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Abstract When analyzing computer simulations of mix- 

tures of lipids and water, the questions to be answered are often 

of a morphological nature. They can deal with global 

properties, like what kind of phase is adopted or the presence or 

absence of certain key features like a pore or stalk, or with local 

properties like the local cur- vature present in a particular part 

of the lipid/water interface. While all information for both the 

global and the local morphological properties of a system is in 

principle contained in the set of atomic coordinates ob- tained 

from a computer simulation, their extraction is tedious and 

usually involves using a visualization pro- gram and doing the 

analysis by eye. Here we present a tool that employs the 

technique of morphological im- age analysis (MIA) to 

automatically extract the global morphology, as given by 

Minkowski functionals, from a 

set of atomic coordinates and creates an image of the system 

onto which the local curvatures are mapped as 

a color code. 
 

Keywords Minkowski functionals ·  Phase determi- 

nation ·  Molecular dynamics ·  Image analysis ·  Local 

curvature 
 

 
 

1 Introduction 

 
1.1 Motivation 

 
With the development of new models and the steady in- crease 

of computational power available, computer sim- 
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ulations have become more and more valuable in the study of 

lipid systems. While the exact conformation of individual 

lipid molecules is of interest for some appli- cations, most of 

the time the focus is on the behavior of aggregates of lipids as a 

whole. Recent examples have been reviewed in [1]. 
 

Many of these studies have in common that at some point 

during the analysis of the simulation a morpholog- ical 

property of the system, i.e. a property that solely depends 

on the shape of the lipid aggregate, needs to be 

characterized. In the case of the more general prop- erties 

like the adopted phase and presence or absence of stalks or 

pores the task at hand can be accomplished by loading the 

obtained coordinates into a visualization program and 

doing the analysis by eye, but analyzing 

a large number of simulations in this way can be te- dious. In 

the case of the determination of more specific, quantitative 

properties like interface area, volume or curvatures this 

naive approach is even principally im- possible. 
 

A possible way to automatize morphological anal- yses 

of trajectories generated by computer simulations is to use 

the technique of morphological image analysis 

[2] to extract morphological information in the form of 

Minkowski functionals [3]. This approach has been used to 

study, e.g., a distribution of pores [4], membrane fu- sion 

events during a phase transition [5] and to moni- tor the self-

assembly of vesicles [6]. Another approach is to describe 

morphological features as persistent voids based on the 

framework of alpha shapes [7] and persis- tent homology [8] 

and has been applied to characterize vesicle fusion [9]. 

However, no implementation of either method is currently 

readily available to the majority of researchers, especially 

not as part of any of the widely- used molecular dynamics 

software-packages. 
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Table  1  The relation between  volume V , surface area A, mean 

breadth B, Euler characteristic χ, integrated mean curvature H , 

integrated  Gaussian  curvature  K ,  the  voxels’  edge  length  ξ  and 

the  numbers  of  cubic  voxels  nc  and  constituting  faces  nf ,  edges 

ne  and vertices nv  defining the positive space. 
 

 

morphological property related property 

 

V /ξ3  = nc 

A/ξ2  = −6nc + 2nf 

2B/ξ = 3nc − 2nf  + ne H = 2πB 

χ = −nc + nf  − ne + nv K = 4πχ 

 

 

 
Here, we present an extension of the Gromacs soft- ware 

package [10] that enables morphological image analysis of 

molecular aggregates. In addition, the op- tion to extract 

local curvatures has been added to the method, which to the 

authors’  best knowledge has not been employed before, at 

least in the field of lipid ag- gregates. 

 

 
1.2 Theory 

 
In three dimensions, there are four Minkowski function- als 

corresponding to the volume whose morphology is to be 

determined, the area of the interface separating that volume 

from the rest of the system and the inte- grated mean and 

Gaussian curvature of that interface1. As such, both 

geometrical (shape) and topological fea- tures 

(connectivity) are characterized2. 

For black and white digital, i.e. pixelated, images, the 

extraction of the Minkowski functionals is well- 

established and can be accomplished by simply count- ing 

the pixels and pixel-components of lower dimen- sionality 

comprising the image. This means, that for three-

dimensional pictures one only needs the number 

of voxels3 and the number of faces, edges and vertices 

these voxels consist of, where voxel components shared by 

several voxels are counted only once. The Minkowski 

functionals can then be obtained as sums over these 

numbers as given in Table 1. A way of obtaining the 

morphology of a set of coordinates is therefore to trans- late 

the system into a three-dimensional image com- posed of 

black and white voxels [2]. 

Advantages of this method are the straightforward- 

ness of implementation and its rigorousness in the sense that 

the resulting numbers are the exact values of the 

 

1   Alternatively,  integrated  mean  and  Gaussian  curvature  can 

be  replaced  by  the  mean  breadth  and  Euler  characteristic,  to 

which they are proportional (see Table 1). 
2   Note, however, that while a given morphology specifies a spe- 

cific  set  of  Minkowski  functionals,  the  reverse  is  not  necessarily 

true. 
3   i.e.  the  three-dimensional  analog  of  pixels,  essentially  small 

cubes 

Minkowski functionals for the image. Its only disad- 

vantage is therefore the approximation introduced by the 

image itself. The use of voxels entails a limitation to right 

angles which imposes restrictions on the val- ues for the 

surface area and integrated mean curvature obtained with 

this method, causing several structures to share the same 

value. As an example, removing any voxel from a cube of 

eight voxels will leave the sur- face area and integrated 

mean curvature unchanged, resulting in a general 

tendency to overestimate these functionals. 

