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Consider two random variables contaminated by two unknown transformations. The aim of this paper is to test the equality of those transformations. Two cases are distinguished: first, the two random variables have known distributions. Second, they are unknown but observed before contaminations. We propose a nonparametric test statistic based on empirical cumulative distribution functions. Monte Carlo studies are performed to analyze the level and the power of the test. An illustration is presented through a real data set.

Introduction

There exists an important literature concerning the deconvolution problem, when an unknown signal Y is contaminated by a noise Z, leading to the observed signal

X = Y + Z. (1) 
A major problem is to reconstruct the density of Y . Many authors studied the univariate problem when the noise Z has known distribution (see for instance Fan [START_REF] Fan | On the optimal rate of convergence for nonparametric deconvolution problems[END_REF], Carroll and Hall [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], Devroye [START_REF] Devroye | Consistent deconvolution in density estimation[END_REF], or more recently Holzmann et al. [START_REF] Holzmann | Density testing in a contaminated sample[END_REF] for a review). Bissantz et al. [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF] proposed the construction of confidence bands for the density of Y based on i.i.d. observations from [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF]. The case where both Y and Z have unknown distributions is considered in Neumann [START_REF] Neumann | Deconvolution from panel data with unknown error distribution[END_REF], Diggle and Hall [START_REF] Diggle | A Fourier approach to nonparametric deconvolution of a density estimate[END_REF] or Johannes et al. [START_REF] Johannes | Convergence rates for ill-posed inverse problems with an unknown operator[END_REF] among others. When the error density and the distribution of Y have different characteristics the model can be identified as shown in Butucea and Matias [START_REF] Butucea | Minimax estimation of the noise level and of the deconvolution density in a semiparametric deconvolution model[END_REF] and Meister [START_REF] Meister | Density estimation with normal measurement error with unknown variance[END_REF]. But without information on Z, the model suffers of identification conditions. One solution is to assume another independent sample is observed from the measurement error Z (as done in Efromovich and Koltchinskii [START_REF] Efromovich | On inverse problems with unknown operators[END_REF] and Cavalier and Hengartner [START_REF] Cavalier | Adaptive estimation for inverse problems with noisy operators[END_REF]).

A more general model than [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF] occurs when the contaminated random variables are observed through a transformation; that is, there exists g such that X = g(Y + Z).
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When g is known the problem is to estimate the distribution of Y , observing a sample from [START_REF] Butucea | Minimax estimation of the noise level and of the deconvolution density in a semiparametric deconvolution model[END_REF]. An application of this model to fluorescence lifetime measurements is given in Comte and Rebafka [START_REF] Comte | Adaptive density estimation in the pile-up model involving measurement errors[END_REF]. The authors developed an adaptative estimator that take into account the perturbation from the unknown additive noise, and the distortion due to the nonlinear transformation.

In this paper we consider a two sample problem of contamination that can be related to models (1) and ( 2) as follows: We assume that two contaminated random variables are observed, say X and X, which are transformations of two known, or observed, signals, that is:

X = g(Y ), X = g( Ỹ ), (3) 
where g and g are continuous monotone unknown functions. Our purpose is to test

H 0 : g = g against H 1 : g = g, (4) 
based on two i.i.d. samples satisfying [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF]. The problem of testing ( 4) is of interest in many applications when a signal is noised in another way than the additive noise model (1). We will distinguish two important cases:

Case 1 The distributions of Y and Ỹ are known and we observe two samples reflecting X and X. This situation may be encountered when two signals are controlled in entry but observed with perturbations in exit of a system.

Case 2

The distributions of Y and Ỹ are unknown and we first observe two independent samples based on Y and Ỹ , and then we observe contaminated samples X and X satisfying (3). This situation may be encountered when two unknown signals are observed both in entry and in exit of a system.

