A tool for the morphological analysis of mixtures of lipids and water in computer simulations

Marc Fuhrmans, Siewert-Jan Marrink

To cite this version:

Marc Fuhrmans, Siewert-Jan Marrink. A tool for the morphological analysis of mixtures of lipids and water in computer simulations. Journal of Molecular Modeling, 2010, 17 (7), pp.1755-1766. 10.1007/s00894-010-0858-6 . hal-00637162

HAL Id: hal-00637162

https://hal.science/hal-00637162

Submitted on 31 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Atoolforthemorphologicalanalysisofmixturesoflipids and waterincomputersimulations

MarcFuhrmans • Siewert-JanMarrink

Received: date / Accepted: date

Abstract

Whenanalyzingcomputersimulationsofmixturesoflipidsandwater,thequestionstobeanswered areoften ofamorphologicalnature.Theycandealwith global properties,likewhatkindofphaseisadoptedor thepresenceor absenceofcertainkeyfeatureslikea poreorstalk,orwithlocal propertieslikethelocalcur- vaturepresentinaparticularpart ofthelipid/water interface. Whileallinformationforboththe globaland the local morphological properties of asystem is in principlecontainedinthesetofatomiccoordinatesob- tained fromacomputersimulation, theirextractionis tediousand usuallyinvolvesusingavisualizationpro- gramanddoingthe analysisbyeye.Herewepresenta toolthatemploysthe techniqueofmorphologicalim- ageanalysis(MIA)to automaticallyextracttheglobal morphology,asgivenby Minkowskifunctionals,froma setofatomiccoordinatesandcreatesanimageofthe system ontowhichthelocalcurvaturesaremappedas acolorcode.

Keywords Minkowski functionals • Phase determination • Molecular dynamics • Image analysis Local curvature

1Introduction

1.1Motivation

Withthedevelopmentofnewmodelsandthesteadyin- crease ofcomputationalpoweravailable,computersim-

[^0]ulationshavebecomemoreandmorevaluableinthe studyof lipid systems. While the exact conformation of individual lipidmoleculesis ofinterest for someappli- cations, most of thetimethefocusisonthebehaviorof aggregatesoflipidsasa whole.Recentexampleshave beenreviewedin[1].

Manyofthesestudieshaveincommonthatatsome point during the analysis of the simulation a morpholog- ical property of thesystem, i.e. a property that solely depends on the shape of the lipid aggregate, needs to be characterized. In the case of the more general prop- erties like the adopted phase and presence or absence ofstalks or pores the task at hand can be accomplished by loading the obtained coordinates into a visualization program and doingtheanalysisbyeye,butanalyzing
alargenumberofsimulationsinthis way canbete- dious.In the caseofthedeterminationofmorespecific, quantitative properties like interface area, volume or curvatures this naiveapproachisevenprincipallyim- possible.

A possible way to automatize morphological anal- yses of trajectories generated by computer simulations is to use thetechniqueofmorphologicalimageanalysis
[2]toextractmorphologicalinformationintheformof
Minkowskifunctionals [3]. This approach has been used to study, e.g., a distribution of pores [4], membrane fu- sion eventsduringaphasetransition[5] and tomoni- tortheselfassembly of vesicles [6]. Another approach is to describe morphological features as persistent voids based on the frameworkofalphashapes [7] andpersis- tenthomology [8] and has been applied to characterize vesicle fusion [9]. However, noimplementation of either methodiscurrently readily available to the majority of researchers, especially not as part of any of the widely- used molecular dynamics software-packages.

Table 1 The relation between volume V, surface area A, mean breadth B, Euler characteristic X, integrated mean curvature H, integrated Gaussian curvature K, the voxels' edge length ξ and the numbers of cubic voxels n_{c} and constituting faces n_{f}, edges n_{e} and vertices n_{v} defining the positive space.

morphological property	related property
$V / \xi^{3}=n_{c}$	
$A / \xi^{2}=-6 n_{c}+2 n_{f}$	
$2 B / \xi=3 n_{c}-2 n_{f}+n_{e}$	$H=2 \pi B$
$X=-n_{c}+n_{f}-n_{e}+n_{v}$	$K=4 \pi X$

Here, wepresentanextensionofthe Gromacssoft- ware package [10] that enables morphological image analysisof molecular aggregates. In addition, the op- tion to extract localcurvatureshasbeenaddedtothe method, whichtothe authors' best knowledge has not been employed before, at leastinthefieldoflipidag- gregates.

1.2Theory

Inthreedimensions, therearefour Minkowskifunction- als corresponding to the volume whose morphology is to be determined,theareaoftheinterfaceseparating thatvolume from the rest of the system and the inte- grated mean and Gaussian curvature of that interface ${ }^{1}$. As such, both geometrical (shape) and topological fea- tures (connectivity) arecharacterized ${ }^{2}$.

For black and white digital, i.e. pixelated,images, the extraction of the Minkowski functionals is wellestablished and can be accomplished by simply count- ing the pixels and pixel-components of lower dimen- sionality comprising the image. This means, that for threedimensionalpicturesoneonlyneedsthenumber ofvoxels ${ }^{3}$ andthenumberoffaces, edgesandvertices
these voxels consist of, where voxel components shared by several voxels are counted only once. The Minkowski functionals can then be obtained as sums over these numbers as given in Table 1. A way of obtaining the morphology ofaset of coordinatesistherefore totrans- late the system into a three-dimensional image com- posed of blackandwhitevoxels[2].