 
However, the Euler characteristic which only requires 

the connectivity to be identical for the image and the original 

system can be determined exactly, and the vol- ume can be 

obtained with only slight errors minimizable by choosing a 

sufficiently high resolution. 

 
For a broad spectrum of morphological tasks the 

obtained values are sufficient, even with the restric- tions 

mentioned above. For most applications concern- ing 

molecular aggregates, the Euler characteristic and the 

integrated mean curvature are arguably the most 

important values. Purely topological analyses, includ- ing 

both phase determination and the detection of stalks or 

pores, rely primarily on the Euler characteristic which is not 

affected by the limitations of morphological im- age 

analysis. In addition, due to the systematic nature of the 

error of the integrated mean curvature, the ob- tained value 

can still be used to extract morphological information. 

Absence of mean curvature is accurately recognized as zero 

mean curvature, and systems with positive can be 

distinguished from those with negative total mean 

curvature. In addition, both the integrated mean curvature 

and the surface area can be used to further characterize 

structures within families of sim- ilar topology, since the lack 

of absolute values is not detrimental for relative 

comparisons. 

 
As an extension to this basic application of mor- 

phological image analysis, it is also possible to obtain local 

values of the mean and Gaussian curvature. As has been 

shown by Hyde et al. [11], every surface vertex can be 

associated with a certain mean and Gaussian curva- ture. 

Again, these values are exact for the image and summation 

over all surface vertices while taking into account the 

different surface areas associated with each vertex leads to 

global (integrated) values of the mean and Gaussian 

curvatures identical to the ones obtained with the method 

described above. Mapping the local curvatures onto the 

image as a color code allows fur- ther characterization of the 

structure at hand, enabling easy detection of areas of 

different curvature as well as detailed comparison of similar 

structures. 
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The rest of this chapter is organized as follows: In Sec- tion 2.1 

and 2.2 details about the implementation and the user-

definable parameters are given, while Section 2.3 describes the 

parameters used in the simulations that were analyzed to test 

our program. Section 3 gives the results of these sample 

applications in addition to tests performed on model systems. 

 

 
2 Methods 

 
2.1 Implementation 

 
The implementation discussed in this publication was 

realized using the Gromacs-3.3 software package [10], but 

should in principle compile with any version of Gromacs 

from 3.0 to date with only minor modifica- tions. The 

executable is called g mia and was written in the C 

programming language. The source code is available upon 

request. Acceptable input file formats are the standard 

formats supported by Gromacs. 
 

 
2.1.1 Basic algorithm 

 
We treat the image as a three-dimensional cubic grid 

representing the simulation box, onto which every co- 

ordinate is mapped4. To avoid artificial empty spaces 

introduced by representing atoms (or in the case of coarse-

grained models groups of atoms) by their center- of-mass only, 

every coordinate is expanded to a spheri- cal cloud of 

coordinates each of which is mapped onto the grid 

individually5. Depending on the type and num- ber of particles 

mapped to it, cells are declared as posi- tive or negative, where 

positive cells represent the molec- ular aggregate. The global 

values of the Minkowski func- tionals can then be obtained by 

counting the number of cubes, cube-faces, edges and vertices 

taking into ac- 

count the periodic boundaries. 

For the local values of the mean and Gaussian cur- 

vature, every surface vertex6 is identified as one of the 

possible cases listed in Fig. 1, storing the corresponding 

local curvatures given by the product of the interface- area 

and the curvature value associated with that type 

 

4   Assuming the resolution of the grid is chosen sufficiently high, 

the  distortion  introduced  by  a  potential  mismatch  between  grid 

and  simulation  box  and  by  ensuring  that  the  periodic  bound- 

ary conditions  for  non-rectangular  boxes  can  be  mapped  is  only 

minor. 
5   in  the  current  implementation,  the  cloud  is  generated  via 

a  simple  loop  over  spherical  coordinates,  generating  N 3   coor- 

dinates  within  N  equidistant  shells  containing  N 2   coordinates 

each,  corresponding  to  a  density  distribution  decaying  towards 

the perimeter 
6   i.e.  every  vertex  that  is  part  of  both  negative  and  positive 

voxels 

 
     

   

     

   

 

     

   

     

   

 

     

   

     

   

 

     

   

     

   

 

     

   

     

   

 

     

   

     

   

 

     

   

     

   

Fig. 1  Overview of the possible types of surface vertices and the 

associated  local  values  of  surface  area  a,  mean  h  and  Gaussian 

curvature  k  in  dependence  on  the  edge-length  ξ  (adapted  from 

[11]).  For  each  pattern,  values  are  given  both  for  the  positive 

(black representing lipids) and the negative case (black represent- 

ing  water).  While  more  patterns  are  possible  in  principle,  these 

represent  noise  and  should  not  occur  as  long  as  the  resolution 

used does not exceed  the coordinate density. 
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Fig. 2  Mapping of local curvature  from surface vertices  to vox- 

els. After elimination of non-surface voxels (grey shaded squares), 

the  curvature  that  has  been  calculated  for  the  surface  vertices 

is  distributed  in  equal  parts  to  all  adjacent  surface  voxels  (ar- 

rows). The local curvature C of the highlighted voxel is obtained 

as  C  =  1/2  i + j + 1/2  k,  where  i,  j  and  k  are  the  curvatures 

corresponding to the surface vertices adjacent to the highlighted 

voxel. For simplicity, a two-dimensional example is given, but the 

method applies equally for three dimensions. 

