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Abstract Whenanalyzingcomputersimulationsofmix-

turesoflipidsandwater,thequestionstobeanswered areoften

ofamorphologicalnature. Theycandealwith global

properties,likewhatkindofphaseisadoptedor thepresenceor

absenceofcertainkeyfeatureslikea poreorstalk,orwithlocal

propertieslikethelocalcur- vaturepresentinaparticularpart
ofthelipid/water interface. Whileallinformationforboththe
globaland thelocalmorphological propertiesofasystemisin

principlecontainedinthesetofatomiccoordinatesob- tained
fromacomputersimulation,theirextractionis tediousand
usuallyinvolvesusingavisualizationpro- gramanddoingthe
analysisbyeye.Herewepresenta toolthatemploysthe
techniqueofmorphologicalim- ageanalysis(MIA)to
automaticallyextracttheglobal morphology,asgivenby
Minkowskifunctionals,froma
setofatomiccoordinatesandcreatesanimageofthe system
ontowhichthelocalcurvaturesaremappedas

acolorcode.

Keywords Minkowski functionals - Phase determi-
nation - Molecular dynamics - Image analysis -

curvature

Local

1Introduction
1.1Motivation

Withthedevelopmentofnewmodelsandthesteadyin- crease
ofcomputationalpoweravailable,computersim-
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ulationshavebecomemoreandmorevaluableinthe studyof
lipid systems. While the exact conformation of individual
lipidmoleculesisofinterest forsomeappli- cations, mostof
thetimethefocusisonthebehaviorof aggregatesoflipidsasa
whole.Recentexampleshave beenreviewedin|[1].

Manyofthesestudieshaveincommonthatatsome point
during the analysis of the simulation a morpholog- ical
property of thesystem, i.e. aproperty thatsolely depends
on the shape of the lipid aggregate, needs to be
characterized. In the case of the more general prop- erties
like the adopted phase and presence or absence ofstalksor
poresthe task at hand can be accomplished byloadingthe
obtained coordinates into a visualization program and
doingtheanalysisbyeye,butanalyzing
alargenumberofsimulationsinthisway canbete- dious.In
thecaseofthedeterminationofmorespecific, quantitative
properties like interface area, volume or curvatures this
naiveapproachisevenprincipallyim- possible.

A possibleway toautomatizemorphological anal- yses
oftrajectories generated by computersimulations istouse
thetechniqueofmorphologicalimageanalysis
[2]toextractmorphologicalinformationintheformof
Minkowskifunctionals [3]. Thisapproachhasbeenused to
study, e.g., a distribution of pores [4], membrane fu- sion
eventsduringaphasetransition[5]andtomoni- tortheself-
assembly of vesicles [6]. Another approach is to describe
morphological features as persistent voids based on the
frameworkofalphashapes[7]andpersis- tenthomology 8]
and has been applied to characterize vesicle fusion [9].
However,noimplementation ofeither methodiscurrently
readily available to the majority of researchers, especially
not as part of any of the widely- used molecular dynamics
software-packages.
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Table 1 The relation between volume V, surface area A, mean
breadth B, Euler characteristic x, integrated mean curvature H,
integrated Gaussian curvature K, the voxels’ edge length ¢ and
the numbers of cubic voxels n¢ and constituting faces n¢, edges
ne and vertices ny defining the positive space.

morphological property related property

V/€3 =n

A/E2 = —6n¢ + 2n¢
2B/§ =3n¢ — 2n¢ + ne
X = =—N¢c+Ns —Ne + Ny

H =2mB
K = 4my

Here, wepresentanextensionofthe Gromacssoft- ware
package [10] that enables morphological image analysisof
molecular aggregates. In addition, the op- tion to extract
localcurvatureshasbeenaddedtothe method,whichtothe
authors best knowledge hasnot beenemployed before, at
leastinthefieldoflipidag- gregates.

1.2Theory

Inthreedimensions, therearefour Minkowskifunction- als
corresponding to the volume whose morphology is to be
determined,theareaoftheinterfaceseparating thatvolume
from the rest of the system and the inte- grated mean and
Gaussian curvature of that interface'. As such, both
geometrical (shape) and topological fea- tures
(connectivity)arecharacterized?.

For black and white digital, i.e. pixelated,images, the
extraction of the Minkowski functionals is well-
established and can be accomplished by simply count- ing
the pixels and pixel-components of lower dimen- sionality
comprising the image. This means, that for three-
dimensionalpicturesoneonlyneedsthenumber
ofvoxels®andthenumberoffaces,edgesandvertices
these voxels consist of, where voxel componentsshared by
several voxels are counted only once. The Minkowski
functionals can then be obtained as sums over these
numbers as given in Table 1. A way of obtaining the
morphologyofasetofcoordinatesisthereforetotrans- late
the system into a three-dimensional image com- posed of
blackandwhitevoxels[2].

Advantages of this method are the straightforward-
nessofimplementationanditsrigorousnessinthesense that
theresultingnumbersaretheexactvaluesofthe

1 Alternatively, integrated mean and Gaussian curvature can
be replaced by the mean breadth and Euler characteristic, to
which they are proportional (see Table 1).

2 Note, however, that while a given morphology specifies a spe-
cific set of Minkowski functionals, the reverse is not necessarily
true.

3 i.e. the three-dimensional analog of pixels, essentially small
cubes

Minkowskifunctionalsfortheimage.Itsonlydisad-
vantage is therefore the approximation introduced by the
image itself. The use of voxels entails a limitation to right
angles which imposes restrictions on the val- ues for the
surfaceareaandintegrated mean curvature obtained with
this method, causing several structures to share the same
value. As an example, removing any voxel from a cube of
eight voxels will leave the sur- face area and integrated
mean curvature unchanged, resulting in a general
tendencytooverestimatethese functionals.