Advantages of this method are the straightforwardnessofimplementationanditsrigorousnessinthesense that theresultingnumbersaretheexactvaluesofthe

[^1]Minkowskifunctionalsfor theimage.Itsonly disadvantage is therefore the approximation introduced by the image itself. The use of voxels entails a limitation to right angles which imposes restrictions on the val- ues for the surface areaandintegrated mean curvature obtained with this method, causing several structures to share the same value. As an example, removing any voxel from a cube of eight voxels will leave the sur- face area and integrated mean curvature unchanged, resulting in a general tendencytooverestimatethese functionals.

However, the Euler characteristic which only requires theconnectivitytobeidenticalfortheimageandthe original system can be determined exactly, and the vol- ume can be obtained with only slight errors minimizable by choosing a sufficientlyhighresolution.

For a broad spectrum of morphological tasks the obtained values are sufficient, even with the restric- tions mentioned above. For most applications concern- ing molecular aggregates, the Euler characteristic and the integrated mean curvature are arguably the most important values. Purely topological analyses, includ- ing both phase determination and the detection of stalks or pores, relyprimarilyontheEulercharacteristicwhich isnot affected by the limitations of morphological im- age analysis. In addition, due to the systematic nature of the erroroftheintegratedmeancurvature, theob- tained value can still be used to extract morphological information. Absenceofmeancurvatureis accurately recognized aszero mean curvature, and systems with positive can be distinguished from those with negative total mean curvature.Inaddition, boththeintegrated meancurvature and the surface area can be used to further characterize structureswithinfamiliesofsim- ilartopology,sincethelack of absolute values is not detrimental for relative comparisons.

As an extension to this basic application of morphological imageanalysis, it is also possible to obtain local values of the mean and Gaussian curvature. As has been shown by Hyde et al. [11], every surface vertex can be associated with a certain mean and Gaussian curva- ture. Again, these values areexact for theimage and summation over all surface vertices while taking into account the different surface areas associated witheach vertex leads to global (integrated) values of the mean and Gaussian curvaturesidentical to the ones obtained with the method described above. Mapping the local curvatures onto the imageasacolorcodeallowsfur- thercharacterizationofthe structure at hand, enabling easy detection of areas of differentcurvatureaswellas detailedcomparisonofsimilar structures.

Therestofthischapterisorganizedasfollows:InSec- tion2.1 and2.2detailsabouttheimplementationand theuserdefinableparametersaregiven, whileSection2.3 describesthe parametersusedinthesimulationsthat wereanalyzedtotest ourprogram.Section3givesthe resultsofthesesample applicationsinadditiontotests performedonmodelsystems.

2Methods

2.1Implementation

The implementation discussed in this publication was realized using the Gromacs- 3.3 software package [10], but should in principle compile with any version of Gromacs from 3.0 to date with only minor modifica- tions. The executable is called g mia and was written in the C programming language. The source code is available upon request. Acceptable input file formats are the standard formatssupportedbyGromacs.

2.1.1 Basic algorithm

Wetreattheimageasathree-dimensionalcubicgrid representingthesimulationbox,ontowhicheverycoordinateismapped ${ }^{4}$.Toavoidartificialemptyspaces introduced by representing atoms (or in the case of coarse-grainedmodelsgroupsofatoms)bytheircenter- of-massonly, everycoordinateisexpandedtoaspheri- calcloudof coordinateseachofwhichismappedonto thegrid
individually ${ }^{5}$.Dependingonthetypeandnum- berofparticles mappedtoit,cellsaredeclaredasposi- tiveornegative,where positivecellsrepresentthemolec- ularaggregate. Theglobal valuesoftheMinkowskifunc- tionalscanthenbeobtainedby countingthenumber ofcubes, cube-faces,edgesandvertices takingintoaccounttheperiodicboundaries.

For the local values of the mean and Gaussian curvature, every surface vertex ${ }^{6}$ is identified as one of the possible cases listed in Fig. 1, storing the corresponding local curvatures given by the product of the interface- area andthecurvaturevalueassociatedwiththattype

[^2]
positive:

$\begin{array}{lr}a= & \xi^{2} \\ h \equiv & \pi / 4 \xi \\ & 0\end{array}$

positive:

$a=3 \xi^{2} / 2$
$h=\pi / 6 \xi \quad h=-\pi / 2 \xi$
$k=-2 \pi / 3 \xi^{2}$
$k=2 \pi / 3 \xi^{2}$

positive:

$a=5 \xi^{2} / 4$
negative:
$h=\pi / 10 \xi$
$\mathrm{k}=-2 \pi / 5 \xi^{2}$
$a=3 \xi^{2} / 4$
$h=-\pi / 10 \xi$
$\mathrm{k}=-2 \pi / 5 \xi^{2}$

Fig. 1 Overview of the possible types of surface vertices and the associated local values of surface area a, mean h and Gaussian curvature k in dependence on the edge-length ξ (adapted from [11]). For each pattern, values are given both for the positive (black representing lipids) and the negative case (black representing water). While more patterns are possible in principle, these represent noise and should not occur as long as the resolution used does not exceed the coordinate density.

Fig. 2 Mapping of local curvature from surface vertices to voxels. After elimination of non-surface voxels (grey shaded squares), the curvature that has been calculated for the surface vertices is distributed in equal parts to all adjacent surface voxels (arrows). The local curvature C of the highlighted voxel is obtained as $C=1 / 2 \mathbf{i}+\mathbf{j}+1 / 2 \mathbf{k}$, where \mathbf{i}, \mathbf{j} and k are the curvatures corresponding to the surface vertices adjacent to the highlighted voxel. For simplicity, a two-dimensional example is given, but the method applies equally for three dimensions.
of surface vertex. However, a mapping of the curva- tureto voxels, not vertices is desired. To that end, non- surface voxels, i.e positive voxels not contributing a singlefaceto the interface are eliminated. The stored curvatures of the surface vertices are then distributed in equal parts to the surface voxels adjacent to that particular vertex, as illustratedinFig. 2 .