 
 

 
of surface vertex. However, a mapping of the curva- ture to 

voxels, not vertices is desired. To that end, non- surface 

voxels, i.e. positive voxels not contributing a single face to 

the interface are eliminated. The stored curvatures of the 

surface vertices are then distributed in equal parts to the 

surface voxels adjacent to that particular vertex, as 

illustrated in Fig. 2. 

For the visualization of the local curvatures, a Py- MOL 

[12] file is generated that represents the image as voxels onto 

which the curvatures are mapped as a color code. Due to the 

differences in the range of curvatures encountered, using a 

fixed color-scale is impossible. We therefore employ a two-

color scheme, in which white corresponds to a curvature of 

zero, while the two colors are used to distinguish negative 

and positive curvature, with the intensity of the color 

indicating the value. Full intensity is assigned to the voxel(s) 

with the maximum absolute curvature encountered in a 

given system, and the color-range is symmetric in the sense 

that full inten- sity indicates the same (absolute) value for 

both colors. While this causes every image to get its own 

color-code, it is the most efficient scheme to highlight 

differences in local curvature. 

 
 
 
2.1.2 Optional steps 

 

 
The data generated can often be improved considerably by 

performing some image manipulation steps and av- 

eraging. 

 

 
 
Image manipulation Depending on the particle density in 

the coordinate file and the desired resolution of the grid, it is 

possible to include an image manipulation step right after 

the creation of the image, in which iso- lated clusters of either 

positive or negative cells below 

a certain size are interpreted as noise and removed. As 

a benefit, performing this step allows the determina- tion of 

the number of actual isolated clusters above the threshold 

size at no additional cost, which is useful mor- phological 

information in its own right. 

 
Spatial averaging Due to the fixed nature of the grid even 

aggregates with perfectly homogeneous curvature like a 

sphere will display different curvatures for differ- ent 

regions, depending on how well the rasterization of the 

image fits the surface in that region. In general, the curvature 

tends to be underestimated when the surface is aligned with 

the grid, and overestimated when it is diagonal to the grid. 

Two options of spatial averaging can be employed to 

reduce this effect. First, the obtained local curvature can be 

averaged over neighboring surface voxels within 

a certain distance. In addition, it is possible to further 

improve the results by performing the determination of 

local curvatures for multiple grid orientations. For this, the 

resulting curvature values of each positive surface voxel for 

every orientation are stored together with the coordinate 

corresponding to the center of that voxel rotated back to the 

original orientation. The values of all rotations are then 

mapped back onto the original grid, averaging the values 

over the entries mapped onto the same cell. If needed, the 

resulting values can be averaged over neighboring cells. 

Since it is not possible to preserve the periodic boundary 

conditions with a rotated grid, the area of interest is 

centered in the box and only cells within a certain distance 

from the center, i.e. cells that lie within both the volume of 

the box and the rotated grid for all rotations, are taken into 

account. 

 
Time averaging While not included as such in the cur- rent 

version of the presented tool, it can also be useful to average 

the curvatures over time, i.e. over several snapshots of a 

trajectory. For the global values, this can easily be 

accomplished post-analysis by taking the floating average 

of the calculated curvatures. For the local values, a time 

averaging can be performed on the coordinate level prior to 

the analysis, effectively yield- ing time averaged curvatures. 

 
 
2.2 User-definable options and parameters 

 
It is, in general, not possible to use the same set of pa- rameters 

for the analysis of all possible structures and 
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representations. The implementation therefore allows 

most parameters to be determined by the user. This section 

describes the parameters and discusses what to consider to 

achieve the optimal results. The correspond- ing command 

line options are given in parentheses. 

 
 
Input files The tool needs a coordinate or trajectory file (-

c) and an index file (-n) in which the particles that 

correspond to the positive phase are listed. 

 
 
Imaging options The edge length of the grid (-dim), the 

radius of the spherical cloud used to expand the coor- dinates 

(-sr) and the number of coordinates generated during the 

expansion (-npts) as well as the minimum number of 

coordinates mapped onto a grid cell required to count it as 

positive (-thresh1) need to be specified. 

As a general consideration, the resolution needs to be 

high enough to accurately depict the structure to be 

analyzed, but is limited by memory requirements, due to 

several three-dimensional arrays required during the 

computation7. In addition, using a high resolution usually 

requires expansion of the coordinates to avoid artificial 

empty voxels caused by the limited coordinate- 

density, which partially offsets the desired high resolu- tion. 

The radius of the spherical cloud should therefore be chosen 

as the smallest radius sufficient to avoid noise. (An example 

of the effects of the chosen resolution for 

a sample application is given in Section 3.2, Table 2.) It also 

turns out that, in order to accurately detect 

flat morphologies as having zero mean curvature, it is 

required to calibrate the parameters used. Since molec- ular 

aggregates usually have a low short-range order, 

fluctuations of individual molecules from the mean will 

show as either bumps or dents in the created image. Since a 

given resolution does not necessarily have the same 

propensity for producing bumps as for producing dents a 

net-curvature will be measured. The threshold parameter 

can be used to adjust the number of “ pos- itive”  coordinates 

mapped onto a single grid-cell re- quired to count that cell as 

positive to, on average, pro- duce an equal number of bumps 

and dents and therefore not introduce artificial mean 

curvature to the measure- ment. 