However, the Euler characteristic which only requires
theconnectivitytobeidenticalfortheimageandthe original
system can be determined exactly, and the vol- ume can be
obtained with only slight errors minimizable by choosinga
sufficientlyhighresolution.

For a broad spectrum of morphological tasks the
obtained values are sufficient, even with the restric- tions
mentioned above. For most applications concern- ing
molecular aggregates, the Euler characteristic and the
integrated mean curvature are arguably the most
important values. Purely topological analyses, includ- ing
both phase determination and the detection of stalks or
pores,relyprimarilyonthe Eulercharacteristicwhich isnot
affected by the limitations of morphological im- age
analysis. In addition, due to the systematic nature of the
erroroftheintegrated meancurvature, theob- tainedvalue
can still be used to extract morphological information.
Absenceofmean curvatureisaccurately recognizedaszero
mean curvature, and systems with positive can be
distinguished from those with negative total mean
curvature.Inaddition,boththeintegrated meancurvature
and the surface area can be used to further characterize
structureswithinfamiliesofsim- ilartopology,sincethelack
of absolute values detrimental for relative
comparisons.

is not

As an extension to this basic application of mor-
phologicalimage analysis, it isalso possibletoobtain local
values of the mean and Gaussian curvature. As has been
shown by Hyde et al. [11], every surface vertex can be
associated with a certain mean and Gaussian curva- ture.
Again, thesevaluesareexactfortheimageand summation
over all surface vertices while taking into account the
different surface areas associated witheach vertexleadsto
global (integrated) values of the mean and Gaussian
curvaturesidentical totheonesobtained with the method
described above. Mapping the local curvatures onto the
imageasacolorcodeallowsfur- thercharacterizationofthe
structure at hand, enabling easy detection of areas of
differentcurvatureaswellas detailed comparisonofsimilar
structures.



Therestofthischapterisorganizedasfollows:InSec- tion2.1
and2.2detailsabouttheimplementationand theuser-
definableparametersaregiven,whileSection2.3 describesthe
parametersusedinthesimulationsthat wereanalyzedtotest
ourprogram.Section3givesthe resultsofthesesample
applicationsinadditiontotests performedonmodelsystems.

2Methods
2.1Implementation

The implementation discussed in this publication was
realized using the Gromacs-3.3 software package [10], but
should in principle compile with any version of Gromacs
from 3.0 to date with only minor modifica- tions. The
executable is called g mia and was written in the C
programminglanguage. The source codeis availableupon
request. Acceptable input file formats are the standard
formatssupportedby Gromacs.

2.1.1 Basic algorithm

Wetreattheimageasathree-dimensionalcubicgrid
representingthesimulationbox,ontowhicheveryco-

ordinateismapped*. Toavoidartificialemptyspaces
introduced by representing atoms (orin the case of coarse-
grainedmodelsgroupsofatoms)bytheircenter- of-massonly,
everycoordinateisexpandedtoaspheri- calcloudof
coordinateseachofwhichismappedonto thegrid

individually®.Dependingonthetypeandnum- berofparticles
mappedtoit,cellsaredeclaredasposi- tiveornegative,where
positivecellsrepresentthemolec- ularaggregate. Theglobal
valuesoftheMinkowskifunc- tionalscanthenbeobtainedby
countingthenumber ofcubes,cube-faces,edgesandvertices
takingintoac-

counttheperiodicboundaries.
For the local values of the mean and Gaussian cur-

vature, every surface vertex® is identified as one of the
possible cases listed in Fig. 1, storing the corresponding
local curvatures given by the product of theinterface- area
andthecurvaturevalueassociatedwiththattype

4 Assuming the resolution of the grid is chosen sufficiently high,
the distortion introduced by a potential mismatch between grid
and simulation box and by ensuring that the periodic bound-
ary conditions for non-rectangular boxes can be mapped is only
minor.

5 in the current implementation, the cloud is generated via
a simple loop over spherical coordinates, generating N2 coor-
dinates within N equidistant shells containing N2 coordinates
each, corresponding to a density distribution decaying towards
the perimeter

6 j.e. every vertex that is part of both negative and positive
voxels
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Fig. 1 Overview of the possible types of surface vertices and the
associated local values of surface area a, mean h and Gaussian
curvature k in dependence on the edge-length ¢ (adapted from
[11]). For each pattern, values are given both for the positive
(black representing lipids) and the negative case (black represent-
ing water). While more patterns are possible in principle, these
represent noise and should not occur as long as the resolution
used does not exceed the coordinate density.
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Fig. 2 Mapping of local curvature from surface vertices to vox-
els. After elimination of non-surface voxels (grey shaded squares),
the curvature that has been calculated for the surface vertices
is distributed in equal parts to all adjacent surface voxels (ar-
rows). The local curvature C of the highlighted voxel is obtained
as C = Y2i+j + 12k, where i, J and k are the curvatures
corresponding to the surface vertices adjacent to the highlighted
voxel. For simplicity, a two-dimensional example is given, but the
method applies equally for three dimensions.

of surface vertex. However, a mapping of the curva- tureto
voxels, not vertices is desired. To that end, non- surface
voxels, i.e. positive voxelsnot contributinga singlefaceto
the interface are eliminated. The stored curvatures of the
surface vertices are then distributed in equal parts to the
surface voxels adjacent to that particular vertex, as
illustratedinFig.2.