Forthevisualizationofthelocalcurvatures,aPy- MOL [12] fileisgenerated thatrepresentstheimageas voxelsonto whichthecurvaturesaremapped as acolor code. Duetothe differences in the range of curvatures encountered, using a fixed color-scale is impossible. We therefore employ a twocolor scheme, in which white corresponds to a curvature of zero, while the two colors are used to distinguish negative and positive curvature, with the intensity of the color indicatingthevalue.Full intensityisassignedtothevoxel(s) with the maximum absolute curvature encountered in a givensystem, and thecolor-range issymmetric in thesense that full inten- sity indicates the same (absolute) value for both colors. While this causes every image to get its own color-code, it is the most efficient scheme to highlight differences inlocalcurvature.

2.1.2 Optional steps

Thedatagenerated canoften beimproved considerably by performing some image manipulation steps and averaging.

Image manipulation Dependingontheparticledensity in thecoordinatefileandthedesiredresolutionofthe grid,itis possible to include an image manipulation step right after thecreationoftheimage,inwhichiso- latedclustersofeither positiveornegativecellsbelow
acertainsizeareinterpretedasnoiseandremoved.As abenefit, performing thisstepallows the determina- tionof the number of actual isolated clusters above the threshold size at no additional cost, which is useful mor- phological informationinitsownright.

Spatial averaging Due to the fixed nature of the grid even aggregates with perfectly homogeneous curvature like a sphere will display different curvatures for differ- ent regions, depending on how well the rasterization of the imagefitsthesurfaceinthatregion.Ingeneral, the curvature tendstobeunderestimatedwhenthesurface isalignedwith thegrid, andoverestimatedwhenitis diagonaltothegrid.

Two options of spatial averaging can be employed to reducethiseffect.First, theobtainedlocalcurvature canbe averagedoverneighboringsurfacevoxelswithin a certain distance. In addition, it is possible to further improve the results by performing the determination of localcurvaturesformultiple gridorientations. For this, the resulting curvature valuesofeach positivesurface voxelfor every orientation are stored together with the coordinate corresponding to the centerofthat voxel rotatedbacktothe original orientation. The values of all rotations are then mapped back onto the original grid, averaging the values over the entries mapped onto the same cell. If needed, the resulting values can be averaged over neighboring cells. Since it is not possible to preserve the periodic boundary conditions with a rotated grid, the area of interest is centered in the box and only cells within a certain distance from the center, i.e. cells that lie within both the volume of the box and the rotated grid for all rotations, are taken into account.

Time averaging Whilenotincludedassuchinthecur- rent versionofthepresented tool, it canalso be useful to average the curvatures over time, i.e. over several snapshots of a trajectory. For the global values, this can easily be accomplished post-analysis by taking the floating average of the calculated curvatures. For the local values, a time averaging canbeperformedonthe coordinatelevel priorto theanalysis, effectivelyyield- ingtimeaveragedcurvatures.

2.2User-definableoptionsandparameters

Itis,ingeneral,notpossibletousethesamesetofpa- rameters fortheanalysisofallpossiblestructuresand
representations. Theimplementation thereforeallows
most parametersto bedetermined by the user. This section describesthe parametersand discusses what to consider to achievetheoptimalresults. Thecorrespond- ingcommand lineoptionsaregiveninparentheses.

Input files The toolneedsacoordinateortrajectory file (c) and an index file ($-n$) in which the particles that correspondtothepositivephasearelisted.

Imaging options The edge length of the grid (-dim), the radiusofthesphericalcloudusedtoexpandthecoor- dinates $(-s r)$ and the number of coordinates generated during the expansion (-npts) as well as the minimum number of coordinates mapped onto a grid cell required to count it as positive(-thresh1)needtobespecified.

As a general consideration, the resolution needs to be high enough to accurately depict the structure to be analyzed, but is limited by memory requirements, due to several three-dimensional arrays required during the computation ${ }^{7}$. In addition, using a high resolution usually requires expansion of the coordinates to avoid artificial emptyvoxelscausedbythelimitedcoordinate-
density, whichpartiallyoffsetsthedesiredhighresolu- tion. Theradiusofthesphericalcloudshouldtherefore bechosen asthesmallestradiussufficienttoavoidnoise. (Anexample oftheeffectsofthechosenresolutionfor
asampleapplicationisgiveninSection3.2,Table2.) Italso turnsoutthat,inordertoaccuratelydetect
flatmorphologiesashavingzeromeancurvature,itis
requiredtocalibratetheparametersused.Sincemolec- ular aggregates usually have a low short-range order, fluctuations of individual molecules from the mean will show as either bumps or dents in the created image. Sincea given resolution does not necessarily have the same propensity for producing bumps as for producing dents a net-curvature will be measured. The threshold parameter canbeusedtoadjust thenumberof" pos- itive" coordinates mappedontoasinglegrid-cellre- quiredtocountthatcellas positiveto,onaverage, pro- duceanequalnumberofbumps and dents and therefore not introduce artificial mean curvaturetothemeasure- ment.

In addition, it is possible to also use the coordi- nates of the particles corresponding to the negative phase, mapping them onto the grid as has been de- scribed above butcountingthemasnegative.Ifthatis desired, thenumber of phases to consider must be set from 1 to $2(-n p)$, and the index file needs to contain a second group in which these particlesarelisted.

[^3]Ifisolatedclustersbelow acertainsize aretobe removed(see above), the maximalclustersize to be considerednoisemustbespecified (-cs).

