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Abstract:  

Numerous clinical, physiopathological and epidemiological studies have underlined the 

detrimental or beneficial role of nutritional factors in complex inflammation related disorders 

such as allergy, asthma, obesity, type 2 diabetes, cardiovascular disease, rheumatoid arthritis 

and cancer. Today, nutritional research has shifted from alleviating nutrient deficiencies to 

chronic disease prevention. It is known that lifestyle, environmental conditions and nutritional 

compounds influence gene expression. Gene expression states are set by transcriptional 

activators and repressors and are often locked in by cell-heritable chromatin states. Only 

recently, it has been observed that the environmental conditions and daily diet can affect 

transgenerational gene expression via “reversible” heritable epigenetic mechanisms.  

Epigenetic changes in DNA methylation patterns at CpG sites (epimutations) or corrupt 

chromatin states of key inflammatory genes and noncoding RNAs, recently emerged as major 

governing factors in cancer, chronic inflammatory and metabolic disorders. Reciprocally, 

inflammation, metabolic stress and diet composition can also change activities of the 

epigenetic machinery and indirectly or directly change chromatin marks. This has recently 

launched re-exploration of anti-inflammatory bioactive food components for characterization 

of their effects on epigenome modifying enzymatic activities (acetylation, methylation, 

phosphorylation, ribosylation, oxidation, ubiquitination, sumoylation). This may allow to 

improve healthy aging by reversing disease prone epimutations involved in chronic 

inflammatory and metabolic disorders. 

.  
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Introduction 

A large body of epidemiological and experimental data has demonstrated a direct link 

between chronic inflammation and complex diseases such as obesity, allergy, asthma, 

cardiovascular disease, type 2 diabetes, rheumatoid arthritis, bowel disease and several types 

of cancer. Nutrition, as the main aspect of the environment, is said to play a key role in some 

of this disparities, however, the molecular mechanisms involved still remain to be unraveled   

[1-3].  Genome-wide association studies have identified hundreds of genetic variants 

associated with complex human diseases and traits, and have provided valuable insights into 

their genetic architecture. However, most variants identified so far confer relatively small 

increments in risk, leaving many questions how the remaining „missing‟ heritability can be 

explained, although polygenic disease traits may account for some of this limitations [4, 5]. 

Furthermore, genetics per se cannot explain the vast diversity of phenotypes.  A substantial 

number of studies have shown that contstraint in the early life environment is associated with 

increased risk of cardiometabolic disease, affective disorders and cognitive decline, 

osteoporosis, allergy, inflammation and specific cancers. Furthermore, genetics per se cannot 

explain the vast diversity of phenotypes.  The differences between identical twins and their 

different susceptibility to most diseases has recently been attributed to epigenetic changes 

which accumulate during life following exposure to different environmental conditions [6-8]. 

The contribution of epigenetic changes (epimutations) to human disease is probably 

underestimated. Epigenetics encompasses several extra-genetic processes such as DNA 

methylation (methylation of cytosines within CpG dinucleotides), histone tail modifications 

(including acetylation, phosphorylation, methylation, sumoylation, ribosylation and 

ubiquitination), noncoding RNA functions, regulation of polycomb group proteins and the 

epigenetic cofactor modifiers, all of which may alter gene expression but do not involve 

changes in the DNA sequence itself [9-13]. The combinatorial nature of DNA methylation 

and histone modifications significantly extends the information potential of the genetic code. 

In a large scale comparative study, authors concluded a lack of genetic factor in chronic 

obstructive pulmonary disorder (COPD), cardiovascular disease (CVD), rheumatoid arthritis 

and Crohn's disease, all typical examples of diseases with an important inflammatory 

component [14]. A recent survey of the global incidence of cancer shows that the age-adjusted 

cancer incidence in the Western world is above 300 cases per 100,000 population, whereas 

that in Asian countries is less than 100 cases per 100,000. Sedentary lifestyle, diet, obesity 

and metabolic syndrome have been named as the major contributors to this phenomena, which 

is further emphasized by the increase in cancer cases among immigrants from Asian to 
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Western countries [15, 16]. As such, a reasonable good fraction of cancer deaths maybe 

prevented by modifying the diet composition (i.e. content of fiber, fruit, vegetable, fat/oil, 

protein, spices, cereals, xenobiotics) and regular physical exercise [3, 17]. Abnormalities in 

DNA methylation, histone modifications, chromatin remodelling and microRNA (miR) 

patterns [12, 18, 19] are important hallmarks of inflammatory disease states and cancer  [10, 

12, 13, 20-22]. 

