0, σ2
1(y)), as nx → ∞, ny → ∞,

where

σ2
1(y) =

FY (y)(1− FY (y))

f2
X(g(y))

.
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For that write

ĝ(y)− g(y) = Ĝ(y) +G(y),

where Ĝ(y) = ĝ(y)− F−1
X (F̂Y (y)) = X

([nxF̂Y (x)])
− F−1

X (F̂Y (y)) and G(y) = F−1
X (F̂Y (y))−

g(y). By the delta method we get

n1/2
y G(y) → N (0, σ2

1(y)).

Then we decompose the characteristic function

E
(
eiuU

)
= E

(
eiunx,yGE(eiunx,yĜ|Y)

)
,

where nx,y =

√
nxny

nx + ny
and Y stands for the vector of observation Y1, · · · , Yny .

Since these functions are bounded we get:

lim
nx→∞,ny→∞

E(exp(iuU)) = E

(
lim

nx→∞,ny→∞
eiunx,yG lim

nx→∞,ny→∞
E
(
eiunx,yĜ|Y

))

= E

(
eiu

√
aZ lim

ny→∞
e−

1

2
(1−a)σ̂2

1
(y)

)
,

where Z ∼ N (0, σ2
1(y)) and σ̂2

1(y) =
F̂Y (y)(1−F̂Y (y))

f2

X
(g(y))

. We finally obtain

lim
nx→∞,ny→∞

E(exp(iuU)) = exp(−1/2u2σ2
1(y)).

Similarly, writing

Ũ =

√
ñxñy

ñx + ñy

(
̂̃g(y)− g̃(y)

)
,

we obtain that

Ũ
D→ N (0, σ̃2

1(y)), as ñx → ∞, ñy → ∞,

with

σ̃2
1(y) =

FỸ (y)(1− FỸ (y))

f2
X̃
(g̃(y))

.

Finally, combining these two convergences with the equality g̃ = g under H0 we com-
plete the proof.

�

As previously we can estimate σ2(y) in (12) by a nonparametric estimator

σ̂2(y) = (1− b)
F̂Y (y)(1− F̂Y (y))

f̂2
X(ĝ(y))

+ b
F̂Ỹ (y)(1− F̂Ỹ (y))

f̂2
X̃
(̂̃g(y))

,
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where F̂Y and F̂Ỹ are the empirical distribution functions of Y and Ỹ given by (10). Our
test statistic is given by

T2(y) =
NÑ

N + Ñ
σ̂−2(y)

(
ĝ(y)− ̂̃g(y)

)2
. (13)

We can now generalize Proposition 2.2 as follows.

Proposition 2.4 Let Assumptions (A2)-(A3) hold. If hn ≃ n−c1 , en ≃ n−c2 for some
positive constants c1 and c2 such that c2

k < c1 <
1

1+2k , then under H0, when N → ∞, Ñ →
∞, we have:

T2
D→ Z,

where Z is Chi-squared distributed with one degree of freedom.

Proof. We combine the proof of Proposition 2.1 with the fact that F̂ (1 − F̂ ) is
bounded to get

σ̂2(y) = σ2(y) + oP (1),

and we conclude by Proposition 2.3.
�

2.3 Behaviour of the tests under H1

We study convergence properties of the tests T1 and T2 under some alternatives

Proposition 2.5

a. General alternatives.
Consider the test statistics T1 and T2, then for all y such that g(y) 6= g̃(y), we have

T1(y)
P→ +∞ and T2(y)

P→ +∞,

where
P→ denotes the convergence in probability.

b. Local alternatives.
Let us denote m = nñ

n+ñ or m = NÑ
N+Ñ

according to whether if the test statistic T1 or T2 is

used and consider the local alternatives

Hl1 : g̃(y) = g(y) +
k(y)

mβ
,

then under Hl1 and when n → ∞, ñ → ∞, N → ∞, Ñ → ∞ we have for all y:
i. If β > 1/2 then

T1(y)
D→ Z and T2(y)

D→ Z
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ii. If β = 1/2 then

T1(y)
D→ Zk and T2(y)

D→ Zk

iii. If β < 1/2 then

T1(y)
P→ +∞ and T2(y)

P→ +∞

where Z is Chi-squared distributed with one degree of freedom and Zk is a decentred Chi-
squared distributed with one degree of freedom and parameter k(y).

The proof of this proposition is straightforward and hence is omitted.