In addition, it is possible to also use the coordi- nates of 

the particles corresponding to the negative phase, 

mapping them onto the grid as has been de- scribed above 

but counting them as negative. If that is desired, the number 

of phases to consider must be set from 1 to 2 (-np), and the 

index file needs to contain a second group in which these 

particles are listed. 
 

 

7   no attempt  was made to optimize the code in this respect 

If isolated clusters below a certain size are to be 

removed (see above), the maximal cluster size to be 

considered noise must be specified (-cs). 
 

 
Averaging options The range over which the local cur- 

vatures are averaged over neighboring voxels needs to be 

specified (-ar1 and -ar2), with a value of zero in- dicating no 

averaging. Two values are needed, one for the averaging for 

every single grid orientation (-ar1) and one for the 

averaging after the values of all grid orientations have been 

collected (-ar2). 

If multiple grid orientations are to be used, the num- ber 

of rotations around every axis (-nx, -ny and -nz) and the 

corresponding angle increments (-depsilon, - dphi and -

dtheta), as well as the radius around the cen- ter of the box 

within which voxels are considered have to be set (-dr)8. In 

order to achieve the best result, care must be taken to avoid 

sampling similar orientations. 

In addition, a threshold can be specified to only count 

voxels as positive if a minimum number of lo- cal curvatures 

corresponding to different rotations has been mapped on 

that voxel (-thresh2). However, unlike the other averaging 

steps, this option will discard cur- vature and no longer give 

the exact results and should therefore be used with care. For 

the results presented in this work, a threshold of zero has 

been used, effectively disabling this option. 

 
For the results discussed in Section 3, the grid resolution and 

the radius used for the expansion of the coordinates will be 

given along with the number of rotations and the distance 

used for the averaging of the local values. 

 

 
2.3 Simulation setup 

 
The simulations shown in this article were performed using 

the coarse-grained MARTINI model [13] with the 

Gromacs-3.3 software package [10] using the standard run-

parameters for the MARTINI model at a timestep of 40 fs. 

Both pressure and temperature were coupled to a reference 

value using the Berendsen scheme [14]. Lennard-Jones and 

Coulomb interactions were obtained every step for particles 

within a cut-off of 1.2 nm ac- cording to a neighbor list 

updated every 10 steps. Both the Lennard-Jones and 

Coulomb potential were modi- 

fied with a shift function to have the interactions smoothly 

vanishing at the cut-off. Electrostatic interactions were 

screened with an effective dielectric constant of 15 (which 

is the standard value for the MARTINI model). 
 

 

8   This  radius  needs  to  be  specified  as  a  value  between  0  and 

1  and  will  be  multiplied  with  half  the  smallest  box  dimension 

internally. 
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Three processes were used as sample applications: 

spontaneous aggregation of lipids into a lipid bilayer, 

closure of a pore in a membrane, and stalk formation 

between apposed lipid bilayers (with setups similar to 

simulations described in [15–17], respectively). 

 
Spontaneous aggregation The system simulated consists 

of 256 DOPE9 lipids with 768 water beads (one bead 

corresponding to four water molecules) starting from 

random coordinates. The simulation was carried out at 

a reference temperature of 315 K with a coupling time 

constant of 0.5 ps, and with anisotropic pressure cou- pling 

with a compressibility of 5x10−5 bar−1 for the di- agonal 

elements and 1x10−7 bar−1 for the off-diagonal elements of 
the pressure tensor, coupling time constants 

of 1.2 ps and reference pressures of 1.0 bar. 

 
Porated membrane The system consists of a bilayer of 

128 DPPC10 lipids with a preformed pore at excess hy- 

dration (2653 water beads). After a short equilibration, the 

simulation was carried out at a reference tempera- ture of 

323 K with a coupling time constant of 1.0 ps, 

and with semi-isotropic pressure coupling with a com- 

pressibility of 1x10−5 bar−1, a coupling time constant of 

1.0 ps and a reference pressure of 1.0 bar for the direc- 

tion perpendicular to the bilayer and a compressibility of 0 

bar−1 for the plane containing the bilayer. 

 
Stalk formation The initial configuration was two bi- 

layers of 98 DOPE lipids each, separated by two slabs 

consisting of 65 water beads each, corresponding to an 

effective hydration level of 2.65 water molecules per lipid. 

To induce the formation of stalks, the simula- tion was 

carried out at a reference temperature of 375 

K with a coupling time constant of 0.5 ps, and with 

semi-isotropic pressure coupling with a compressibility of 

1x10−5 bar−1, a coupling time constant of 1.2 ps and 

a reference pressure of 1.0 bar for all directions. 
 

 
3 Results 

 
3.1 Model systems 

 
The method was first tested on two artificially con- 

structed model systems with a very high coordinate- 

density: a solid sphere and a toroidal pore. This way, the 

potential of the method could be assessed by analyz- ing 

virtually noise-free structures and the exact values for these 

ideal geometries were available for compari- son. Plots of the 

coordinates of the model systems used are depicted in Fig. 3 

and 4. 