The most studied epigenetic lesion, which is DNA hypermethylation  at the promoter region 

of many genes [20, 23], is proved to be responsible for silencing of more than 600 cancer-

related genes and this number is still rising. They include tumour suppressor genes, as well as 

genes involved in the cell-cycle regulation, DNA repair, angiogenesis, metastasis and 

apoptosis [24]. On the other hand, global hypomethylation of the DNA is said to activate 

endoparasitic sequences and causes the global chromosome instability leading to various 

mutations and cancer progression [21].  Now, it is becoming clear that epigenetic changes 

complement genetic mutations and importantly drive the development and progression of 

various diseases ranging from allergy, asthma, rheumatoid arthritis, type 2 diabetes, obesity, 

bowel disease,  cardiovascular disease and cancer [12, 13, 20, 21, 25-29]. Recent successes of 

therapeutic intervention in chronic inflammatory diseases using epigenetic modifiers such as 

histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors has fuelled 

interest in exploring epigenomic maps of inflammatory disease states [30, 31]. Interestingly, 

emerging data demonstrate the direct influence of certain anti-inflammatory dietary factors  

(for example polyphenols, isothiocyanates, epicatechins) and micronutrients (for example 

folic acid, selenium) on heritable gene expression and DNA methylation or chromatin 

remodelling [32-40]. Because epigenetic changes are reversible, developing drugs that control 

epigenetic regulation now attract substantial research investment, including the development 

of functional foods or supplements as nutrition based epigenetic modulators which will be 

discussed in more detail below [2, 30, 41] 

 

Extragenomic epigenetic information 

The definition of „epigenetics‟ evolved during the past 50 years into the current and common 

definition of „heritable changes in gene function that cannot be explained by changes in DNA 

sequence, although some definitions have excluded heritability [42]. While “inheritance” and 

“heritability” strictly spoken, refer to intergenerational organismal phenomena, they are also 

widely used today for describing both molecular and phenotypic characteristics at the cellular 

level that are transmitted between mitotic cell division.  Expression of our DNA genotype can 
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be twiddled by various volume knobs. Considerable cross-talk occurs between three main 

players in silencing: DNA methylation, histone modifications and noncoding RNAs. The 

chromatin template therefore serves as the major platform for epigenetic regulation in the 

form of DNA methylation, histone modifications and histone variants. More recently, an 

epigenetic role for RNA has also been demonstrated in normal situations as well as in disease 

[12]. Before most activators of a gene access their DNA-binding sites, a transition from a 

condensed ("solenoid-like fiber") to a decondensed ("beads on a string") chromatin structure 

appears to take place.  Conversely, the acquisition of a more condensed chromatin structure is 

often associated with gene silencing [11].  This structural restriction of chromatin on gene 

expression can be overcome by chromatin remodeling cofactor complexes, which reversibly 

modify (acetylation, phosphorylation, ubiquitylation, glycosylation, sumoylation) on lysine, 

arginistine, serine or threonine residues of amino-terminal histone tails. In general, DNA is 

wrapped around nucleosomes, which are arranged as regularly spaced beads (146 bp 

DNA/nucleosome) along the DNA.  Typically, nucleosomes consist of a histone octamer of 

histones (H)2A/B, H3 and H4. The DNA bridging two adjacent nucleosomes is normally 

bound by the linker histone H1 and is termed linker DNA. While the core histones are bound 

relatively tightly to DNA, chromatin is largely maintained by the dynamic association with its 

architectural proteins.  Since the discovery of histone modifying enzymes, N-terminal histone 

tails protruding from nucleosomes were found to be 'velcro patches' for (de)acetylases 