For both cases we construct a test statistics based on non parametric empirical estimators of g and g and we adapt a limit result on empirical processes due to Sen [START_REF] Sen | Limiting behavior of regular functionals of empirical distributions for stationary mixing processes Probability Theory and Related Fields[END_REF]. Our test statistics are very easily implemented and we observe through simulations that they have a good power against various alternatives. It is clear that when H 0 is not rejected; that is when the two noise functions are identical, it is then of interest to interpret the common estimation of g. We illustrate this point with a study of the Framingham dataset (see Carroll et al. [START_REF] Carroll | Measurement Error in Nonlinear Models: A Modern Perspective[END_REF], and more recently Wang and Wang [START_REF] Wang | Deconvolution Estimation in Measurement Error Models: The R Package decon[END_REF]).

The paper is organized as follows: in Section 1 we consider the problem when the two original signals have known distributions. In Section 2 we relax the last assumption by assuming unknown distributions but we observe the two original signals after and before perturbations. In Section 3 a simulation study is presented and a real data set is analyzed. [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF]. We assume that Y and Ỹ are independent. Write F Y and F Ỹ the cumulative distribution functions of Y and Ỹ respectively. We assume that these functions are known and invertible. We also write F X and F X the cumulative distribution functions of X and X. Also we assume that the transformations g and g are monotone and, without loss of generality, that they are increasing. Note that g(y) = F -1 X (F Y (y)) and g(y) = F -1 X (F Ỹ (y)). Hence a natural nonparametric estimators of the contaminating functions are given by

) i.i.d. observations X 1 , • • • , X n (resp. X1 , • • • , Xñ ) from
g(•) = X ([nF Y (•)]+1) and g(•) = X([ñF Ỹ (•)]+1) , (5) 
where X (i) and X(i) denote the ith order statistics, and [x] denotes the integer part of the real x. A fundamental theorem of Sen [START_REF] Sen | Limiting behavior of regular functionals of empirical distributions for stationary mixing processes Probability Theory and Related Fields[END_REF] states the following convergence in distribution

√ n X ([np]+1) -F -1 X (p) D → N 0, p(1 -p) f 2 (F -1 X (p)) , ∀p ∈ (0, 1), (6) where D 
→ denotes the convergence in distribution, f denotes the density of X and N (m, σ 2 ) the Normal distribution with mean m and variance σ 2 . We will need the following two standard assumptions:

• (A 1 ) there exists a < ∞ such that n/(n + ñ) → a • (A 2 ) f > 0 and f is C k , for some positive integer k.

We deduce a first result which is a main tool for the construction of the test statistic.

Proposition 2.1 Let Assumption

(A 1 ) -(A 2 ) hold. Under H 0 we have nñ n + ñ g(y) -g(y) D → N (0, σ 2 (y)), as n → ∞, ñ → ∞, (7) 
where

σ 2 (y) = (1 -a) F Y (y)(1 -F Y (y)) f 2 X (g(y)) + a F Ỹ (y)(1 -F Ỹ (y)) f 2 X (g(y))
Proof. It follows directly from [START_REF] Comte | Adaptive density estimation in the pile-up model involving measurement errors[END_REF], replacing p by F Y (y) and F Ỹ (y) respectively.

We will estimate the variance σ 2 by using a nonparametric method. Consider a kernel K(•), for instance the quartic kernel defined by K(y) = 15 16 (1y 2 ) 2 1 (-1,1) (y), and an associated bandwidth h n . In the sequel, we will set K hn (y) = K( y hn ). To avoid small values for denominators in the estimation of the variance we use

f X (y) = max 1 nh n n i=1 K hn (X i -y), e n and f X (y) = max 1 ñh ñ ñ i=1 K h ñ ( Xi -y), e ñ ,
where e n > 0 and e n → 0 when n tends to infinity. The estimator of σ 2 is then

σ 2 (y) = (1 -a) F Y (y)(1 -F Y (y)) f 2 X ( g(y)) + a F Ỹ (y)(1 -F Ỹ (y)) f 2 X ( g(y))
, and we consider the statistic

T 1 (y) = nñ n + ñ σ(y) -2 g(y) -g(y) 2 . ( 8 
) Proposition 2.2 Let Assumptions (A 1 )-(A 2 ) hold. If h n ≃ n -c 1 , e n ≃ n -c 2 for some positive constants c 1 and c 2 such that c 2 k < c 1 < 1 1+2k , then under H 0 , when n → ∞, ñ → ∞, we have for all y: T 1 (y) D → Z,
where Z is Chi-squared distributed with one degree of freedom.