 

9   dioleoylphosphatidylethanolamine 
10   dipalmitoylphosphatidylcholine 

 
 

 
Fig.  3  The  spherical  model  system.  The  volume  of  the  spheres 

has been filled with coordinates  at a regular distance (d = r/20) 

dependent  on  the  radius  r  (large  black  dots).  In  addition,  the 

surface as the most crucial part has been covered with coordinates 

at a very high density (small grey dots). 

 

 
Spheres Fig. 5 shows the measured and theoretical val- ues 

of the Minkowski functionals for solid spheres of different 

radii. The image was constructed with a res- olution of 0.4 nm 

and expansion of the coordinates to spheres of 0.2 nm. As 

predicted for a solid object, the Euler characteristic is 

obtained with the exact value of 

1. The volume of the image is only slightly higher than that of 

the original, which is due to the rasterization of the image 

and the expansion of the coordinates to spheres. The surface 

area and integrated mean curva- ture, however, are 

overestimated to a larger extent. In fact, the obtained values 

lie between the values of the sphere and a cube with an edge-

length identical to the diameter of the sphere (see discussion 

in Section 1.2). Nevertheless, the values are proportional to 

the values of the original and could therefore in principle be 

used to distinguish spheres of different size. 

For the calculation of the local curvatures, eight ro- 

tations around every axis were used and values were 

averaged over neighboring voxels up to a distance of three 

grid cells. Looking at the mapping onto the image as shown in 

Fig. 6, we find that both mean and Gaus- sian curvature are 

accurately mapped with positive val- ues. While the mean 

curvature is correctly mapped al- most homogeneously over 

the whole surface, the distri- bution of the Gaussian 

curvature for the larger sphere is less even, even with the 

performed averaging. This is a symptom of a general 

difficulty in the mapping 
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curved  surface  as  the  most  crucial  part  has  been  covered  with 

coordinates  at a very high density (small grey dots). 

 
 

 
 

 

 

 
 

Fig. 6  Mapping of the local values of mean (a, c) and Gaussian 

(b,  d)  curvature  onto  the  constructed  images  of  spherical  model 

systems. Shown are the results for spheres with a radius of 2 nm 

(a, b) and 5 nm (c, d). Positive curvature is depicted as red, zero 

curvature as white and negative  curvature as blue. 

 
 
 
 
 
 

 
Fig. 4  The model system of the ideal toroidal pore (a: xz plane, 

b: xy plane). The volume of the porated slab has been filled with 

coordinates  at  a  regular  distance  of  0.176  nm  in  the  x  and  y 

and 0.2 nm in the z direction (large black dots). In addition, the 

 
 
 

5000 

of the Gaussian curvature found in most of our mea- 

surements for systems which display large areas of ho- 

mogeneous Gaussian curvature11. However, while this 

behavior might seem problematic at first, it is partially due 

to the color-scale employed, which assigns full color 

intensity to the voxel with the highest absolute curva- 

ture (see Sect. 2.1). In the presence of regions with high 

Gaussian curvature (as in the example of the smaller 

sphere), these are accurately detected, and artificial 

fluctuations in regions of lower Gaussian curvature be- 

come relatively less important as well as less visible in 
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our depiction. 

Toroidal pores Fig. 7 shows the values of the Minkowski 

functionals for a toroidal12 pore through an 8.8×8.8 

nm2 layer of 4.0 nm thickness in dependence on the 
pore radius13, obtained using a grid-size of 0.2 nm and 

expanding the coordinates to a radius of 0.1 nm. In 
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Fig.  5  Morphological  image  analysis  of  model  systems  of  solid 

spheres of different radii (lines between measured points serve to 

guide  the  eye).  For  comparison,  calculated  values  corresponding 

to the underlying geometry are plotted (dashed lines). 

addition, the analytical values for the volume V , surface area A 

and integrated mean curvature H are plotted14: 

V = Vslab −  Vcyl + π2d2(d + r) −  4/3 πd3, (1) 
11   To  a  lesser  extent  this  is  also  true  for  the  mean  curvature; 

however, the values of the mean curvature tend to be higher and 

therefore less sensitive to artificial fluctuations caused by the ras- 

terization. 
12   i.e.  a   pore  in   which   the   curvature   of   the   surface  varies 

smoothly in a manner identical to the “inner” part of a torus 
13   defined as the radius of the actual  opening 
14   note that periodic boundary conditions  apply 
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surface area [nm ] The local curvatures were calculated using four ori- 

entations for each axis and averaging over neighbor- ing 

voxels up to a distance of five grid cells. Looking at the 

mapping onto the image as shown in Fig. 8, the dominance 

of negative mean curvature for pores of small radii found in 

the global values is also visible. The mean curvature is 

accurately found to be minimal in the midsections of the 

pores, reflecting the highest negative principal curvature 

located in that region, and maximal close to the rim, 

reflecting the lowest negative 

principal curvature in that region16 and is in fact accu- 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

pore radius [nm] 
 

Fig.  7  Morphological  image  analysis  of  model  systems  of  ideal 

toroidal  pores  of  different  radii  (lines  between  measured  points 

serve to guide the eye).  For comparison, calculated  values corre- 

sponding to the underlying geometry are plotted  (dashed lines). 