Forthevisualizationofthelocal curvatures,aPy- MOL
[12]fileisgenerated thatrepresentstheimageas voxelsonto
whichthecurvaturesaremappedasacolor code.Duetothe
differencesin therange of curvatures encountered, using a
fixed color-scaleisimpossible. We therefore employ a two-
color scheme, in which white correspondstoacurvatureof
zero, while the two colors are used to distinguish negative
and positive curvature, with the intensity of the color
indicatingthevalue.Full intensityisassignedtothevoxel(s)
with the maximum absolute curvature encountered in a
givensystem,and thecolor-rangeissymmetricinthesense
that fullinten- sity indicates the same (absolute) value for
both colors. While this causes every image to get its own
color-code, it is the most efficient scheme to highlight
differences inlocalcurvature.

2.1.2 Optional steps

Thedatagenerated canoftenbeimproved considerably by
performing some image manipulation steps and av-
eraging.

Image manipulation Dependingontheparticledensity in
thecoordinatefileandthedesiredresolutionofthe grid,itis
possible toinclude an image manipulation stepright after
thecreationoftheimage,inwhichiso- latedclustersofeither
positiveornegativecellsbelow
acertainsizeareinterpretedasnoiseandremoved.As
abenefit, performingthisstepallowsthedetermina- tionof
the number of actualisolated clustersabove the threshold
size at no additional cost, which is useful mor- phological
informationinitsownright.

Spatial averaging Duetothefixed natureofthegrid even
aggregates with perfectly homogeneous curvature like a
sphere will display different curvatures for differ- ent
regions, depending on how well the rasterization of the
imagefitsthesurfaceinthatregion.Ingeneral, the curvature
tendstobeunderestimated whenthesurface isalignedwith
thegrid,andoverestimatedwhenitis diagonaltothegrid.
Two options of spatial averaging can be employed to
reducethiseffect. First,theobtainedlocalcurvature canbe
averagedoverneighboringsurfacevoxelswithin
a certain distance. In addition, it is possible to further
improve the results by performing the determination of
local curvaturesformultiplegrid orientations. Forthis, the
resulting curvaturevaluesofeach positivesurface voxelfor
every orientation are stored together with the coordinate
correspondingtothecenterofthat voxel rotatedbacktothe
original orientation. The values of all rotations are then
mapped back onto the original grid, averaging the values
over the entries mapped onto the same cell. If needed, the
resulting values can be averaged over neighboring cells.
Since it isnot possible to preserve the periodic boundary
conditions with a rotated grid, the area of interest is
centeredinthebox andonly cells within a certain distance
fromthecenter, i.e. cellsthatlie within both the volume of
theboxand therotated gridforallrotations, aretakeninto
account.

Time averaging Whilenotincludedassuchinthecur- rent
versionofthepresentedtool,itcanalsobeuseful toaverage
the curvatures over time, i.e. over several snapshots of a
trajectory. For the global values, this can easily be
accomplished post-analysisby takingthe floating average
of the calculated curvatures. For the local values, a time
averagingcanbeperformedonthe coordinatelevelpriorto
theanalysis,effectivelyyield- ingtimeaveragedcurvatures.

2.2User-definableoptionsandparameters

Itis,ingeneral,notpossibletousethesamesetofpa- rameters
fortheanalysisofallpossiblestructuresand



representations. Theimplementationthereforeallows
most parameterstobedetermined by theuser. This section
describesthe parametersand discusseswhatto considerto
achievetheoptimalresults. Thecorrespond- ingcommand
lineoptionsaregiveninparentheses.

Input files Thetoolneedsacoordinateortrajectory file (-
¢) and an index file (-n) in which the particles that
correspondtothepositivephasearelisted.

Imaging options The edge length of the grid (-dim), the
radiusofthesphericalcloudusedtoexpandthecoor- dinates
(-sr) and the number of coordinates generated during the
expansion (-npts) as well as the minimum number of
coordinates mapped onto a grid cellrequired to countit as
positive(-thresh1)needtobespecified.

As a general consideration, the resolution needsto be
high enough to accurately depict the structure to be
analyzed, but is limited by memory requirements, due to
several three-dimensional arrays required during the
computation’. Inaddition, using ahighresolution usually
requires expansion of the coordinates to avoid artificial
emptyvoxelscausedbythelimitedcoordinate-
density,whichpartiallyoffsetsthedesiredhighresolu- tion.
Theradiusofthesphericalcloudshouldtherefore bechosen
asthesmallestradiussufficienttoavoidnoise. (Anexample
oftheeffectsofthechosenresolutionfor

asampleapplicationisgiveninSection3.2,Table2.) Italso
turnsoutthat,inordertoaccuratelydetect
flatmorphologiesashavingzeromeancurvature,itis
requiredtocalibratetheparametersused.Sincemolec- ular
aggregates usually have a low short-range order,
fluctuations of individual molecules from the mean will
show aseither bumpsordentsinthe created image. Sincea
given resolution does not necessarily have the same
propensity for producing bumps as for producing dents a
net-curvature willbe measured. Thethreshold parameter
canbeusedtoadjustthenumberof* pos- itive’ coordinates
mappedontoasinglegrid-cellre- quiredtocountthatcellas
positiveto,onaverage,pro- duceanequalnumberofbumps
and dents and therefore not introduce artificial mean
curvaturetothemeasure- ment.

In addition,itis possible to also use the coordi- nates of
the particles corresponding to the negative phase,
mapping them onto the grid ashas been de- scribedabove
butcountingthemasnegative.Ifthatis desired,thenumber
of phases to consider must beset from 1to2 (-np),and the
index file needs to contain a second group in which these
particlesarelisted.

7 no attempt was made to optimize the code in this respect

Ifisolated clustersbelowacertainsizearetobe
removed (seeabove),themaximal clustersizetobe
considerednoisemustbespecified(-cs).