Proof. We need the fundamental Lemma (see Härdle [START_REF] Härdle | Applied Nonparametric Regression[END_REF]):

Lemma 2.1 sup y∈R | f 2 (y) -f 2 (y)| = O p h 2k n + log n nh n .
We can write

σ 2 (y) = u(y) f 2 X ( g(y)) + v(y) f 2 X ( g(y))
,

where u(y) = (1 -a)F Y (y)(1 -F Y (y)) and v(y) = aF Ỹ (y)(1 -F Ỹ (y)).
Using Taylor expansion there exist A and B such that

σ 2 (y) = σ 2 (y) + f 2 X ( g(y)) -f 2 (g(y)) -1 A 2 + f 2 X ( g(y)) -f 2 (g(y)) -1 B 2 , with 1 A 2 ≤ 1 e 2 n and 1 B 2 ≤ 1 e 2 ñ . Then, from Lemma 2.1 we get σ 2 (y) = σ 2 (y) + o P (1),
by assumption and the result follows from Proposition 2.1. [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF]. Put N = n x n y /(n x + n y ) and Ñ = ñx ñy /( ñx + ñy ).

Case 2: the two signal distributions Y and Ỹ are unknown

We consider n x (resp. ñx ) i.i.d. observations X 1 , • • • , X nx (resp. X1 , • • • , X ñx ) and n y (resp. ñy ) i.i.d. observations Y 1 , • • • , Y ny (resp. Ỹ1 , • • • , Ỹ ñy ) from
The two samples Y 1 , • • • , Y ny and Ỹ1 , • • • , Ỹ ñy can be viewed as two independent training sets which permit to estimate the initial densities of the signals before perturbations. Again we want test H 0 : g = g. We now estimate g and g by

g(•) = X ([nx F Y (•)]) and g(•) = X([ñx F Ỹ (•)]) , (9) 
where

F Y (y) = 1 n y ny i=1 1 {Y i ≤y} and F Ỹ (y) = 1 ñy ñy i=1 1 { Ỹi ≤y} , (10) 
are the empirical distribution functions of Y and Ỹ respectively. We assume that

lim n x /(n x + n y ) = a < ∞, lim ñx /( ñx + ñy ) = ã < ∞,
and we make the following assumption, extending Assumption (A1):

• (A 3 ) there exists b < ∞ such that N/(N + Ñ ) → b.
We can extend Proposition 2.1 as follows:

Proposition 2.3 Let Assumption (A 2 ) -(A 3 ) hold. Under H 0 we have N Ñ N + Ñ g(y) -g(y) D → N (0, σ 2 (y)), as N → ∞, Ñ → ∞, (11) 
where

σ 2 (y) = (1 -b) F Y (y)(1 -F Y (y)) f 2 X (g(y)) + b F Ỹ (y)(1 -F Ỹ (y)) f 2 X (g(y)) . ( 12 
)
Proof. We first show that

U = n x n y n x + n y ( g(y) -g(y)) D → N (0, σ 2 1 (y)), as n x → ∞, n y → ∞,
where

σ 2
For that write

g(y) -g(y) = G(y) + G(y),
where

G(y) = g(y) -F -1 X ( F Y (y)) = X ([nx F Y (x)]) -F -1 X ( F Y (y)) and G(y) = F -1 X ( F Y (y)) - g(y)
. By the delta method we get

n 1/2 y G(y) → N (0, σ 2 1 (y)).
Then we decompose the characteristic function

E e iuU = E e iunx,yG E(e iunx,y G |Y) ,
where n x,y = n x n y n x + n y and Y stands for the vector of observation

Y 1 , • • • , Y ny .
Since these functions are bounded we get:

lim nx→∞,ny→∞ E(exp(iuU )) = E lim nx→∞,ny→∞ e iunx,yG lim nx→∞,ny→∞ E e iunx,y G |Y = E e iu √ aZ lim ny→∞ e -1 2 (1-a) σ 2 1 (y) ,
where

Z ∼ N (0, σ 2 1 (y)) and σ 2 1 (y) = F Y (y)(1-F Y (y)) f 2 X (g(y))
. We finally obtain

lim nx→∞,ny→∞ E(exp(iuU )) = exp(-1/2u 2 σ 2 1 (y)).
Similarly, writing Ũ = ñx ñy ñx + ñy g(y)g(y) , we obtain that

Ũ D → N (0, σ2 1 (y)), as ñx → ∞, ñy → ∞, with σ2 1 (y) = F Ỹ (y)(1 -F Ỹ (y)) f 2 X (g(y))
.