Averaging options The range over which the local curvatures are averaged over neighboring voxels needs to be specified (-ar1 and-ar2), withavalueofzeroin- dicatingno averaging. Two values areneeded, onefor the averaging for every single grid orientation (-ar1) and one for the averaging after the values of all grid orientationshave been collected(-ar2).

Ifmultiplegridorientationsaretobeused, thenum- ber of rotations around every axis ($-n x,-n y$ and $-n z$) and the corresponding angle increments (-depsilon, - dphi and $d t h e t a)$, as well as the radius around the cen- ter of the box within which voxels are considered have to beset $(-d r)^{8}$. In order toachieve the best result, care must betaken to avoid samplingsimilarorientations.

In addition, a threshold can be specified to only count voxelsas positive ifaminimum number oflo- calcurvatures corresponding to different rotations has been mapped on that voxel (-thresh2). However, unlike theother averaging steps, thisoptionwilldiscardcur- vature and nolonger give theexactresultsandshould thereforebeusedwithcare. For the results presented in this work, a threshold of zero has beenused, effectively disablingthisoption.

FortheresultsdiscussedinSection3, thegridresolution and the radius used for the expansion of the coordinates will be given along with the number of rotations and the distance usedfortheaveragingofthelocalvalues.

2.3Simulationsetup

Thesimulationsshowninthisarticlewereperformed using the coarse-grained MARTINI model [13] with the Gromacs-3.3software package[10] using thestandard runparameters for the MARTINI model at a timestep of 40 fs . Bothpressureand temperaturewerecoupled toareference valueusing theBerendsenscheme[14]. Lennard-Jonesand Coulombinteractionswereobtained everystepforparticles within a cut-off of 1.2 nm ac- cording to a neighbor list updated every 10 steps. Both the Lennard-Jones and Coulombpotentialweremodi-
fiedwithashiftfunctiontohavetheinteractionssmoothly vanishingatthecut-off.Electrostaticinteractionswere screenedwithaneffectivedielectricconstantof15(which isthestandardvaluefortheMARTINImodel).

[^4]Three processes were used as sample applications: spontaneous aggregation of lipids into a lipid bilayer, closure of a pore in a membrane, and stalk formation between apposed lipid bilayers (with setups similar to simulationsdescribedin [15-17],respectively).

Spontaneous aggregation The system simulated consists of 256 DOPE 9 lipids with 768 water beads (one bead corresponding to four water molecules) starting from randomcoordinates. Thesimulationwascarriedoutat areferencetemperatureof315Kwithacouplingtime constantof0.5ps, and with anisotropic pressure cou- pling with a compressibility of $5 \times 10^{-5} \mathrm{bar}^{-1}$ for the di- agonal elements and 1×10^{-7} bar $^{-1}$ for the off-diagonal elements of thepressuretensor,couplingtimeconstants
of1.2psandreferencepressuresof1.0bar.

Porated membrane Thesystemconsistsofabilayerof

128 DPPC 10 lipids with a preformed pore at excess hydration (2653water beads). After ashortequilibration, the simulation was carried out at a reference tempera- ture of $323 \mathrm{Kwithacouplingtimeconstantof1.0ps}$,
andwithsemi-isotropicpressurecouplingwithacompressibilityof1 $\times 10^{-5} \mathrm{bar}^{-1}$, acouplingtimeconstantof 1.0psandareferencepressureof1.0barforthedirectionperpendiculartothebilayerandacompressibility of0 bar^{-1} fortheplanecontainingthebilayer.

Stalk formation The initial configuration was two bilayers of 98 DOPE lipids each, separated by two slabs consisting of 65 water beads each, corresponding to an effective hydration level of 2.65 water molecules per lipid. To induce the formation of stalks, the simula- tion was carriedoutatareferencetemperatureof 375
Kwithacouplingtimeconstantof0.5ps,andwith semi-isotropicpressurecouplingwithacompressibility of $1 \times 10^{-5} \mathrm{bar}^{-1}$, acouplingtimeconstantof1.2psand areferencepressureof1.0barforalldirections.

3Results

3.1Modelsystems

The method was first tested on two artificially constructed model systems with a very high coordinatedensity: a solid sphere and a toroidal pore. This way, the potential of the method could be assessed by analyz- ing virtuallynoise-freestructuresandtheexact values forthese idealgeometrieswereavailableforcompari- son.Plotsofthe coordinatesofthemodelsystemsused aredepictedinFig. 3 and4.

[^5]

Fig. 3 The spherical model system. The volume of the spheres has been filled with coordinates at a regular distance $(d=r / 20)$ dependent on the radius r (large black dots). In addition, the surface as the most crucial part has been covered with coordinates at a very high density (small grey dots).

Spheres Fig.5showsthemeasuredandtheoreticalval- ues of the Minkowski functionals for solid spheres of different radii.Theimagewasconstructedwithares- olutionof0.4nm and expansion of the coordinates to spheres of 0.2 nm . As predicted for a solid object, the Euler characteristic is obtainedwiththeexactvalueof
1.Thevolumeoftheimageisonlyslightlyhigherthan thatof the original, which is due to the rasterization of the image andtheexpansionofthecoordinatesto spheres.Thesurface area and integrated mean curva- ture, however, are overestimatedtoalargerextent.In fact, theobtainedvalues liebetween thevaluesofthe sphereand acube with anedgelengthidenticaltothe diameterofthesphere(seediscussion inSection1.2). Nevertheless, the valuesare proportionalto the values oftheoriginal and could therefore in principlebe used todistinguishspheresofdifferentsize.