(HDAC/HAT), (de)methylases (HMT/HDMT), ubiquitin ligases, small ubiquitin-related 

modifier (SUMO) ligases, kinases, phosphatases, ribosylases, which together establish 

specific histone modification patterns involved in transcription [11]. Specific sets of histone 

modifications and/or variants are associated with genes that are actively transcribed or are 

repressed, a phenomenon defined as the "histone code" [11].  Since the modifications do not 

involve underlying changes in nucleotide or amino acid sequences, they are “above the 

genome” and as such termed “epigenomic”. However, to establish specificity of epigenetic 

marks, histone modifying complexes have to be recruited to relevant genomic locations by 

DNA-binding proteins, RNAs or protein-RNA complexes that bind to their specific DNA 

sites as a consequence of their own binding specificities and cellular concentrations [43-46]. It 

cannot come from the enzymatic activities per se as neither DNMTs, nor enzymes which 

modify histones know which part of the genome needs to be tagged. Furthermore, there is 

now a large body of evidence showing that modifications of the histone tails provide signals 

("binary switches") that are recognized by specific binding proteins, such as chromo-, bromo- 

or tudor-domains which in turn can influence gene expresion and other chromatin functions  
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[47-49]. The spatial and time-dependent combinations of histone modifications further 

increase the complexity of information contained in chromatin [11, 48, 49].   

DNA methylation is the best-known epigenetic mark [20, 50]. It is catalyzed by two types of 

DNMTs: DNMT1 is a maintenance methyltransferase, whereas both DNMT3A and 

DNMT3B are de novo methyltransferases [51, 52]. The role of DNMT2 in DNA methylation 

is minor, its enzymology being largely directed to tRNA. DNA methylation is normally 

associated with gene inactivation and it usually occurs in CpG dinucleotides. Alternatively, 

DNA methylation of transcription factor binding sites which prevents binding of repressor 

proteins, may paradoxically induce gene activation. CpGs are normally methylated when 

scattered throughout the genome, but are mostly unmethylated when they are clustered as 

CpG islands at 5‟ ends of many genes. Hypermethylation of CpG-rich promoters triggers 

local histone code modifications resulting in a cellular camouflage mechanism that sequesters 

gene promoters away from transcription factors and results in stable silencing of gene 

expression. DNA methylation at CpG dinucleotides occurs upon transfer of S-

adenosylmethionine (SAM) on cytosine by DNMTs. Whereas DNMT3A/B are responsible 

for DNA methylation during development (differentiation), DNMT1 is in charge of 

maintaining DNA methylation patterns in DNA replication during cell division. In 

mammalian cells, the fidelity of maintenance of methylation is 97–99.9% per mitosis, 

whereas de novo methylation is as high as 3–5% per mitosis, thus creating possibilities for 

epigenetic changes.  DNA methylation also regulates genomic imprinting [53], X-

chromosome inactivation [54] and silencing of repetitive sequences [55].  Although in most 

cases DNA methylation is a stable epigenetic mark, reduced levels of methylation can also be 

observed during development. This net loss of methylation can either occur passively by 

replication in the absence of cuntional maintenance methylation pathways, or actively, by 

removing methylated cytosines. In plants active demethylation is achieved in plants by DNA 

glycosylase activity, probably in combination with the base excision repair pathway. In 

mammals, coupling of 5-methylcytosine deaminase and thymine DNA glycosylase activities 

maybe responsible for DNA demethylation. Alternatively, a role for the 5-

hydroxymethylcytosine modification in mammalian DNA demethylation has also been 

proposed as an intermediate in an active DNA demethylation pathway involving DNA repair 

and 5-hydroxymethylcytosine-specific DNA glycosylase activity [52].  