 

 
A = 2 (Arec −  Acirc) + 2π2d(d + r), (2)

 

H = π2(d + r) −  4πd. (3) 
In these expressions d is half the thickness of the slab, r 

is the radius of the pore at its smallest extension, Arec is the area 

of the bottom or top of the unporated slab, Acirc is the area of the 

circle with radius d + r, Vslab is the volume of the unporated slab 

and Vcyl is the volume of the cylinder with a height of 2d and a 

radius of d+r. As before, the Euler characteristic is obtained 

with 

the exact value of -1 and the volume of the image is higher, 

but proportional to that of the original. The surface area is 

overestimated to a larger extent, again showing how the area 

of curved surfaces is increased by the rasterization of the 

image. The fact that the surface area of the image is actually 

found to be increasing over the whole range of radii in 

disagreement with the values calculated for the original 

reflects the increasing percentage of the total surface that is 

curved for larger pore-radii. This causes the slight decrease 

of surface area in the original geometry to be overshadowed 

by the overestimation of areas of curved surfaces in the 

image. 

The integrated mean curvature has the same general 

trend for both image and original, but the amount of 

negative curvature is higher in the image for the mea- sured 

range of radii. This causes small pores to display negative 

values for radii up to 1 nm, while the actual cross-over point 

for the original geometry is at approx- imately 0.5 nm. In 

addition, it becomes apparent that the values obtained by 

morphological image analysis are 

discrete and not continuous15, causing small changes in 

 

15   with  the  distance  between  the  discrete  levels  depending  on 

the grid resolution 

 

rately found to be approximately zero in the midsection of 

the pore of radius 2.0 nm (for this radius and a layer- 

thickness of 4.0 nm the two principal curvatures cancel in 

this region). In addition, it becomes overall more pos- itive 

for higher pore radii, in accordance with the lower negative 

principal curvature. The Gaussian curvature is also found 

to be accurately mapped, with the maximum (negative) 

curvature found in the midsection and grad- ually 

decreasing to zero the closer one gets to the rim for the two 

bigger pores. Only for the smallest radius the minimum for 

the Gaussian curvature in the midsec- tion is not detected 

due to the pore size being close to the limit of the resolution 

used. This problem could, in principle, be avoided by using a 

higher resolution. 

It is worth mentioning that the negative space of the 

images of the ideal toroidal pores is an image of a stalk. The 

corresponding stalks will therefore have identical Gaussian 

curvature and surface area as the pores, and the mean 

curvature will only invert its sign. For the global values it 

can therefore be deduced that stalks are accurately 

characterized as having negative mean curvature, if one 

considers that stalks have a certain minimum radius given 

by the length of the lipid tails (approximately 2.0 nm for a 

typical lipid tail of 16–18 carbon atoms). 

 
 

 
3.2 Applications 

 
Next we tested our method with trajectories and snap- shots 

taken from actual simulations of lipids. For these, it proved 

advantageous to define the positive phase as only the atoms 

or beads corresponding to the lipid tails. That way, details 

like pores are amplified and stalks can be distinguished 

from configurations in which two membranes are merely 

close without contact of the hy- drophobic cores. 
 

 

16   the  second,  positive,  principal  curvature  is  constant  across 

the whole pore 
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Fig. 8  Mapping of the local values  of mean (a,  b, c) and Gaussian (d, e, f ) curvature onto  the constructed  images of model systems 

of ideal toroidal pores. Shown are the results for pores with a radius of 0.4 nm (a, d), 1.2 nm (b, e) and 2 nm (c, f ). Positive curvature 

is depicted as red, zero curvature as white and negative curvatu 

 
 

Spontaneous aggregation The first application is the 

determination of the phase adopted by a mixture o DOPE 

and water starting from random coordinates in a 

spontaneous aggregation approach [15]. The Minkowsk 

functionals obtained using a grid size of 0.5 nm and 

expanding the coordinates to a radius of 0.4 nm are shown in 

Fig. 9. Looking at the Euler characteristic a the most 

significant morphological indicator, one can see that the 

system quickly adopts a metastable phase in which it remains 

for a bit over 0.5 µs before it adopt its final configuration, in 

which it remains for the res of the simulation. The metastable 

state has a negative 
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Euler characteristic of -2, which compared to a lamella 

state suggests the presence of pores or stalks. Taking into 

account the amount of negative mean curvature the state 

most likely is a stalk phase, since pores dis- play a higher mean 

curvature. The stable phase adopted for the rest of the 

simulation has an Euler characteris- tic of 0, suggesting the 

lamellar or inverted hexagonal phase. The fact that the 

integrated mean curvature re- mains negative rules out the 

lamellar phase, leaving the inverted hexagonal phase. 

Visual inspection confirms these findings. 

 

 
Porated membrane As a second application, we looked at a 

closing pore in a DPPC membrane. The Minkowski 

functionals shown in Fig. 10 were obtained using a grid size of 

0.5 nm and expanding the coordinates to a ra- dius of 0.4 nm. 

The closure of the pore can be detected and is clearly 

reflected by the Euler characteristic, the integrated mean 

curvature as well as the surface area, with the observed 

changes in accordance with our ear- lier measurements for 

the model pores (see above). The presence of noise especially 

in the integrated mean cur- vature and the surface area stems 

from natural fluctu- ations in the coordinates as well as 

translational move- ments of the system and fluctuations of 

the box size, all 

0 500 1000 1500 2000 2500 3000 3500 4000 
time [ns] 

 

Fig.  9  Morphological  image  analysis  of  the  spontaneous  aggre- 

gation  of a  random  mixture of  lipids and water  into an  inverted 

hexagonal  phase. 