For the calculation of the local curvatures, eight rotations around every axis were used and values were averaged over neighboring voxels up to a distance of three gridcells.Lookingatthemappingontotheimage asshownin Fig. 6, wefind that both mean and Gaus- sian curvature are accurately mapped with positive val- ues. While the mean curvatureiscorrectlymappedal- mosthomogeneouslyover the whole surface, the distri- bution of the Gaussian curvature for the larger sphere is less even, even with the performed averaging. This is a symptom of a general difficulty in themapping

Fig. 6 Mapping of the local values of mean (a, c) and Gaussian (b, d) curvature onto the constructed images of spherical model systems. Shown are the results for spheres with a radius of 2 nm (a, b) and 5 nm (c, d). Positive curvature is depicted as red, zero curvature as white and negative curvature as blue.

oftheGaussiancurvaturefoundinmostofourmea-

 surements for systems which display large areas of homogeneous Gaussian curvature ${ }^{11}$. However, while this behavior might seem problematic at first, it is partially due to the color-scale employed, which assigns full color intensitytothevoxelwiththehighestabsolutecurvature (see Sect. 2.1). In the presence of regions with high Gaussian curvature (as in the example of the smaller sphere), these are accurately detected, and artificial fluctuationsinregionsoflowerGaussiancurvaturebecomerelativelylessimportantaswellaslessvisiblein ourdepiction.Toroidal pores Fig.7showsthevaluesoftheMinkowski functionalsfor atoroidal ${ }^{12}$ porethroughan 8.8×8.8 nm^{2} layerof 4.0 nm thicknessindependenceonthe poreradius ${ }^{13}$,obtainedusingagrid-sizeof0.2nmand expanding thecoordinatestoaradiusof0.1nm.In addition,theanalyticalvaluesforthevolume V,surface area A andintegratedmeancurvature H areplotted ${ }^{14}$:
$V=V_{\text {slab }}-V_{\text {cyl }}+\pi^{2} d^{2}(d+r)^{-4} \triangleleft з \pi d^{3}$ c
11 To a lesser extent this is also true for the mean curvature; however, the values of the mean curvature tend to be higher and therefore less sensitive to artificial fluctuations caused by the rasterization.
12 i.e. a pore in which the curvature of the surface varies smoothly in a manner identical to the "inner" part of a torus
13 defined as the radius of the actual opening
14 note that periodic boundary conditions apply

Fig. 7 Morphological image analysis of model systems of ideal toroidal pores of different radii (lines between measured points serve to guide the eye). For comparison, calculated values corresponding to the underlying geometry are plotted (dashed lines).
$A=2\left(A_{\text {rec }}-A_{\text {circ }}\right)+2 \pi^{2} d(d+r)^{\text {c }}$
$H=\pi^{2}(d+r)-4 \pi d \triangleright$
Intheseexpressions d ishalfthethicknessoftheslab, r
istheradiusoftheporeatitssmallestextension, $A_{\text {rec }}$ isthearea ofthebottomortopoftheunporatedslab, $A_{\text {circ }}$ istheareaofthe circlewithradius $d+r, V_{\text {slab }}$ is thevolumeoftheunporatedslab
and $V_{\text {cylisthevolume ofthecylinderwithaheightof2danda }}$ radiusof $d+r$. Asbefore,theEulercharacteristicisobtained with
the exact value of -1 and the volume of the image is higher, but proportional to that of the original. The surfaceareais overestimatedtoalargerextent,again showinghowthearea of curved surfaces is increased by the rasterization of the image.Thefactthatthesurface areaof theimage is actually found to be increasing over the whole range of radii in disagreement with the values calculated for the original reflectstheincreasing percentageofthetotalsurfacethat is curvedforlarger pore-radii. This causes the slight decrease ofsurface areaintheoriginalgeometrytobeovershadowed by the overestimation of areas of curved surfaces in the image.

Theintegratedmeancurvaturehasthesamegeneral trend for both image and original, but the amount of negativecurvature ishigher in theimage for the mea- sured range of radii. This causes small pores to display negative values for radii up to 1 nm , whilethe actual cross-over point for the original geometry is at approx- imately 0.5 nm . In addition, it becomes apparent that the values obtained by morphologicalimageanalysisare discreteandnotcontinuous ${ }^{15}$, causingsmallchangesin

[^6]curvatureintheoriginalgeometrytogounnoticedin the image.

The local curvatures were calculated using four orientations for each axis and averaging over neighbor- ing voxels up to a distance of five grid cells. Looking at the mapping onto the image as shown in Fig. 8, the dominance of negative mean curvature for pores ofsmallradiifoundin the global values is also visible. The mean curvature is accurately found to be minimal in the midsections of the pores, reflecting the highest negative principal curvature located in that region, and maximal close to the rim, reflectingthelowestnegative
principalcurvatureinthatregion ${ }^{16}$ andisinfactaccu-
rately found to be approximately zero in the midsection of the pore of radius 2.0 nm (for this radius and a layerthickness of 4.0 nm the two principal curvatures cancel in this region). In addition, it becomesoverall more pos- itive forhigher poreradii, in accordance with thelower negative principal curvature. The Gaussian curvature is also found to be accurately mapped, with the maximum (negative) curvature found in the midsection and grad- ually decreasing to zero the closer one gets to the rim for the two bigger pores. Only for the smallest radius the minimum for the Gaussian curvature in the midsec- tion is not detected due to the pore size being close to the limit of the resolution used. Thisproblemcould, in principle, beavoided byusinga higherresolution.

It is worth mentioning that the negative space of the images of the ideal toroidal poresis an image of astalk. The correspondingstalkswillthereforehaveidentical Gaussian curvature and surface area as the pores, and the mean curvature will only invert its sign. For the global values it can therefore be deduced that stalks are accurately characterized as having negative mean curvature, if one considers that stalks have a certain minimum radius given by the length of the lipid tails (approximately 2.0 nm for a typicallipidtailof16-18 carbonatoms).