Averaging options The range over which the local cur-
vatures are averaged over neighboring voxels needs to be
specified (-ar! and-ar2),withavalueofzeroin- dicatingno
averaging. Twovaluesareneeded,onefor the averagingfor
every single grid orientation (-ar!) and one for the
averagingafter the valuesofallgrid orientationshavebeen
collected(-ar2).
Ifmultiplegridorientationsaretobeused, thenum- ber
of rotations around every axis (-nz, -ny and -nz) and the
corresponding angle increments (-depsilon, - dphi and -
dtheta), as well as theradius around the cen- ter of the box

within which voxels are considered have tobeset (-dr)®.In
ordertoachievethebestresult,care mustbetakentoavoid
samplingsimilarorientations.

In addition, a threshold can be specified to only count
voxelsaspositiveifaminimumnumberoflo- calcurvatures
corresponding to different rotations has been mapped on
that voxel (-thresh2). However, unlike theother averaging
steps, thisoptionwilldiscardcur- vatureandnolongergive
theexactresultsandshould thereforebeusedwithcare.For
the results presented in this work, a threshold of zero has
beenused,effectively disablingthisoption.

FortheresultsdiscussedinSection3,thegridresolution and
theradiusused for the expansionofthe coordinates willbe
given along with the number of rotationsand the distance
usedfortheaveragingofthelocalvalues.

2.3Simulationsetup

Thesimulationsshowninthisarticlewereperformed using
the coarse-grained MARTINI model [13] with the
Gromacs-3.3softwarepackage [10] usingthestandard run-
parameters for the MARTINI model at atimestep of40 fs.
Bothpressureandtemperaturewerecoupled toareference
valueusingtheBerendsenscheme[14]. Lennard-Jonesand
Coulombinteractionswereobtained everystepforparticles
within a cut-off of 1.2 nm ac- cording to a neighbor list
updated every 10 steps. Both the Lennard-Jones and
Coulombpotentialweremodi-
fiedwithashiftfunctiontohavetheinteractionssmoothly
vanishingatthecut-off. Electrostaticinteractionswere
screenedwithaneffectivedielectricconstantof15(which
isthestandardvaluefortheMARTINImodel).

8 This radius needs to be specified as a value between 0 and
1 and will be multiplied with half the smallest box dimension
internally.



Three processes were used as sample applications:
spontaneous aggregation of lipids into a lipid bilayer,
closure of a pore in a membrane, and stalk formation
between apposed lipid bilayers (with setups similar to
simulationsdescribedin[15-17],respectively).

Spontaneous aggregation The system simulated consists
of 256 DOPE?® lipids with 768 water beads (one bead
corresponding to four water molecules) starting from
randomcoordinates. Thesimulationwascarriedoutat
areferencetemperatureof315Kwithacouplingtime
constant of 0.5 ps,and with anisotropic pressurecou- pling
with a compressibility of 5x107° bar™! for the di- agonal
elementsand 1x10~7 bar ™ for the off-diagonal elementsof
thepressuretensor,couplingtimeconstants
of1.2psandreferencepressuresofl.Obar.

Porated membrane Thesystemconsistsofabilayerof

128 DPPC10 lipids with a preformed pore at excess hy-
dration (2653 waterbeads). Afterashortequilibration, the
simulation was carried out at areference tempera- ture of
323Kwithacouplingtimeconstantofl.0ps,
andwithsemi-isotropicpressurecouplingwithacom-
pressibilityof1x10~°bar™!,acouplingtimeconstantof
1.0psandareferencepressureofl.0barforthedirec-
tionperpendiculartothebilayerandacompressibility of0
bar~!fortheplanecontainingthebilayer.

Stalk formation The initial configuration was two bi-
layers of 98 DOPE lipids each, separated by two slabs
consisting of 65 water beads each, corresponding to an
effective hydration level of 2.65 water molecules per lipid.
To induce the formation of stalks, the simula- tion was
carriedoutatareferencetemperatureof375
Kwithacouplingtimeconstantof0.5ps,andwith
semi-isotropicpressurecouplingwithacompressibility of
1x10~5bar™!,acouplingtimeconstantofl.2psand
areferencepressureofl.0barforalldirections.

3Results
3.1Modelsystems

The method was first tested on two artificially con-
structed model systems with a very high coordinate-
density: a solid sphere and a toroidal pore. This way, the
potential of the method could be assessed by analyz- ing
virtuallynoise-freestructuresandtheexactvalues forthese
idealgeometrieswereavailableforcompari- son.Plotsofthe
coordinatesofthemodelsystemsused aredepictedinFig.3
and4.

9 dioleoylphosphatidylethanolamine
10 dipalmitoylphosphatidylcholine
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Fig. 3 The spherical model system. The volume of the spheres
has been filled with coordinates at a regular distance (d = r/20)
dependent on the radius r (large black dots). In addition, the
surface as the most crucial part has been covered with coordinates
at a very high density (small grey dots).

Spheres Fig.5showsthemeasuredandtheoreticalval- ues
of the Minkowski functionals for solid spheres of different
radii. Theimagewasconstructedwithares- olutionof0.4nm
and expansion of the coordinates to spheresof (0.2 nm. As
predicted for a solid object, the Euler characteristic is
obtainedwiththeexactvalueof
1.Thevolumeoftheimageisonlyslightlyhigherthan thatof
the original, which is due to the rasterization oftheimage
andtheexpansionofthecoordinatesto spheres. Thesurface
area and integrated mean curva- ture, however, are
overestimatedtoalargerextent.In fact,theobtainedvalues
liebetweenthevaluesofthe sphereandacubewithanedge-
lengthidenticaltothe diameterofthesphere(seediscussion
inSection1.2). Nevertheless, thevaluesareproportionalto
thevalues oftheoriginaland couldthereforeinprinciplebe
used todistinguishspheresofdifferentsize.