Remark 2.1 Estimators ĝ (resp. ̂̃g ) are computed from (X1, · · · , Xnx) and (Y1, · · · , Yny)

(resp. (X̃1, · · · , X̃ñx) and (Ỹ1, · · · , Ỹñy) ). Under the null H0 there are two different ways
to construct a common estimator of g. First we can consider the aggregate estimator

ĝ0 =
(nx + ny)ĝ + (ñx + ñy)̂̃g

nx + ny + ñx + ñy
, (14)

and, second, another estimator can be construct by aggregating the samples.

3 Simulations and data study

For all empirical powers or empirical levels we carry out experiments of 10000 samples and
we use three different sample sizes: n = 50, n = 100, and n = 500. For each replication we
compute the statistics T1(y) and T2(y) given by (8) and (13), where y is chosen randomly
following a standard normal distribution.

3.1 Study of the empirical levels

We will denote by N (0, 1) the standard normal distribution with mean zero and variance
1. We first consider the case where Yt and Ỹt are independent and N (0, 1) distributed.
The bandwidth is chosen as hn = n−1/2 and the trimming as en = n−1/5.

Empirical level To study the empirical levels of T1 and T2 we choose

g(y) = g̃(y) = exp{(y + 3)/(y + 5)},

and we fix a theoretical level α = 5%. Table 1 shows empirical levels of the test under H0.
It can be seen that both statistics T1 and T2 provide levels close to the asymptotic value.

8



3.2 Study of the empirical powers

We consider the model where Yt and Ỹt are independent and N (0, 1) distributed. To study
the empirical powers of T1 and T2 we consider g(y) = exp((y + 3)/(y + 5)) and the four
following transformations:

g̃1(y) = exp((y + 3)/(y + 5)) + 1, g̃2(y) = 2 exp((y + 3)/(y + 5)),

g̃3(y) = −(y + 11)/(y + 5), g̃4(y) = 4y + 5,

and we also study local alternatives by considering:

g̃5(y) = g(y) +
2(y + 5)

nβ
.

Tables 2-3 present empirical powers for T1 and T2 under fixed and local alternatives, respec-
tively, for a theoretical level α equal to 5%. From Table 2 it appears that the knowledge of
the probability densities of Y and Ỹ allows to have more stable statistics that detect more
easily the departure from the null hypothesis. Then the test statistic T1 provides better
power, particularly for smallest sample size. The test statistic T2 has a low empirical power
for n = 50; but when the sample size n increases, the empirical power of T2 is similar to
that of T1. Table 3 indicates that T1 and T2 provide good power for β ≤ 1/2. For β > 1/2
the power converges to the theoretical level α; this is in accordance with the theoretical
result stated in Proposition 2.5.

3.3 Real example: Framingham data

We consider the Framingham Study on coronary heart disease described by Carroll et al.
[4]. The data consist of measurements of systolic blood pressure (SBP) obtained at two
different examinations in 1,615 males on an 8-year follow-up. At each examination, the
SBP was measured twice for each individual. The four variables of interest are:
Y = the first SBP at examination 1,
Ỹ = the second SBP at examination 1,
X = the first SBP at examination 2,
X̃ = the second SBP at examination 2.

Our purpose is to examine whether the distribution of the SBP changed during time,
and which type of transformation it underwent. Following our notations, we will study
the transformation between the distributions of Y and X and also the one between the
distributions of Ỹ and X̃. Then we assume that X = g(Y ) and X̃ = g̃(Ỹ ).

Table 4 indicates that all the distributions of X, Y , X̃ and Ỹ are skewed to the right
and are leptokurtic, KS is the Kolomogorov-Smirnov statistic, the associated p-values are
lesser than 2.210−6 and hence the normality assumption is strongly rejected. Figure 1
represents nonparametric estimations of the probability densities of X,Y, X̃, and Ỹ .

From Figure 1 it seems that the distributions of the variables Y and X have a similar
shape. However, from Table 4 we observe a noticeable decrease in the mean and an increase
in the variance. Based on the nonparametric estimators given in Figure 2 we can postulate
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Figure 1: Kernel estimates of the probability densities of X,Y, X̃, Ỹ . In the top panel : f11
(resp. f21) is the Kernel estimate of the density of Y (resp. of X). In the bottom panel :
f12 (resp. f22) is the Kernel estimate of the density of Ỹ (resp. of X̃).
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Figure 2: Nonparametric estimators of g and g̃ and the aggregated estimator on the interval
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that only the location and the scale are affected by time, therefore, the transformation
g is linear; that is, g(y) = ay + b. Similarly the distributions of the variables Ỹ and X̃
can be linked by g̃(y) = ãy + b̃. The functions g, g̃ are estimated on the interval [c, d]
where c = max(min(Yi),min(Ỹj)) and d = min(max(Yi),max(Ỹj)). These functions are
estimated on the grid yi = c+ (d− c)i/M , for a given M .