3.2Applications

Nextwetestedourmethodwithtrajectoriesandsnap- shots takenfromactualsimulationsoflipids. For these, it proved advantageoustodefinethepositivephaseas onlytheatoms or beads corresponding to the lipid tails. That way, details like pores are amplified and stalks can be distinguished from configurations in which two membranes are merely closewithoutcontactofthehy- drophobiccores.

[^7]

Fig. 8 Mapping of the local values of mean (a, b, c) and Gaussian (d, e, f) curvature onto the constructed images of model systems of ideal toroidal pores. Shown are the results for pores with a radius of $0.4 \mathrm{~nm}(\mathrm{a}, \mathrm{d}), 1.2 \mathrm{~nm}(\mathrm{~b}, \mathrm{e})$ and $2 \mathrm{~nm}(\mathrm{c}, \mathrm{f})$. Positive curvature is depicted as red, zero curvature as white and negative curvatu

Spontaneous aggregation The first application is the determinationofthephaseadopted by amixtureo DOPE andwaterstartingfromrandomcoordinatesina spontaneousaggregationapproach[15].TheMinkowsk functionalsobtainedusingagridsizeof0.5nmand expandingthecoordinatestoaradiusof0.4nmare shownin

Fig.9.LookingattheEulercharacteristica themost
significantmorphologicalindicator,onecan seethatthe systemquicklyadoptsametastablephase inwhichitremains
forabitover0.5 θ sbeforeitadopt itsfinalconfiguration, in whichitremainsfortheres ofthesimulation. Themetastable statehasanegative Eulercharacteristicof-2,whichcomparedtoalamella r state suggests the presence of pores or stalks. Taking into account the amount of negative mean curvature the state mostlikelyisastalkphase,sinceporesdis- playahighermean curvature. The stable phase adopted for the rest of the simulationhas an Euler characteris- tic of0, suggesting the lamellar or inverted hexagonal phase. The fact that the integrated meancurvaturere- mainsnegative rules out the lamellar phase, leaving the inverted hexagonal phase. Visualinspectionconfirms thesefindings.

Porated membrane Asasecondapplication, welooked ata closing pore in a DPPC membrane. The Minkowski functionalsshowninFig.10wereobtainedusingagrid sizeof 0.5 nm andexpandingthecoordinatestoara- diusof0.4nm. The closure of the pore can be detected and is clearly reflected by the Euler characteristic, the integrated mean curvature as well as the surface area, with the observed changes in accordance with our ear- lier measurements for themodelpores(seeabove).The presenceofnoiseespecially intheintegratedmeancur- vatureandthesurfaceareastems from natural fluctu- ations in the coordinates as well as translationalmove- mentsofthesystemandfluctuationsof theboxsize,all

Fig. 9 Morphological image analysis of the spontaneous aggregation of a random mixture of lipids and water into an inverted hexagonal phase.
of which cause changes in the image. However, averag- ing over time, as demonstrated for the integrated mean curvatureinFig.10reducesthenoisesignificantly.

In addition, we chose this application to demon- strate the effectsofthe chosen gridresolution and the radius used for the coordinate expansion on the re- sults obtained. Table 2 shows the average values of the Minkowski functionalsfortheopenpore (i.e. thefirst
30 nm of the trajectory analyzed in Fig. 10) using a higher resolution or a smaller expansion radius. The deviationsof the Euler characteristic from the correct value of 1 indicate thepresenceofnoiseintheanaly- sis.Consideringthenature of the changed parameters, both the reduced expansion radiusandthehigher grid resolution potentiallycanlead to empty grid cells in re- gions occupied by the molecular aggregate. As a result, both additional tunnels (which would lower the value by one in that particular frame of the trajectory) as well as cavities (which would raise the Euler characteristic

Fig. 10 Morphological image analysis of the trajectory of a closing pore. In addition to the properties indicated by the legend, the running average of the integrated mean curvature is plotted in white.

Table 2 Average values of the volume V, the surface area A, the integrated mean curvature H and the Euler characteristic X obtained in dependence on the resolution (identified by the edge length d of the grid) and the radius of the spherical cloud r_{S} used for the expansion of the spheres. Note that in order not to mask any effects, no cluster filtering was applied to the images.

$\mathrm{r}_{\mathrm{S}}[\mathrm{nm}]$	$\mathrm{d}[\mathrm{nm}]$	$\mathrm{V}\left[\mathrm{nm}^{3}\right]$	$\mathrm{A}\left[\mathrm{nm}^{2}\right]$	$\mathrm{H}[\mathrm{nm}]$	X
0.4	0.5	$131.47(6)$	$168.8(2)$	$8.8(2)$	$-1.000(0)$
0.4	0.4	$117.4(1)$	$169.7(2)$	$11.4(2)$	$-0.89(2)$
0.4	0.3	$100.76(3)$	$247.2(3)$	$-205(1)$	$71.4(4)$
0.3	0.5	$126.00(6)$	$169.7(2)$	$11.3(2)$	$-0.997(3)$
0.2	0.4	$120.25(6)$	$170.1(3)$	$12.2(2)$	$-0.71(3)$

in that respective frame by one) are possible. However, the fact that the Euler characteristic increases indicates that cavitiesarethedominantartifact.Theobserved decreaseof volume and the increase of surface area both corroborate this interpretation. The changes of the in- tegrated mean curvature are less clear (except for the drastic change to negativevaluesatagridresolution of3nm), but, ashasbeen pointed out in Section 2, the obtained mean curvature dependson thesystem' s propensity to produce bumps and dentsintheimage whichinturndependsontheparameters used, mak- ing a comparison of curvatures obtained with different parametersdifficult.