Although DNA methylation is the best-known epigenetic mark [51, 56, 57], DNA methylation 

does not act alone. It occurs in the context of nucleosome positioning and histone 

modifications [9, 58, 59]. For example, high resolution DNA methylation analysis has 
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revealed 10-base periodicities (i.e one helical turn) in the DNA methylation status of 

nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than 

flanking DNA [59]. These data revealed that nucleosome positioning influences DNA 

methylation patterning of promoters and intron-exon boundaries throughout the genome and 

that DNA methyltransferases preferentially target nucleosome-bound DNA. Whether 

nucleosome strings provide a combinatory histone code is a matter of debate [9, 11, 12, 48, 

60-62], but in any event, histone modifications influence gene activity and regulation. For 

example, acetylation of lysines is generally associated with transcriptional activation whereas 

lysine methylation can dictate either activation (e.g. H3K4, H3K36, H3K79) or suppression 

(e.g. H3K9, H3K27 or H4K20). Specific histone modifications have been shown to be 

associated with DNA hypermethylation of CpG islands, including deacetylation of histones 

H3 and H4, loss of H3K4me, and gain of H3K9me3 and H3K27me3 [63, 64]. More 

importantly, specific histone modifications have been implicated in several diseases, such as 

cancer and CVD, while recently, evidence for modifications in allergic asthma and COPD is 

also emerging [21, 25, 65-68]. DNA methylation marks are recognized by DNA methyl-

binding proteins (MBD) which can interact with corepressor-associated enzymes (i.e. 

HDACs, enhancer of zeste homologue (EZH)2, ...), thus further linking DNA methylation and 

chromatin regulation [43, 69].  Altogether, "histone code" may only become biologically 

meaningful at the level of the chromatin fiber ("chromatin regulatory code") which, upon 

integration of conformations of multiple nucleosomes, translates allosteric changes into 

specific gene (cluster) activities, in order to establish specific regulatory programs at the 

genome level [11, 70-72]. In analogy to allosteric control of enzymes, specific gene activity 

may be determined by the spatial organization (compartmentalization in discrete territories) 

and structural landscape (three-dimensional structure) of a gene locus, by altering the higher 

order structure of chromatin (cis mechanism) or by generating a binding platform for effector 

proteins (trans mechanisms) [70, 71, 73, 74].   

There is good evidence that also noncoding RNAs regulate chromatin architecture [12, 75-

80]. The term noncoding RNA (ncRNA) is commonly employed for RNA that does not 

encode a protein. Although it has been generally assumed that most genetic information is 

transacted by proteins, recent evidence suggests that the majority of the genomes of mammals 

and other complex organisms is in fact transcribed into ncRNAs, many of which are 

alternatively spliced and/or processed into smaller products. Besides tRNA and rRNA, these 

ncRNAs include long-noncodingRNAs (lncRNAs), microRNAs (miRNAs) and tinyRNAs 

(tiRNAs) as well as several other classes of, sometimes yet-to-be-discovered, small regulatory 
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RNAs such as snoRNAs [75-77]. These RNAs (including those derived from introns) appear 

to comprise a hidden layer of internal signals that control various levels of gene expression in 

physiology and development, including chromatin architecture/epigenetic memory, 

transcription (enhancer function), RNA splicing, editing, translation and turnover [81]. RNA 

regulatory networks may determine most of our complex characteristics and play a significant 

role in disease [81]. For example, miRNAs can change expression levels of the epigenetic 

machinery (DNMT, HDAC, sirtuin (SIRT), polycomb (Pc) proteins, etc.) by 

posttranscriptional gene regulation involving base pairing with 3‟untranslated (UTR) regions 

in their target mRNAs resulting in mRNA degradation or inhibition of translation [12, 18, 19, 

82]. Alternatively, long ncRNAs and tiRNAs  can regulate gene expression and/or DNA 

methylation by promoter association [75, 76, 81]. DNA-methylation can thus also be RNA-

directed [12, 83].  

 

Inflammatory and metabolic stress fuel epigenetic plasticity 

Inflammation is a fundamental adaptation to the loss of cellular and tissue homeostasis 

covering many important processes, including host defense, tissue remodeling and repair, and 

the regulation of metabolism. The complexity of the inflammatory response requires that its 

many functional programs are controlled coordinately in some situations but independently in 

others [84, 85]. This is achieved through multiple mechanisms that operate at different levels, 

including alterations in the composition of immune cells in tissues, changes in cell 

responsiveness to inflammatory stimuli, regulation of signaling pathways and epigenetic 

control of gene expression.   