Finally, combining these two convergences with the equality g = g under H 0 we complete the proof.

As previously we can estimate σ 2 (y) in ( 12) by a nonparametric estimator

σ 2 (y) = (1 -b) F Y (y)(1 -F Y (y)) f 2 X ( g(y)) + b F Ỹ (y)(1 -F Ỹ (y)) f 2 X ( g(y))
,

where F Y and F Ỹ are the empirical distribution functions of Y and Ỹ given by [START_REF] Fan | On the optimal rate of convergence for nonparametric deconvolution problems[END_REF]. Our test statistic is given by

T 2 (y) = N Ñ N + Ñ σ -2 (y) g(y) -g(y) 2 . ( 13 
)
We can now generalize Proposition 2.2 as follows.

Proposition 2.4 Let Assumptions (A 2 )-(A 3 ) hold. If h n ≃ n -c 1 , e n ≃ n -c 2 for some positive constants c 1 and c 2 such that c 2 k < c 1 < 1 1+2k
, then under H 0 , when N → ∞, Ñ → ∞, we have:

T 2 D → Z,
where Z is Chi-squared distributed with one degree of freedom.

Proof. We combine the proof of Proposition 2.1 with the fact that F (1 -F ) is bounded to get σ 2 (y) = σ 2 (y) + o P (1), and we conclude by Proposition 2.3.

Behaviour of the tests under H 1

We study convergence properties of the tests T 1 and T 2 under some alternatives Proposition 2.5 a. General alternatives. Consider the test statistics T 1 and T 2 , then for all y such that g(y) = g(y), we have where Z is Chi-squared distributed with one degree of freedom and Z k is a decentred Chisquared distributed with one degree of freedom and parameter k(y).

The proof of this proposition is straightforward and hence is omitted.

Remark 2.1 Estimators g (resp. g ) are computed from (X 1 , • • • , X nx ) and (Y 1 , • • • , Y ny ) (resp. ( X1 , • • • , X ñx ) and ( Ỹ1 , • • • , Ỹ ñy ) ).
Under the null H 0 there are two different ways to construct a common estimator of g. First we can consider the aggregate estimator

g 0 = (n x + n y ) g + ( ñx + ñy ) g n x + n y + ñx + ñy , (14) 
and, second, another estimator can be construct by aggregating the samples.

Simulations and data study

For all empirical powers or empirical levels we carry out experiments of 10000 samples and we use three different sample sizes: n = 50, n = 100, and n = 500. For each replication we compute the statistics T 1 (y) and T 2 (y) given by ( 8) and ( 13), where y is chosen randomly following a standard normal distribution.

Study of the empirical levels

We will denote by N (0, 1) the standard normal distribution with mean zero and variance 1. We first consider the case where Y t and Ỹt are independent and N (0, 1) distributed. The bandwidth is chosen as h n = n -1/2 and the trimming as e n = n -1/5 .

Empirical level

To study the empirical levels of T 1 and T 2 we choose g(y) = g(y) = exp{(y + 3)/(y + 5)}, and we fix a theoretical level α = 5%. Table 1 shows empirical levels of the test under H 0 . It can be seen that both statistics T 1 and T 2 provide levels close to the asymptotic value.