For the calculation of the local curvatures, eight ro-
tations around every axis were used and values were
averaged over neighboring voxels up to a distance of three
gridcells.Lookingatthemappingontotheimage asshownin
Fig.6,wefindthatbothmeanand Gaus- siancurvatureare
accurately mapped with positive val- ues. While the mean
curvatureiscorrectlymappedal- mosthomogeneouslyover
the whole surface, the distri- bution of the Gaussian
curvature for the larger sphere is less even, even with the
performed averaging. This is a symptom of a general
difficulty inthemapping



Fig. 4 The model system of the ideal toroidal pore (a: xz plane,
b: xy plane). The volume of the porated slab has been filled with
coordinates at a regular distance of 0.176 nm in the x and y
and 0.2 nm in the z direction (large black dots). In addition, the

LA e B B LA B a B e E
5000_OO

4000[

G=rvolume [nms]

surface area [nm’]

3000
~ P
2000 [ 7
1000( -
200T (@ ]
[ [©_Oint. mean curvature [nm] 7]
1501 __Euler characteristic =]
100} - - 4
s —=— """ 1
o . . A " A S— L T—" " T— —"— —rn—
0
1 2 3 4 5 6 7 8 9 10

radius [nm]

Fig. 5 Morphological image analysis of model systems of solid
spheres of different radii (lines between measured points serve to
guide the eye). For comparison, calculated values corresponding
to the underlying geometry are plotted (dashed lines).

Fig. 6 Mapping of the local values of mean (a, c) and Gaussian
(b, d) curvature onto the constructed images of spherical model
systems. Shown are the results for spheres with a radius of 2 nm
(a, b) and 5 nm (c, d). Positive curvature is depicted as red, zero
curvature as white and negative curvature as blue.

oftheGaussiancurvaturefoundinmostofourmea-
surements for systems which display large areas of ho-

mogeneous Gaussian curvature!’. However, while this
behaviormight seem problematicat first,itispartially due
to the color-scale employed, which assigns full color
intensitytothevoxelwiththehighestabsolutecurva-

ture (see Sect. 2.1). In the presence of regions with high
Gaussian curvature (as in the example of the smaller
sphere), these are accurately detected, and artificial
fluctuationsinregionsoflower Gaussiancurvaturebe-
comerelativelylessimportantaswellaslessvisiblein
ourdepiction.

Toroidal pores Fig.7TshowsthevaluesoftheMinkowski
functionalsforatoroidal’? porethroughan8.8x 8.8

nm? layerof4.0nmthicknessindependenceonthe
poreradius®®,obtainedusingagrid-sizeof0.2nmand
expandingthecoordinatestoaradiusof0.1nm.In
addition,theanalyticalvaluesforthevolumeV surface areaA
andintegratedmeancurvature Hareplotted*:

V=Vajap=Vey+12d? (d+r)—4sd>: (1)
11 To a lesser extent this is also true for the mean curvature;
however, the values of the mean curvature tend to be higher and
therefore less sensitive to artificial fluctuations caused by the ras-
terization.

12 je. a pore in which the curvature of the surface varies
smoothly in a manner identical to the “inner” part of a torus

13 defined as the radius of the actual opening

14 note that periodic boundary conditions apply



o771 1 T T~ T T T T
4001~ G-© volume [nm’]
350<—
300 ——— —_ ¢

s T T T Tmem—— T T
200

surface area [nmz]

Ay

G-© int. mean curvature [nm]
Euler characteristic -

o o
LA T I L
\

\

\

\

\

\

\

\

\
)

\
%

\

(

(¢
IIIIII

1
1.2 14 1.6 1.8
pore radius [nm]

SN
o
o
o
©
[any

o,
dii;\\
1 | 1

N

Fig. 7 Morphological image analysis of model systems of ideal
toroidal pores of different radii (lines between measured points
serve to guide the eye). For comparison, calculated values corre-
sponding to the underlying geometry are plotted (dashed lines).

A=2 (Arec_Acirc)+21T2d(d—|—r)< (2)

H=n?(d+r)-4nd> (3)
Intheseexpressionsdishalfthethicknessoftheslab,r
istheradiusoftheporeatitssmallestextension, Aec isthearea
ofthebottomortopoftheunporatedslab, Agjcistheareaofthe
circlewithradiusd+r,Vgapis thevolumeoftheunporatedslab
andV;yisthevolume ofthecylinderwithaheightof2danda
radiusofd +r. Asbefore,theEulercharacteristicisobtained
with
the exact value of -1 and the volume of the imageis higher,
but proportional to that of the original. The surfaceareais
overestimatedtoalargerextent,again showinghowthearea
of curved surfaces is increased by the rasterization of the
image. Thefactthatthesurface areaoftheimageisactually
found to be increasing over the whole range of radii in
disagreement with the values calculated for the original
reflectstheincreasing percentageofthetotalsurfacethatis
curvedforlarger pore-radii. Thiscausestheslight decrease
of surface areaintheoriginalgeometrytobeovershadowed
by the overestimation of areas of curved surfaces in the
image.

Theintegratedmeancurvaturehasthesamegeneral
trend for both image and original, but the amount of
negativecurvatureishigherintheimageforthemea- sured
range of radii. This causes small pores to display negative
valuesforradiiupto1nm,whiletheactual cross-over point
for the original geometry is at approx- imately 0.5 nm. In
addition, it becomes apparent that the valuesobtained by
morphologicalimageanalysisare

discreteandnotcontinuous®® causingsmallchangesin

15 with the distance between the discrete levels depending on
the grid resolution

curvatureintheoriginalgeometrytogounnoticedin the
image.