 

 
of which cause changes in the image. However, averag- ing 

over time, as demonstrated for the integrated mean 

curvature in Fig. 10 reduces the noise significantly. 

In addition, we chose this application to demon- strate 

the effects of the chosen grid resolution and the radius used 

for the coordinate expansion on the re- sults obtained. 

Table 2 shows the average values of the Minkowski 

functionals for the open pore (i.e. the first 

30 nm of the trajectory analyzed in Fig. 10) using a higher 

resolution or a smaller expansion radius. The deviations of 

the Euler characteristic from the correct value of 1 indicate 

the presence of noise in the analy- sis. Considering the nature 

of the changed parameters, both the reduced expansion 

radius and the higher grid resolution potentially can lead to 

empty grid cells in re- gions occupied by the molecular 

aggregate. As a result, both additional tunnels (which 

would lower the value by one in that particular frame of the 

trajectory) as well as cavities (which would raise the Euler 

characteristic 
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Fig. 10  Morphological image analysis of the trajectory of a clos- 

ing  pore.  In  addition  to  the  properties  indicated  by  the  legend, 

the  running  average  of  the  integrated  mean  curvature  is plotted 

in white. 

 
Table  2  Average  values  of  the  volume  V ,  the  surface  area  A, 

the  integrated  mean  curvature  H  and  the  Euler characteristic  χ 

obtained in dependence  on the resolution (identified by the edge 

length d of the grid) and the radius of the spherical cloud rS  used 

for the expansion of the spheres. Note that in order not to mask 

any effects,  no cluster filtering was applied to the images. 
 

 

rS  [nm] d [nm] V  [nm3 ] A [nm2 ] H  [nm] χ 

0.4 0.5 131.47(6) 168.8(2) 8.8(2) -1.000(0) 
0.4 0.4 117.4(1) 169.7(2) 11.4(2) -0.89(2) 
0.4 0.3 100.76(3) 247.2(3) -205(1) 71.4(4) 
0.3 0.5 126.00(6) 169.7(2) 11.3(2) -0.997(3) 
0.2 0.4 120.25(6) 170.1(3) 12.2(2) -0.71(3) 

 

 
 
in that respective frame by one) are possible. However, the 

fact that the Euler characteristic increases indicates that 

cavities are the dominant artifact. The observed decrease of 

volume and the increase of surface area both corroborate 

this interpretation. The changes of the in- tegrated mean 

curvature are less clear (except for the drastic change to 

negative values at a grid resolution of 3 nm), but, as has been 

pointed out in Section 2, the obtained mean curvature 

depends on the system’ s propensity to produce bumps and 

dents in the image which in turn depends on the parameters 

used, mak- ing a comparison of curvatures obtained with 

different parameters difficult. 

The mapping of the local curvatures obtained for 

a snapshot of the open pore is depicted in Fig. 11. Data 

from eight grid orientations for each axis at a resolution of 

0.3 nm while expanding the coordinates to 0.3 nm and 

averaging over neighboring voxels up to a distance of three 

grid cells were used. The mean and Gaussian curvature 

associated with the pore are accurately mapped as positive 

and negative, respec- tively. While the distribution is less 

homogeneous com- 

 
 
 
 
 

 
Fig.  11  Visualization  of  the  local  distribution  of  mean  (a)  and 

Gaussian (b) curvature for a snapshot of a pore in a DPPC mem- 

brane.  Positive  curvature  is  depicted  as  red,  zero  curvature  as 

white and negative curvature as blue. 

 

 
pared to the ideal model systems, this is not an arti- fact of the 

method, but the accurate detection of fea- tures present in 

the analyzed coordinates. Regions with groups of atoms 

protruding from the mean are correctly displayed as having 

high mean and Gaussian curva- 

tures17, whereas regions with a saddle-splayed surface 

are detected as having a low mean and high (negative) 

Gaussian curvature. The general trend of the location of the 

highest local mean curvature close to the rim of the pore and 

the highest Gaussian curvature in the mid- section found for 

the model systems is preserved also in the simulated pores, 

but slightly modified by superposi- tion of effects due to 

deviations from the ideal toroidal shape. 

For comparison, a snapshot of the underlying struc- ture 

is shown in Fig. 12. 

 
Stalk formation Fig. 13 shows the Minkowski function- als 

obtained for the formation of stalks between two DOPE 

bilayers at low hydration and high temperature. Data was 

obtained using a grid resolution of 0.2 nm and expanding the 

coordinates to a radius of 0.34 nm. Starting from a lamellar 

configuration, the formation of the stalks is reflected by a 

change of the Euler char- acteristic from 0 for the two bilayers 

to -2, indicating the simultaneous formation of two stalks. 

At the same time, the integrated mean curvature drops from 

0 to negative values, also indicating the formed stalks. 

 

17   In  fact,  the  Gaussian  curvature  in  these  regions  should  be 

positive,  however,  this  is  likely  masked  by  the  surrounding  neg- 

ative  Gaussian  curvature  being  carried  into  the  relatively  small 

area of positive curvature by the averaging procedure. 