Study of the empirical powers

We consider the model where Y t and Ỹt are independent and N (0, 1) distributed. To study the empirical powers of T 1 and T 2 we consider g(y) = exp((y + 3)/(y + 5)) and the four following transformations: and we also study local alternatives by considering:

g5 (y) = g(y) + 2(y + 5) n β .
Tables 2-3 present empirical powers for T 1 and T 2 under fixed and local alternatives, respectively, for a theoretical level α equal to 5%. From Table 2 it appears that the knowledge of the probability densities of Y and Ỹ allows to have more stable statistics that detect more easily the departure from the null hypothesis. Then the test statistic T 1 provides better power, particularly for smallest sample size. The test statistic T 2 has a low empirical power for n = 50; but when the sample size n increases, the empirical power of T 2 is similar to that of T 1 . Table 3 indicates that T 1 and T 2 provide good power for β ≤ 1/2. For β > 1/2 the power converges to the theoretical level α; this is in accordance with the theoretical result stated in Proposition 2.5.

Real example: Framingham data

We consider the Framingham Study on coronary heart disease described by Carroll et al. [START_REF] Carroll | Measurement Error in Nonlinear Models: A Modern Perspective[END_REF]. The data consist of measurements of systolic blood pressure (SBP) obtained at two different examinations in 1,615 males on an 8-year follow-up. At each examination, the SBP was measured twice for each individual. The four variables of interest are: Y = the first SBP at examination 1, Ỹ = the second SBP at examination 1, X = the first SBP at examination 2, X = the second SBP at examination 2.

Our purpose is to examine whether the distribution of the SBP changed during time, and which type of transformation it underwent. Following our notations, we will study the transformation between the distributions of Y and X and also the one between the distributions of Ỹ and X. Then we assume that X = g(Y ) and X = g( Ỹ ).

Table 4 indicates that all the distributions of X, Y , X and Ỹ are skewed to the right and are leptokurtic, KS is the Kolomogorov-Smirnov statistic, the associated p-values are lesser than 2.210 -6 and hence the normality assumption is strongly rejected. Figure 1 represents nonparametric estimations of the probability densities of X, Y, X, and Ỹ .

From Figure 1 it seems that the distributions of the variables Y and X have a similar shape. However, from Table 4 we observe a noticeable decrease in the mean and an increase in the variance. Based on the nonparametric estimators given in Figure 2 we can postulate In the bottom panel : f12 (resp. f22) is the Kernel estimate of the density of Ỹ (resp. of X). that only the location and the scale are affected by time, therefore, the transformation g is linear; that is, g(y) = ay + b. Similarly the distributions of the variables Ỹ and X can be linked by g(y) = ãy + b. The functions g, g are estimated on the interval [c, d] where c = max(min(Y i ), min( Ỹj )) and d = min(max(Y i ), max( Ỹj )). These functions are estimated on the grid y i = c + (dc)i/M , for a given M .
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By applying our test we obtain a p-value very close to 1, and hence we can consider that g = g.

In Figure 2 we observe that all the estimators g, g and g 0 are approximately linear on the interval [c, d], however in the border (near c and d) the approximation is not good. One can observe that they are constants on regions where there are not enough observations. Therefore, to compute the linear approximation of these estimators we consider only the y i belonging to the interval [100,200].

The ordinary least squares based on (y i , g(y i )), (y i , g(y i )) and (y i , g 0 (y i )), y i ∈ [100, 200], 1 ≤ i ≤ 50 yields g(y) = 0.9877y + 0.7035, g(y) = 0.9857y + 0.8335 and g 0 (y) = 0.986y + 0.7685 By using a parametric approach, i.e. g p (y) = ay + b, where a = cov(X, Y )/var(Y ), b = X -aY , we obtain the following estimators g p (y) = 0.760y + 33.075, gp (y) = 0.726y + 36.730, and the common aggregate parametric estimator is given by h p,0 (y) = 0.744y + 34.787.

To compare the parametric and the nonparametric approaches, we consider the aggregate estimators and we compare the predicted values for the two first moments of X and X with those observed. The predictions of X ( resp. of X) are computed by using the observed moments of Y (resp. of Ỹ ) and the common transformation. Using the parametric approach we get m X = 0.744m Y + 34.787 = 133.590

V ar X = (0.744) 2 V ar(Y ) = 232.145.