The local curvatures were calculated using four ori-
entations for each axis and averaging over neighbor- ing
voxels up to a distance of five grid cells. Looking at the
mapping onto theimageasshownin Fig. 8, thedominance
ofnegative mean curvature for pores ofsmallradiifoundin
the global values is also visible. The mean curvature is
accurately found to be minimal in the midsections of the
pores, reflecting the highest negative principal curvature
located in that region, and maximal close to the rim,
reflectingthelowestnegative
principalcurvatureinthatregion®andisinfactaccu-
rately found to be approximately zero in the midsection of
the pore of radius 2.0 nm (for this radius and a layer-
thickness of 4.0 nm the two principal curvatures cancel in
thisregion). Inaddition, it becomesoverall more pos- itive
forhigher poreradii,inaccordancewiththelower negative
principal curvature. The Gaussian curvatureis alsofound
to be accurately mapped, with the maximum (negative)
curvature found in the midsection and grad- ually
decreasing to zero the closer one gets to therim for the two
bigger pores. Only for thesmallest radius the minimum for
the Gaussian curvature in the midsec- tionisnot detected
duetotheporesizebeingcloseto thelimitoftheresolution
used. Thisproblemcould,in principle,beavoidedbyusinga
higherresolution.

It is worth mentioning that the negative space of the
imagesoftheideal toroidal poresisanimageofastalk. The
correspondingstalkswillthereforehaveidentical Gaussian
curvature and surface area as the pores, and the mean
curvature will only invert its sign. For the global values it
can therefore be deduced that stalks are accurately
characterized as having negative mean curvature, if one
considersthat stalkshavea certain minimumradiusgiven
by the length of the lipid tails (approximately 2.0 nm for a
typicallipidtailof16-18 carbonatoms).

3.2Applications

Nextwetestedourmethodwithtrajectoriesandsnap- shots
taken from actualsimulationsoflipids. Forthese, itproved
advantageoustodefinethepositivephaseas onlytheatoms
or beads corresponding tothelipid tails. That way, details
like pores are amplified and stalks can be distinguished
from configurations in which two membranes are merely
closewithoutcontactofthehy- drophobiccores.

16 the second, positive, principal curvature is constant across
the whole pore



Fig. 8 Mapping of the local values of mean (a, b, ¢) and Gaussian (d, e, f) curvature onto the constructed images of model systems
of ideal toroidal pores. Shown are the results for pores with a radius of 0.4 nm (a, d), 1.2 nm (b, €) and 2 nm (c, f). Positive curvature

is depicted as red, zero curvature as white and negative curvatu

Spontaneous aggregation Thefirst applicationisthe
determinationofthe phaseadopted by amixtureo DOPHE
andwaterstartingfromrandomcoordinatesina
spontaneousaggregationapproach[15]. TheMinkowsk
functionalsobtainedusingagridsizeof0.5nmand
expandingthecoordinatestoaradiusof0.4nmare shownin
Fig.9.LookingattheEulercharacteristica themost
significantmorphologicalindicator,onecan seethatthe
systemquicklyadoptsametastablephase inwhichitremains
forabitover(.50sbeforeitadopt itsfinalconfiguration,in
whichitremainsfortheres ofthesimulation. Themetastablt
statehasanegative
Eulercharacteristicof-2,whichcomparedtoalamella 1
state suggests the presence of pores or stalks. Taking into
account the amount of negative mean curvature the state
mostlikelyisastalkphase,sinceporesdis- playahighermean
curvature. The stable phase adopted for the rest of the
simulationhasan Euler characteris- ticof0,suggestingthe
lamellar or inverted hexagonal phase. The fact that the
integrated mean curvaturere- mainsnegativerulesoutthe
lamellar phase, leaving the inverted hexagonal phase.
Visualinspectionconfirms thesefindings.

Porated membrane Asasecondapplication,welooked ata
closing pore in a DPPC membrane. The Minkowski
functionalsshowninFig.10wereobtainedusingagrid sizeof
0.5nmandexpandingthecoordinatestoara- diusof0.4nm.
The closure of the pore can be detected and is clearly
reflected by the Euler characteristic, the integrated mean
curvature as well as the surface area, with the observed
changesinaccordance withour ear- lier measurements for
themodelpores(seeabove).The presenceofnoiseespecially
intheintegratedmeancur- vatureandthesurfaceareastems
from natural fluctu- ations in the coordinates as well as
translationalmove- mentsofthesystemandfluctuationsof
theboxsize,all
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Fig. 9 Morphological image analysis of the spontaneous aggre-
gation of a random mixture of lipids and water into an inverted
hexagonal phase.

of which cause changesin the image. However, averag- ing
over time, as demonstrated for the integrated mean
curvatureinFig.10reducesthenoisesignificantly.

In addition, we chose this application to demon- strate
theeffectsofthechosengridresolutionandthe radiusused
for the coordinate expansion on the re- sults obtained.
Table 2 shows the average values of the Minkowski
functionalsfortheopenpore(i.e. thefirst
30nm of the trajectory analyzed in Fig. 10) using a higher
resolutionor asmaller expansionradius. The deviationsof
the Euler characteristic from the correct valueoflindicate
thepresenceofnoiseintheanaly- sis.Consideringthenature
of the changed parameters, both the reduced expansion
radiusandthehighergrid resolutionpotentiallycanleadto
empty grid cells in re- gions occupied by the molecular
aggregate. As a result, both additional tunnels (which
would lower the value byoneinthat particularframeofthe
trajectory) aswell ascavities (which would raise the Euler
characteristic
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Fig. 10 Morphological image analysis of the trajectory of a clos-
ing pore. In addition to the properties indicated by the legend,
the running average of the integrated mean curvature is plotted
in white.