Cell-specific mechanisms operate at the level of different cell types, and include regulation of 

their recruitment and activation.  The cellular component involves the movement of 

leukocytes from blood vessels into the inflamed tissue, while leukocytes are involved in the 

initiation and maintenance of inflammation [84, 86]. Macrophages participate in host defense, 

immunity and inflammatory responses, where they are potently activated resulting in the 

production of pro-inflammatory cytokines, oxygen and nitrogen species and eicosanoids. 

Acute inflammation is mediated by granulocytes or polymorphonuclear leucocytes, while 

chronic inflammation is mediated by mononuclear cells such as monocytes and macrophages 

which can be further stimulated to maintain inflammation through the action of an adaptive 

cascade involving dendritic cells, T- and B-lymphocytes and antibodies [84, 87-92]. 

Imbalances in control of haematopoesis and lineage differentiation of Th1, Th2 and Treg cells 

have a major impact on prevalence of sensitization to allergens and allergic diseases and has 
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reached epidemic proportions in Western societies [93-96]. Furthermore, tumors are typically 

infiltrated with immune cells and inflammation which impacts on most, if not all, stages of 

tumorigenesis [97-100]. Moreover, most cancers contain an inflammatory infiltrate that is 

hijacked by tumor cells to promote angiogenesis, tissue invasion and cell proliferation. What 

is more, overnutrition and obesity activate the immune system which at long-term switches to 

chronic inflammatory condition that is as fertile soil for cancer development [3, 101-106].  

Signal-specific mechanisms operate at the level of pathways which for example activate the 

key transcription factor nuclear factor-κB (NFκB).  Among all the mediators and cellular 

effectors of inflammation, NFκB is perhaps the central transcription factor, which regulates 

expression of more than 400 genes [107-109]. At the same time, it is  responsible for many 

aspects of inflammatory disease and malignancy by inducing transcription of soluble 

mediators that amplify inflammation, angiogenesis and neoplastic cell proliferation, and affect 

progression to more aggressive disease states [97]. Members of the NFκB family of dimeric 

transcription factors (TF) regulate expression of a large number of genes involved in immune 

responses, inflammation, metabolic stress, cell survival, and cancer. NFκB family TF are 

rapidly activated in response to various stimuli, including cytokines, infectious agents, 

overnutrition (metabolic stress, endoplasmic reticulum stress) or danger signals (bacteria, 

viruses, chemicals, pathogen associated molecular patterns (PAMPs), danger associated 

molecular patterns (DAMPs), and radiation-induced DNA double-strand breaks. In 

nonstimulated cells, some NFκB TFs are bound to inhibitory (I)κB proteins and are thereby 

sequestered in the cytoplasm. Activation leads to phosphorylation of IκB proteins and their 

subsequent recognition by ubiquitinating enzymes. The resulting proteasomal degradation of 

IκB proteins liberates NFκB TF, which translocate to the nucleus to drive expression of target 

genes. Two protein kinases with a high degree of sequence similarity, IκB kinase (IKK)α and 

IKKβ, mediate phosphorylation of IκB proteins and represent a convergence point for most 

signal transduction pathways leading to NFκB activation. Most of the IKKα and IKKβ 

molecules in the cell are part of IKK complexes that also contain a regulatory subunit called 

IKKγ or NFκB-essential modulator (NEMO). Several years ago, two IKK-related kinases, 

called IKKε and TBK1 (TANK-binding kinase), were identified that exhibit structural 

similarity to IKKα and IKKβ [110]. Together, the IKKs and IKK-related kinases are 

instrumental for inducible activation of the host defense system and controlling metabolic 

stress [103, 105, 107, 111, 112]. Alternative to IKK, various additional kinases have been 

identified which modulate transcriptional nuclear activity of NFκB, including mitogen- and 

stress-activated protein kinase (MSK), protein kinase (PK)Ac, phosphoinositide 3-kinases 
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PI3K and AKT [109, 113-116]. Furthermore, constitutive activity of NFκB/IKK has been 

observed in many cancer cells, inflammatory disorders, obesity and insulin resistance [102, 

103, 105-108, 112, 117-119]. During obesity, the organism needs to adapt to and function 

under chronic exposure to high energy and nutrient intake. To cope with these challenges, the 

cell has developed the endoplasmic reticulum (ER) as a key nutrition sensor of cellular 

metabolic parameters (hyperglycemia, fatty acid overload, hypoglycemia, oxidative stress), 

which participates in viruatlly all anabolic and catabolic branches. Failure of the ER‟s 

adaptive capacity results in activation of the unfolded protein resonse (UPR), which intersects 

with many different inflammatory and stress signaling pathways at the crossroad of 

inflammation, cancer and metabolic disease [17, 105, 106]. 