  

define the positive space in our analysis. 
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Fig. 12  Snapshot taken from the trajectory of a closing pore in 

a  DPPC  membrane.  For  clarity  we  show  only  the  beads  repre- 

senting  the  lipid  carbon  tails  (the  terminal  beads  are  shown  in 

black, the remaining beads in grey), which are the beads used to 
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Fig.  14  Visualization  of  the  local  distribution  of  mean  (a)  and 

Gaussian  (b)  curvature  for  a  snapshot  of  a  stalk  between  two 

DOPE  membranes.  Positive  curvature  is  depicted  as  red,  zero 

curvature as white and negative  curvature as blue. 

 
 
tion is preserved also here: A higher (negative) mean 

curvature is observed close to the foot of the stalk and 

a higher (negative) Gaussian curvature close to the mid- 

section. While part of the observed inhomogeneities, es- 

pecially in regions of relatively low curvature, are likely 

caused by artificial noise introduced by insufficient av- 
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eraging, most of the detected curvature again can be 

attributed to actual morphological properties contained in 

the analyzed coordinates. 

A snapshot of the formed stalk is shown in Fig. 15. 
 

 
3.3 Computational costs 

 
To give a rough indication of the time required to per- form 

the presented analyses, we will state the CPU- time18 used 

for some of the performed calculations. This 

0 40 80 120 160 200 240 280 320 
time [ns] 

 

Fig. 13  Morphological image analysis for the simulation of stalk- 

formation starting from two isolated bilayers. 
 

 
 

Shown in Fig. 14 is the mapping of the local curva- tures of 

an isolated stalk using data from four rotations of the grid 

around each axis at a resolution of 0.17 nm while expanding 

the coordinates to a radius of 0.34 nm and averaging over 

neighboring voxels up to a distance of three grid cells. As for 

the simulated pore, the de- tected curvature is not 

homogeneous, but the general trend of the relative 

distribution of curvature between foot (the counterpart to 

the rim of a pore) and midsec- 

is not meant as an extensive analysis of scaling and 

computational efficiency, but rather as a help for read- ers 

interested in using the method. So far, the program has not 

been optimized for computational efficiency; however, 

even so, the time required for performing the presented 

morphological analyses is in the order of only 

a few minutes. 

For the computation of the global morphology for the 

trajectory of the closing pore shown in Fig. 10, a total CPU-

time of 120 s was used for all 2,500 frames, corresponding to 

approximately 50 ms per frame. Re- ducing the grid 

resolution by a factor of two, the CPU- time required for the 

whole trajectory drops to 104 s. 

 

18   on an Intel  Core 2 DUO 6700 2.66 GHz CPU 
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Fig. 15  Snapshot of a stalk formed between two apposed DOPE 

membranes. For clarity we show only the beads representing the 

lipid  carbon  tails  (the  terminal  beads  are  shown  in  black,  the 

remaining beads in grey), which are the beads used to define the 

positive space in our analysis. 

 

 
For the computation of the local curvatures, the time 

required for the analysis of the largest of the model pores 

presented in Fig. 8 is 187 s, corresponding to ap- proximately 

7 s per orientation used in the averaging. As before, reducing 

the grid resolution increases the performance, with a 

reduction by a factor of two drop- ping the required time to 

132 s. In comparison, the anal- ysis of the local curvature for a 

snapshot of the pore taken from the simulation referred to in 

the previous paragraph is much faster, due to the lower 

coordinate density and system size. The results shown in 

Fig. 11 required a CPU-time of 57 s, corresponding to 167 ms 

per orientation used for the averaging. 
 

 
 
4 Conclusions 

 
Our tool uses the technique of morphological image 

analysis to analyze sets of coordinates describing ag- 

gregates of soft matter. The implementation aims at the 

analysis of mixtures of lipids and water obtained from 

molecular dynamics simulations, but is in prin- ciple 

applicable to all kinds of coordinates describing binary 

mixtures and independent of the model and the 

method used to generate the coordinates. 

and pore-closure. While the obtained global values of 

the Minkowski functionals are subject to the limita- tions 

inherent in the technique of morphological image analysis, 

i.e. an overestimation of surface area and inte- grated mean 

curvature, the most significant value, the Euler 

characteristic, is obtained correctly and virtually free of 

noise. The systematic nature of the error in the total mean 

curvature, on top of that, allows its use for comparative 

analyses and to generally detect presence or absence of 

mean curvature and distinguish systems with negative 

from those with positive values, enabling 

a broad spectrum of applications. Only in complex sys- tems 

that contain both stalk- and pore-like structures 

simultaneously, one might run into problems in the in- 

terpretation. In such ambiguous cases, using an analysis of 

the number of separate clusters for both components of the 

binary mixture, that is also part of our imple- mentation, can 

help. 

In addition, by mapping the local values of mean and 

Gaussian curvature onto an image representing the system, 

morphological features inaccessible to the naive analysis by eye 

were able to be visualized. While there remain some difficulties 

to avoid artificial inhomogeneities in the detection of local 

curvature in larger areas of low homogeneous curvature due to 

the rasterization of the underlying image, the general trend 

towards a specific curvature in a given area is preserved and 

areas that show an actual prevalence of either positive or nega- 

tive curvature in comparison to their neighborhood are 

accurately visualized. 

So far, our implementation only analyzes coordinate 

sets as they are generated by the simulation, with no option 

of time averaging over multiple frames of a tra- jectory. If 

analysis of average structures is desired, it is therefore 

necessary to create an averaged coordinate set pre-

analysis. 

We hope that with our program which is compat- ible 

with the popular Gromacs package, a wide range of users 

may benefit from using morphological image analysis for 

their research. 
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