Table 2 Average values of the volume V, the surface area A,
the integrated mean curvature H and the Euler characteristic x
obtained in dependence on the resolution (identified by the edge
length d of the grid) and the radius of the spherical cloud rg used
for the expansion of the spheres. Note that in order not to mask
any effects, no cluster filtering was applied to the images.

rs[nm] d[m] Vv [nm3]  A[nm2] H [nm] X
0.4 05  131.47(6) 168.8(2) 8.8(2)  -1.000(0)
0.4 04  117.4(1) 169.7(2) 11.4(2) -0.89(2)
0.4 03  100.76(3) 247.2(3) -205(1)  71.4(4)
0.3 05  126.00(6) 169.7(2) 11.3(2) -0.997(3)
0.2 04  12025(6) 170.1(3) 122(2) -0.71(3)

inthat respective frame by one) are possible. However, the
fact that the Euler characteristic increases indicates that
cavitiesarethedominantartifact. Theobserved decreaseof
volume and the increase of surface area both corroborate
this interpretation. The changes of the in- tegrated mean
curvature are less clear (except for the drastic change to
negativevaluesatagridresolution of3nm),but,ashasbeen
pointed out in Section 2, the obtained mean curvature
dependsonthesystem’ s propensity to produce bumpsand
dentsintheimage whichinturndependsontheparameters
used, mak- inga comparison of curvatures obtained with
different parametersdifficult.
Themappingofthelocalcurvaturesobtainedfor

a snapshot of the open pore is depicted in Fig. 11. Data
from eight grid orientations for each axis at a resolutionof
0.3 nm while expanding the coordinates to 0.3 nm and
averaging over neighboring voxelsup toadistanceofthree
grid cells were used. The mean and Gaussian curvature
associatedwiththeporeare accurately mapped aspositive
and negative, respec- tively. While the distribution isless
homogeneouscom-

Fig. 11 Visualization of the local distribution of mean (a) and
Gaussian (b) curvature for a snapshot of a pore in a DPPC mem-
brane. Positive curvature is depicted as red, zero curvature as
white and negative curvature as blue.

paredtotheidealmodelsystems,thisisnotanarti- factofthe
method, but the accurate detection of fea- tures presentin
the analyzed coordinates. Regions with groups of atoms
protrudingfromthemeanarecorrectly displayedashaving
high mean and Gaussian curva-
tures'’,whereasregionswithasaddle-splayedsurface
are detected as having a low mean and high (negative)
Gaussiancurvature. Thegeneraltrendofthelocation ofthe
highestlocalmeancurvatureclosetotherimof theporeand
thehighest Gaussiancurvatureinthemid- sectionfoundfor
themodelsystemsispreservedalsoin thesimulated pores,
but slightly modified by superposi- tion of effects due to
deviationsfromtheidealtoroidal shape.
Forcomparison,asnapshotoftheunderlyingstruc- ture
isshowninFig.12.

Stalk formation Fig.13showsthe Minkowskifunction- als
obtained for the formation of stalks between two DOPE
bilayers at low hydration and high temperature. Data was
obtainedusingagridresolutionof0.2nm andexpandingthe
coordinatestoaradiusof0.34nm. Starting fromalamellar
configuration, the formation ofthe stalksisreflected by a
changeoftheEulerchar- acteristicfromOforthetwobilayers
to-2,indicating thesimultaneousformation of two stalks.
Atthesame time,theintegratedmeancurvaturedropsfrom
0to negativevalues,alsoindicatingtheformedstalks.

17 In fact, the Gaussian curvature in these regions should be
positive, however, this is likely masked by the surrounding neg-
ative Gaussian curvature being carried into the relatively small
area of positive curvature by the averaging procedure.
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Fig. 12 Snapshot taken from the trajectory of a closing pore in
a DPPC membrane. For clarity we show only the beads repre-
senting the lipid carbon tails (the terminal beads are shown in
black, the remaining beads in grey), which are the beads used to
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Fig. 13 Morphological image analysis for the simulation of stalk-
formation starting from two isolated bilayers.

ShowninFig.14isthemappingofthelocalcurva- turesof
anisolated stalk using data from four rotations of the grid
aroundeachaxisataresolutionof0.17nm whileexpanding
the coordinates to aradius of 0.34 nm and averaging over
neighboringvoxelsuptoadistance ofthreegridcells. Asfor
the simulated pore, the de- tected curvature is not
homogeneous, but the general trend of the relative
distribution of curvature between foot (the counterpart to
therimofapore)andmidsec-

Fig. 14 Visualization of the local distribution of mean (a) and
Gaussian (b) curvature for a snapshot of a stalk between two
DOPE membranes. Positive curvature is depicted as red, zero
curvature as white and negative curvature as blue.

tionispreservedalsohere: Ahigher (negative)mean
curvatureisobservedclosetothefootofthestalkand
a higher (negative) Gaussian curvature close to the mid-
section. While part of the observed inhomogeneities, es-
pecially in regions of relatively low curvature, are likely
causedbyartificialnoiseintroducedbyinsufficientav-
eraging, mostofthedetectedcurvatureagaincanbe
attributedtoactualmorphologicalpropertiescontained in
theanalyzedcoordinates.
AsnapshotoftheformedstalkisshowninFig.15.

3.3Computationalcosts

Togivearoughindication of the time required to per- form

the presented analyses, we will state the CPU- time'®used
forsomeoftheperformedcalculations.This

is not meant as an extensive analysis of scaling and
computational efficiency, but rather as a help forread- ers
interestedinusing themethod. Sofar, the program hasnot
been optimized for computational efficiency; however,
even so, the time required for performing the presented
morphologicalanalysesisintheorderofonly

afewminutes.

For the computation of the global morphology for the
trajectoryoftheclosingporeshowninFig.10,a total CPU-
timeof120swasused forall2,500 frames, correspondingto
approximately 50 ms per frame. Re- ducing the grid
resolutionbyafactoroftwo,the CPU- timerequiredforthe
wholetrajectorydropsto104s.