Gene-specific mechanisms operate at the level of individual genes and gene subsets.  

Induction of inflammatory transcriptional responses is orchestrated by many transcription 

factors and extragenic noncoding RNAs acting on inflammatory enhancers consistent with the 

complexity of the response [120-124]. Controlled expression of cytokine genes is an essential 

component of an immune response and is crucial for homeostasis. In order to generate an 

appropriate response to metabolic stress or an infectious condition, the type of cytokine, as 

well as the cell type, dose range and the kinetics of its expression are of critical importance 

[125-127]. The NFκB family TF has a crucial role in rapid responses to metabolic stress and 

pathogens (innate immunity), as well as in development and differentiation of immune cells 

(acquired immunity). Although quite a number of genes contain NFκB-responsive elements in 

their regulatory regions, their expression pattern can significantly vary from both a kinetic and 

quantitative point of view [10, 84, 107, 112, 125, 128-131]. At the transcription level, 

selectivity is conferred by the expression of specific NFκB subunits and their respective 

posttranslational modifications, and by combinatorial interactions between NFκB and other 

transcription enhancer factors (for example interferon regulatory factor (IRF)3, activating 

transcription factor (ATF)3, cAMP response element-binding protein CREB, CCAAT-

enhancer binding protein C/EBP, activator protein (AP)1 (i.e. jun, fos, Fra1), Sp1, Stat3, 

PU.1) [109, 121, 132].  In addition to NFB, AP1 TF are closely involved in inflammatory 

disease and cancer invasive gene expression programs [133, 134]. Inflammatory transcription 

factors can be divided into different categories on the basis of their mode of activation and 

function [84]. Primary response transcription factors are constitutively expressed by many 

celltypes in the cytoplasm and are activated by signal-dependent posttranslational 

modifications, which involves their nuclear translocation, such as NFκB, IRF, CREB.  This 

TF are mainly responsible for the primary phase of gene induction and integrate signals from 
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diverse signaling pathways which can amplify or terminate signal-dependent transcription 

factor activation. Another class TF requires de novo synthesis following inflammatory 

stimulation,  for example C/EBP.  Most are constitutively nuclear and regulate secondary 

waves of gene expression. A third class of constitutively nuclear TF are expressed in a cell 

type-specific and differentiation-dependent manner, such as Runx, PU.1, IRF8, AP1, C/EBP 

[121, 128]. They establish cell type-specific patterns of gene expression and are involved in 

chromatin remodelling during cell differentiation and organization of higher-order chromatin 

structure and chromosomal domains. The transcription factors of these TF categories do not 

act independently, but function coordinately to control the inflammatory transcriptional 

response. Upon combining datasets of expression profiling of inflammatory genes and in 

silico motif scanning of promoters of these genes they can define gene clusters that are 

coordinately regulated and the transcription factors that are likely to control their expression 

[10, 84, 107, 109, 112, 125, 128-131]. Since TF bind very poorly or not at all to nucleosomal 

DNA, their activation is coordinated to recruitment of ATP-dependent chromatin-remodeling 

factors (swith/sucrose non fermentable  (SWI/SNF), Brahma (Brm), brahma-related gene,  

(Brg1)), histone-enzyme complexes such as kinases (IKK, MSK, ataxia telangiectasia mutated 

(ATM), AKT, PI3K), poly(ADP-ribose) polymerase (PARP), methylases (EZH2, coactivator-

associated arginine methyltransferase (CARM)1, protein arginine methyltransferases 

(PRMT)),  demethylases (lysine specific demethylase (LSD)1, Jumonji C family histone 

demethylase (JMJD)3), prolyl isomerase (PIN1), acetylases (p300, CREB binding protein 