The nonparametric approach yields m X = 0.9867m Y + 0.7685 = 131.8

V ar X = (0.9867) 2 V ar(Y ) = 408.04 Note that the observed two first moments of X are given by 131.2 and 439.11. Similarly for the pair ( X, Ỹ ), the parametric predictions are given by m X = 0.744m Ỹ + 34.787 = 131.656

V ar X = (0.744) 2 V ar( X) = 226.933.

The nonparametric approach yields m X = 0.9867m Ỹ + 0.7685 = 129.237, V ar X = (0.9867) 2 V ar( Ỹ ) = 399.137

Recall that the observed two first moments of X are given by 128.8 and 410.21. The predictions of the nonparametric model are more close to the observed values, consequently the nonparametric approach seems to be more suitable. 

T 1

 1 (y) P → +∞ and T 2 (y) P → +∞, where P → denotes the convergence in probability. b. Local alternatives. Let us denote m = nñ n+ñ or m = N Ñ N + Ñ according to whether if the test statistic T 1 or T 2 is used and consider the local alternatives H l1 : g(y) = g(y) + k(y) m β , then under H l1 and when n → ∞, ñ → ∞, N → ∞, Ñ → ∞ we have for all y: i. If β > 1/2 then T 1 (y) D → Z and T 2 (y)

  g1 (y) = exp((y + 3)/(y + 5)) + 1, g2 (y) = 2 exp((y + 3)/(y + 5)), g3 (y) = -(y + 11)/(y + 5), g4 (y) = 4y + 5,

Figure 1 :

 1 Figure1: Kernel estimates of the probability densities of X, Y, X, Ỹ . In the top panel : f11 (resp. f21) is the Kernel estimate of the density of Y (resp. of X). In the bottom panel : f12 (resp. f22) is the Kernel estimate of the density of Ỹ (resp. of X).

Figure 2 :

 2 Figure 2: Nonparametric estimators of g and g and the aggregated estimator on the interval [c, d]: gh (resp. gth and g0h) denotes g (resp. g and g 0 ).
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  The test statistic 2.1 Case 1: the two signal distributions of Y and Ỹ are known

	We consider n (resp. ñ

Table 1 :

 1 Empirical levels of T 1 and T 2 (in %) for a theoretical level α = 5% .

		n = 50 n = 100 n = 500
	T 1	3.9	4.75	5.49
	T 2	4.68	5.52	5.42

Table 2 :

 2 Empirical powers of T 1 and T 2 (in %) for a theoretical level α = 5%.

		T 1	T 2	T 1	T 2
		g1	g1	g2	g2
	n = 50	99.98 99.58 99.81 98.17
	n = 100 99.99 99.66 99.91 98.17
	n = 500 100	99.69 99.96 98.47
		T 1	T 2	T 1	T 2
		g3	g3	g4	g4
	n = 50	100	100	78.59 71.47
	n = 100 100	100	84.31 78.41
	n = 500 100	100	92.42 92.07

Table 3 :

 3 Empirical powers of T 1 and T 2 (in %) for a theoretical level α = 5% under local alternative g5 .

		T 1	T 2	T 1	T 2	T 1	T 2
		β = 1/4 β = 1/4 β = 1/2 β = 1/2 β = 4 β = 4
	n = 50	99.85	97.06	99.64	96.90	4.19	4.77
	n = 100 99.85	97.30	99.71	97.02	4.77	5.72
	n = 500 99.94	97.85	99.82	97.29	5.36	5.28

Table 4 :

 4 Descriptive statistics of Framingham data Y X Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max. 80.0 120.0 130.0 132.8 142.0 230.0 88.0 118.0 128.0 131.2 142.0 260.0

	Var.	Skewness. Kurtosis. KS.	Var.	Skewness. Kurtosis. KS.
	419.12 1.27	7.79	0.0119	439.11 1.39	6.65	0.1125
	Ỹ				X	
	Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max.
	75.0 118.0 128.0 130.2 140.0 270.0 85.0 115.0 125.0 128.8 138.0 270.0
	Var.	Skewness. Kurtosis. KS.	Var.	Skewness. Kurtosis. KS.
	409.97 1.46	7.25	0.1171	410.21 1.47	7.10	0.1117

(y) = F Y (y)(1 -F Y (y)) f

X (g(y)).