Themappingofthelocalcurvaturesobtainedfor a snapshot of the open pore is depicted in Fig. 11. Data from eight grid orientations for each axis at a resolution of 0.3 nm while expanding the coordinates to 0.3 nm and averaging over neighboring voxels up toadistanceof three grid cells were used. The mean and Gaussian curvature associatedwiththeporeare accurately mapped as positive and negative, respec- tively. While the distribution is less homogeneouscom-

Fig. 11 Visualization of the local distribution of mean (a) and Gaussian (b) curvature for a snapshot of a pore in a DPPC membrane. Positive curvature is depicted as red, zero curvature as white and negative curvature as blue.
paredtotheidealmodelsystems,thisisnotanarti- factofthe method, but the accurate detection of fea- tures present in the analyzed coordinates. Regions with groups of atoms protrudingfromthemeanarecorrectly displayed as having high mean and Gaussian curva-
tures ${ }^{17}$,whereasregionswithasaddle-splayedsurface are detected as having a low mean and high (negative) Gaussiancurvature.Thegeneraltrendofthelocation ofthe highestlocalmeancurvatureclosetotherimof theporeand thehighestGaussiancurvatureinthemid- sectionfoundfor the model systems is preserved also in thesimulated pores, but slightly modified by superposi- tion of effects due to deviationsfromtheidealtoroidal shape.

Forcomparison, asnapshotoftheunderlyingstruc- ture isshowninFig. 12.

Stalk formation Fig.13showstheMinkowskifunction- als obtained for the formation of stalks between two DOPE bilayers at low hydration and high temperature. Data was obtainedusingagridresolutionof 0.2 nm andexpandingthe coordinates toaradiusof 0.34 nm . Starting from a lamellar configuration, the formation of the stalks is reflected by a changeoftheEulerchar- acteristicfrom0forthetwobilayers to-2, indicating the simultaneous formation of two stalks. Atthesame time, theintegratedmeancurvaturedropsfrom 0to negativevalues,alsoindicatingtheformedstalks.

[^8]

Fig. 12 Snapshot taken from the trajectory of a closing pore in a DPPC membrane. For clarity we show only the beads representing the lipid carbon tails (the terminal beads are shown in black, the remaining beads in grey), which are the beads used to

Fig. 13 Morphological image analysis for the simulation of stalkformation starting from two isolated bilayers.

ShowninFig.14isthemappingofthelocalcurva- turesof an isolated stalk using data from four rotations of the grid aroundeachaxisataresolutionof 0.17 nm whileexpanding the coordinates to a radius of 0.34 nm and averaging over neighboring voxelsup to adistance ofthreegridcells. Asfor the simulated pore, the de- tected curvature is not homogeneous, but the general trend of the relative distribution of curvature between foot (the counterpart to therimofapore)andmidsec-

Fig. 14 Visualization of the local distribution of mean (a) and Gaussian (b) curvature for a snapshot of a stalk between two DOPE membranes. Positive curvature is depicted as red, zero curvature as white and negative curvature as blue.
tionispreservedalsohere:Ahigher(negative)mean curvatureisobservedclosetothefootofthestalkand a higher (negative) Gaussian curvature close to the midsection. While part of the observed inhomogeneities, especially in regions of relatively low curvature, are likely causedbyartificialnoiseintroducedbyinsufficientaveraging,mostofthedetectedcurvatureagaincanbe attributedtoactualmorphologicalpropertiescontained in theanalyzedcoordinates.

AsnapshotoftheformedstalkisshowninFig. 15.

3.3Computationalcosts

To give a rough indication of the time required to per- form the presented analyses, we will state the CPU- time ${ }^{18}$ used forsomeoftheperformedcalculations.This is not meant as an extensive analysis of scaling and computational efficiency, but rather as a help for read- ers interestedin using the method. So far, the program has not been optimized for computational efficiency; however, even so, the time required for performing the presented morphologicalanalysesisintheorderofonly afewminutes.

For the computation of the global morphology for the trajectory ofthe closing poreshownin Fig. 10, a totalCPUtimeof 120 swas used for all 2,500 frames, corresponding to approximately 50 ms per frame. Re- ducing the grid resolution by a factor of two, the CPU- timerequired for the wholetrajectorydropsto104s.

18 on an Intel Core 2 DUO 67002.66 GHz CPU

Fig. 15 Snapshot of a stalk formed between two apposed DOPE membranes. For clarity we show only the beads representing the lipid carbon tails (the terminal beads are shown in black, the remaining beads in grey), which are the beads used to define the positive space in our analysis.

For the computation of the local curvatures, the time required for the analysis of the largest of the model pores presentedinFig.8is187s,correspondingtoap- proximately 7sperorientationusedintheaveraging. Asbefore, reducing the grid resolution increases the performance, with a reduction by a factor of two drop- ping the required time to 132s.Incomparison,theanal- ysisofthelocalcurvaturefora snapshotofthepore takenfromthesimulationreferredtoin the previous paragraph is much faster, due to the lower coordinate density and system size. The results shown in Fig. 11 requiredaCPU-timeof57s,correspondingto 167 ms perorientationusedfortheaveraging.

4Conclusions

Our tool uses the technique of morphological image analysis to analyze sets of coordinates describing aggregates of soft matter. The implementation aims at the analysis of mixtures of lipids and water obtained from molecular dynamics simulations, but is in prin- ciple applicable to all kinds of coordinates describing binary mixturesandindependentofthemodelandthe methodusedtogeneratethecoordinates.