(CBP), p300/CBP associated factor (p/CAF)), deacetylases (HDAC, SIRT) and DNMTs [10, 

43, 107, 114, 135, 136]. Parallel posttranslational modifications (phosphorylation, acetylation, 

methylation, ribosylation, sumoylation, ubiquitination) of histone and non-histone TF and 

cofactor complexes allow formation of dynamic enhanceosome complexes which establish a 

distinct chromatin structure.  These  epigenetic settings are the ultimate integration sites of 

both environmental and differentiative inputs, determining proper expression of each 

inflammatory gene [10, 107, 131, 137, 138].  

Further investigation of epigenetic regulation of inflammatory genes, revealed different 

different subclasses according to chromatin activation mode and gene expression profile [128, 

139].  A major class of primary response genes is characterized by CpG-island promoters, 

which facilitate promiscuous induction from constitutively active chromatin without a 

requirement for SWI/SNF nucleosome remodeling complexes. The low nucleosome 

occupancy at promoters in this class can be attributed to the assembly of CpG-islands into 

unstable nucleosomes, which may lead to SWI/SNF independence. Another major class 
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consists of non-CpG-island promoters that assemble into stable nucleosomes, resulting in 

SWI/SNF dependence and the requirement for transcription factors that promote selective 

nucleosome remodeling. Some inflammatory stimuli such as TNF, exhibit a strong bias 

toward activation of SWI/SNF-independent CpG-island genes. In contrast interferon (IFN) 

preferentially activates SWI/SNF-dependent non-CpG-island promoters. Interestingly, by 

activating a diverse set of transcription factors, Toll like receptors (TLR) induce both classes 

and others for an optimal response to PAMPs and DAMPs [128]. Remarkably, DNA 

methylation of IKK, IB and RelB promoters [140-142] adds another regulatory control level 

which can act as transcription memory for repetitive pulsatile inflammatory exposures 

(endotoxin sensitization versus tolerance) [140, 143-146].      

 

Chronic inflammatory disorders and epimutations: cause or consequence? 

Since inflammatory gene expression dynamics is highly dependent on epigenetic control 

mechanisms [10, 84, 92, 120, 125, 137], we have compared chromatin organization in weak 

or strong inflammatory cancer cell types with inducible or constitutive interleukin (IL)6 gene 

expression patterns. Upon investigation of autocrine IL6 gene expression production in 

aggressive myeloma cells or metastatic breast cancer cells, we observed euchromatin-like 

properties and highly accessible chromatin at the IL6 gene promoter [133, 147].  Furthermore, 

recruitment of CBP/p300 acetylases and MSK kinase seems to prevent heterochromatinisation 

and recruitment of heterochromatin protein (HP)1 upon phosphacetylation of transcription 

factor and histone components [114, 115, 132, 133, 148] (See Figure 2). Interestingly, 

promoter binding activity of Sp1 and AP1 Fra1 are responsible for priming IL6 promoter 

chromatin relaxation, which further promotes binding of NFκB transcription factors and 

chromatin opening for maximal expression levels [133, 147]. Interestingly, complementation 

of low invasive cancer cells with Fra1 seems to convert the promoter chromatin architecture 

in a highly accessible chromatin configuration. Reciprocally, highly accessible chromatin in 

invasive cancer cells can be silenced with anti-inflammatory phytochemicals, or following 

silencing of AP1/NFκB transcription factors, demonstrating reversible epigenetic changes 

towards a less aggressive phenotype [133, 149, 150]. Along the same line, we and others 

observed DNA hypermethylation at the IL6 gene promoter in cancer cells with low 

NFκB/AP1 activity and inducible IL6 gene expression, as compared to DNA hypomethylation 

in cancer cells with hyperactivated NFκB/AP1 transcription factors and elevated constitutive 

IL6 gene expression ([151, 152] and Figure 2). Similarly, p53 knockout cells reveal defects in 

genomic imprinting and DNA methylation regulation [153] As such, this demonstrates that 
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inflammatory signaling and transcription factors are able to rewire epigenetic settings and 

amplify gene expression in an autocrine fashion [46, 154]. As another example, DNA 

methylation of the NFκB responsive element in the Fas (CD95, Apo-1, TNFRSF6) gene 

promoter, was found to silence its expression in metastatic prostate carcinoma [46, 155].  