18 on an Intel Core 2 DUO 6700 2.66 GHz CPU
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Fig. 15 Snapshot of a stalk formed between two apposed DOPE
membranes. For clarity we show only the beads representing the
lipid carbon tails (the terminal beads are shown in black, the
remaining beads in grey), which are the beads used to define the
positive space in our analysis.

For the computation of the local curvatures, the time
required for the analysis of the largest of the model pores
presentedinFig.8is187s,correspondingtoap- proximately
Tsperorientationusedintheaveraging. Asbefore,reducing
the grid resolution increases the performance, with a
reduction by afactor oftwo drop- pingtherequired time to
132s.Incomparison,theanal- ysisofthelocalcurvaturefora
snapshotofthepore takenfromthesimulationreferredtoin
the previous paragraph is much faster, due to the lower
coordinate density and system size. The results shown in
Fig.11 requiredaCPU-timeof57s,correspondingto167ms
perorientationusedfortheaveraging.

4Conclusions

Our tool uses the technique of morphological image
analysis to analyze sets of coordinates describing ag-
gregates of soft matter. The implementation aims at the
analysis of mixtures of lipids and water obtained from
molecular dynamics simulations, but is in prin- ciple
applicable to all kinds of coordinates describing binary
mixturesandindependentofthemodelandthe
methodusedtogeneratethecoordinates.
Ithasbeendemonstratedtobehelpfulinarange
ofmorphologicaltasks,includingphasedetectionand
monitoringofdynamicprocesseslikestalk-formation

andpore-closure. Whiletheobtainedglobalvaluesof
the Minkowski functionals are subject to the limita- tions
inherentinthetechniqueofmorphologicalimage analysis,
i.e. anoverestimationofsurfaceareaandinte- gratedmean
curvature, the most significant value, the Euler
characteristic, is obtained correctly and virtually free of
noise. Thesystematic nature oftheerrorinthe totalmean
curvature, on top of that, allows its use for comparative
analyses and to generally detect presence or absence of
mean curvature and distinguish systems with negative
fromthosewithpositivevalues,enabling
abroadspectrumofapplications.Onlyincomplexsys- tems
that contain both stalk- and pore-like structures
simultaneously, one might run into problems in the in-
terpretation. Insuchambiguouscases, usingan analysis of
thenumberofseparate clustersfor both components ofthe
binarymixture,thatisalsopartofourimple- mentation,can
help.

Inaddition,bymappingthelocalvaluesofmean and
Gaussiancurvatureontoanimagerepresentingthe system,

morphologicalfeaturesinaccessibletothenaive analysisbyeye

wereabletobevisualized. Whilethere remainsomedifficulties
toavoidartificialinhomogeneities inthedetectionoflocal
curvatureinlargerareasoflow homogeneouscurvaturedueto
therasterizationofthe underlyingimage,thegeneraltrend
towardsaspecific curvatureinagivenareaispreservedand
areasthat showanactualprevalenceofeitherpositiveornega-
tivecurvatureincomparisontotheirneighborhoodare
accuratelyvisualized.

So far, our implementation only analyzes coordinate
setsastheyaregenerated by thesimulation,withno option
of time averaging over multiple frames of a tra- jectory. If
analysis of average structures is desired, it is therefore
necessary to create an averaged coordinate set pre-
analysis.

We hope that with our program which is compat- ible
with the popular Gromacs package, a wide range of users
may benefit from using morphological image analysis for
theirresearch.

Acknowledgements The authors would like to thank H.J. Ris-
selada and T.A. Wassenaar for contributing routines to the code
and H.A. De Raedt for useful discussions.

References

1. S.J. Marrink, A.H. de Vries, D.P. Tieleman, Biochim. Bio-
phys. Acta, Biomembr. 1788(1), 149 (2009)

2. K. Michielsen, H. De Raedt, Phys. Rep. 347(6), 461 (2001)

3. H. Hadwiger, Vorlesungen uber Inhalt, Oberfliche und
Isoperimetrie (Springer, 1957)

4. C. Loison, M. Mareschal, F. Schmid, J. Chem. Phys. 121(4),
1890 (2004)



13

10.

11.

12.
13.

14.

15.

16.

17.

S.J. Marrink, D.P. Tieleman, Biophys. J. 83(5), 2386 (2002)
G.J.A. Sevink, A.V. Zvelindovsky, Macromol. 38(17), 7502
(2005)

H. Edelsbrunner, E. Miicke, Assoc. Comput. Mach. Trans.
Graphics 13(1), 43 (1994)

A. Zomorodian, G. Carlsson, Discrete Comput. Geom. 33(2),
249 (2005)

P.M. Kasson, A. Zomorodian, S. Park, N. Singhal, L.J.
Guibas, V.S. Pande, Bioinformatics 23(14), 1753 (2007)

D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E.
Mark, H.J.C. Berendsen, J. Comput. Chem. 26(16), 1701
(2005)

S.T. Hyde, I.S. Barnes, B.W. Ninham, Langmuir 6(6), 1055
(1990)

W.L. Delano. The PyMOL molecular graphics system (2002)
S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman,
A.H. de Vries, J. Phys. Chem. B 111(27), 7812 (2007)
H.J.C. Berendsen, J.P.M. Postma, A. DiNola, J.R. Haak, J.
Chem. Phys. 81, 3684 (1984)

S.J. Marrink, E. Lindahl, O. Edholm, A.E. Mark, J. Am.
Chem. Soc. 123(35), 8638 (2001)

H. Leontiadou, A.E. Mark, S.J. Marrink, Biophys. J. 86(4),
2156 (2004)

S.J. Marrink, A.E. Mark, Biophys. J. 87(6), 3894 (2004)