Ithasbeendemonstratedtobehelpfulinarange ofmorphologicaltasks,includingphasedetectionand monitoring ofdynamic processeslikestalk-formation
andpore-closure. Whiletheobtainedglobalvaluesof the Minkowski functionals are subject to the limita- tions inherentinthetechniqueofmorphologicalimage analysis, i.e. anoverestimationofsurfaceareaandinte- gratedmean curvature, the most significant value, the Euler characteristic, is obtained correctly and virtually free of noise. The systematic nature of the error in the total mean curvature, on top of that, allows its use for comparative analyses and to generally detect presence or absence of mean curvature and distinguish systems with negative fromthosewithpositivevalues, enabling
abroadspectrumofapplications.Onlyincomplexsys- tems that contain both stalk- and pore-like structures simultaneously, one might run into problems in the interpretation. Insuchambiguouscases, using an analysis of thenumber ofseparateclustersfor both components of the binarymixture, thatisalsopartofourimple- mentation, can help.

Inaddition, bymappingthelocalvaluesofmean and Gaussiancurvatureontoanimagerepresentingthe system, morphologicalfeaturesinaccessibletothenaive analysisbyeye wereabletobevisualized. Whilethere remainsomedifficulties toavoidartificialinhomogeneities inthedetectionoflocal curvatureinlargerareasoflow homogeneouscurvaturedueto therasterizationofthe underlyingimage,thegeneraltrend towardsaspecific curvatureinagivenareaispreservedand areasthat showanactualprevalenceofeitherpositiveornegativecurvatureincomparisontotheirneighborhoodare accuratelyvisualized.

So far, our implementation only analyzes coordinate sets as they aregenerated by thesimulation, withno option of time averaging over multiple frames of a tra- jectory. If analysis of average structures is desired, it is therefore necessary to create an averaged coordinate set preanalysis.

We hope that with our program which is compat- ible with the popular Gromacs package, a wide range of users may benefit from using morphological image analysis for theirresearch.

Acknowledgements The authors would like to thank H.J. Risselada and T.A. Wassenaar for contributing routines to the code and H.A. De Raedt for useful discussions.

References

1. S.J. Marrink, A.H. de Vries, D.P. Tieleman, Biochim. Biophys. Acta, Biomembr. 1788(1), 149 (2009)
2. K. Michielsen, H. De Raedt, Phys. Rep. 347(6), 461 (2001)
3. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, 1957)
4. C. Loison, M. Mareschal, F. Schmid, J. Chem. Phys. 121(4), 1890 (2004)
5. S.J. Marrink, D.P. Tieleman, Biophys. J. 83(5), 2386 (2002)
6. G.J.A. Sevink, A.V. Zvelindovsky, Macromol. 38(17), 7502 (2005)
7. H. Edelsbrunner, E. Mücke, Assoc. Comput. Mach. Trans. Graphics 13(1), 43 (1994)
8. A. Zomorodian, G. Carlsson, Discrete Comput. Geom. 33(2), 249 (2005)
9. P.M. Kasson, A. Zomorodian, S. Park, N. Singhal, L.J. Guibas, V.S. Pande, Bioinformatics 23(14), 1753 (2007)
10. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26(16), 1701 (2005)
11. S.T. Hyde, I.S. Barnes, B.W. Ninham, Langmuir 6(6), 1055 (1990)
12. W.L. Delano. The PyMOL molecular graphics system (2002)
13. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111(27), 7812 (2007)
14. H.J.C. Berendsen, J.P.M. Postma, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)
15. S.J. Marrink, E. Lindah1, O. Edholm, A.E. Mark, J. Am. Chem. Soc. 123(35), 8638 (2001)
16. H. Leontiadou, A.E. Mark, S.J. Marrink, Biophys. J. 86(4), 2156 (2004)
17. S.J. Marrink, A.E. Mark, Biophys. J. 87(6), 3894 (2004)

[^0]: Groningen Biomolecular Sciences and Biotechnology Institute \& Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
 Tel.: +31-50-3634457
 Fax: +123-45-678910
 E-mail: s.j.marrink@rug.nl

[^1]: ${ }^{1}$ Alternatively, integrated mean and Gaussian curvature can be replaced by the mean breadth and Euler characteristic, to which they are proportional (see Table 1).
 ${ }^{2}$ Note, however, that while a given morphology specifies a specific set of Minkowski functionals, the reverse is not necessarily true.
 ${ }^{3}$ i.e. the three-dimensional analog of pixels, essentially small cubes

[^2]: 4 Assuming the resolution of the grid is chosen sufficiently high, the distortion introduced by a potential mismatch between grid and simulation box and by ensuring that the periodic boundary conditions for non-rectangular boxes can be mapped is only minor.
 5 in the current implementation, the cloud is generated via a simple loop over spherical coordinates, generating N^{3} coordinates within N equidistant shells containing N^{2} coordinates each, corresponding to a density distribution decaying towards the perimeter
 6 i.e. every vertex that is part of both negative and positive voxels

[^3]: 7 no attempt was made to optimize the code in this respect

[^4]: 8 This radius needs to be specified as a value between 0 and 1 and will be multiplied with half the smallest box dimension internally.

[^5]: ${ }^{9}$ dioleoylphosphatidylethanolamine
 10 dipalmitoylphosphatidylcholine

[^6]: 15 with the distance between the discrete levels depending on the grid resolution

[^7]: 16 the second, positive, principal curvature is constant across the whole pore

[^8]: 17 In fact, the Gaussian curvature in these regions should be positive, however, this is likely masked by the surrounding negative Gaussian curvature being carried into the relatively small area of positive curvature by the averaging procedure.