By applying our test we obtain a p-value very close to 1, and hence we can consider
that g = g̃.

In Figure 2 we observe that all the estimators ĝ, ̂̃g and ĝ0 are approximately linear on
the interval [c, d], however in the border (near c and d) the approximation is not good. One
can observe that they are constants on regions where there are not enough observations.
Therefore, to compute the linear approximation of these estimators we consider only the
yi belonging to the interval [100, 200].

The ordinary least squares based on (yi, ĝ(yi)), (yi, ̂̃g(yi)) and (yi, ĝ0(yi)), yi ∈ [100, 200],
1 ≤ i ≤ 50 yields

ĝ(y) = 0.9877y + 0.7035, ̂̃g(y) = 0.9857y + 0.8335 and ĝ0(y) = 0.986y + 0.7685

By using a parametric approach, i.e. ĝp(y) = ay + b, where a = cov(X,Y )/var(Y ), b =
X − aY , we obtain the following estimators

ĝp(y) = 0.760y + 33.075, ̂̃gp(y) = 0.726y + 36.730,

and the common aggregate parametric estimator is given by

ĥp,0(y) = 0.744y + 34.787.

To compare the parametric and the nonparametric approaches, we consider the aggregate
estimators and we compare the predicted values for the two first moments of X and X̃
with those observed. The predictions of X ( resp. of X̃) are computed by using the
observed moments of Y (resp. of Ỹ ) and the common transformation. Using the parametric
approach we get

m̂X = 0.744mY + 34.787 = 133.590

V̂ arX = (0.744)2V ar(Y ) = 232.145.

The nonparametric approach yields

m̂X = 0.9867mY + 0.7685 = 131.8

V̂ arX = (0.9867)2V ar(Y ) = 408.04

Note that the observed two first moments of X are given by 131.2 and 439.11.
Similarly for the pair (X̃, Ỹ ), the parametric predictions are given by

m̂X̃ = 0.744mỸ + 34.787 = 131.656

V̂ arX̃ = (0.744)2V ar(X̃) = 226.933.

11



The nonparametric approach yields

m̂X̃ = 0.9867mỸ + 0.7685 = 129.237,

V̂ arX̃ = (0.9867)2V ar(Ỹ ) = 399.137

Recall that the observed two first moments of X̃ are given by 128.8 and 410.21.
The predictions of the nonparametric model are more close to the observed values, conse-
quently the nonparametric approach seems to be more suitable.
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Table 1: Empirical levels of T1 and T2 (in %) for a theoretical level α = 5% .

n = 50 n = 100 n = 500

T1 3.9 4.75 5.49

T2 4.68 5.52 5.42

Table 2: Empirical powers of T1 and T2 (in %) for a theoretical level α = 5%.

T1 T2 T1 T2

g̃1 g̃1 g̃2 g̃2
n = 50 99.98 99.58 99.81 98.17

n = 100 99.99 99.66 99.91 98.17

n = 500 100 99.69 99.96 98.47

T1 T2 T1 T2

g̃3 g̃3 g̃4 g̃4
n = 50 100 100 78.59 71.47

n = 100 100 100 84.31 78.41

n = 500 100 100 92.42 92.07

Table 3: Empirical powers of T1 and T2 (in %) for a theoretical level α = 5% under local
alternative g̃5.

T1 T2 T1 T2 T1 T2

β = 1/4 β = 1/4 β = 1/2 β = 1/2 β = 4 β = 4

n = 50 99.85 97.06 99.64 96.90 4.19 4.77

n = 100 99.85 97.30 99.71 97.02 4.77 5.72

n = 500 99.94 97.85 99.82 97.29 5.36 5.28
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Table 4: Descriptive statistics of Framingham data

Y X

Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max.
80.0 120.0 130.0 132.8 142.0 230.0 88.0 118.0 128.0 131.2 142.0 260.0

Var. Skewness. Kurtosis. KS. Var. Skewness. Kurtosis. KS.
419.12 1.27 7.79 0.0119 439.11 1.39 6.65 0.1125

Ỹ X̃

Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max.
75.0 118.0 128.0 130.2 140.0 270.0 85.0 115.0 125.0 128.8 138.0 270.0

Var. Skewness. Kurtosis. KS. Var. Skewness. Kurtosis. KS.
409.97 1.46 7.25 0.1171 410.21 1.47 7.10 0.1117
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