Surprisingly, depletion of NFκB can also trigger DNA demethylation and gene reactivation of 

the Fructose-1,6-biphosphatase-1 (FBP1) illustrating gene-specific epigenetic effects which 

may further depend on posttranslational NFκB modifications [136, 156]. 

Of special note, whereas studies with epigenetic drugs (azacytidin, suberoylanilide hydroxamic 

acid (SAHA)) frequently focus on reactivation of silenced tumor suppressor genes, these 

compounds also boost gene expression of inflammatory oncogenes such as IL6 which 

promote aggressive carcinogenesis, cancer stem cell proliferation, metastasis and hormone 

resistance [100, 157-164]. Furthermore, elevated IL6 gene expression is able to trigger 

epigenetic changes of tumor suppressor genes via regulation of DNMTs [165-168], 

microRNAs [158, 169, 170] and histone methyltransferases (Ezh2) [171]. This suggests that 

epigenetic regulators themselves and methylation of tumor suppressor genes are also 

susceptible to dynamic inflammatory control [158, 165, 169, 170, 172-175], which adds an 

extra level of complexity to the cancer-inflammation link.  

Furthermore, besides epigenetic changes in neoplastic cells, inflammatory stimuli in the tumor 

microenvironment can also epigenetically reprogram tumor-associated immune cells, as 

demonstrated for the NFB-dependent histone demethylase JMJD3 which determines cell fate 

and transdifferentiation of tumor-associated macrophages [120, 176].  Reports on epigenetic 

events in cancer are traditionally produced from analyses on “bulk” tumor samples, i.e. 

without distinction between neoplastic cells on one hand and the tumoral stroma on the other. 

The pro-inflammatory micro-environment that drives many tumor types is as such capable of 

triggering these epigenetic alterations within cancer progenitor cells, alterations which can 

substitute for genetic defects later in tumour progression [158, 177]. However, also tumor 

stromal components (which include bone-marrow-derived cells, tumor-associated 

macrophages) are a target of epigenetic events [92, 120, 149]. Similarly, in atherosclerotic 

plaques, interplay between monocytes, macrophages and vascular endothelium will trigger 

various epigenetic alterations in the different cell types in the plaque microenvironment [68, 

178-185].   Besides inflammatory factors, the micro-environment also contains free radicals 

produced by neutrophils, macrophages, endothelial and other cells. Reactive Oxygen Species 

(ROS) such as 
•
O2, 

•
OH, H2O2, NO and 

1
O2 can injure cellular biomolecules such as nucleic 

acids, enzymes, carbohydrates, and lipid membranes, causing cellular and tissue damage, 
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which in turn augments the state of inflammation. In addition, reactive nitrogen intermediates 

such as NO and ROS, indirectly also modulate activity of epigenetic machinery which finally 

will  affect chromatin dynamics in tumor-associated immune cells [186-190]. 

One of the key functional characteristics of macrophages is that they can be programmed to 

deal most effectively with a given kind of inciting stimulus. In the lung for example, resident 

alveolar macrophages are continuously encountering inhaled substances due to their exposed 

position in the alveolar lumen [93]. To avoid collateral damage to mucosal epithelium in 

response to harmless antigens, they are kept in a quiescent state, producing little inflammatory 

cytokines and displaying poor phagocytic activity. In the vessel wall, macrophages can 

scavenge large amounts of lipid, and differentiate into lipid-laden foamy cells [179]. As 

putative precursors for microglia and osteoclasts, monocytes may also be involved in the 

physiology of the central nervous system and in bone remodelling. Dendritic cells (DC) are 

also part of the monocytic phagocytic system and are the professional antigen presenting cells 

of the immune system that bridge innate and adaptive immunity [91]. DC cells come in many 

flavours and it is clear now that there are multiple pathways to develop DC from monocytes. 

The complexity of the monocytic phagocytic system requires that its many functional 

programmes are controlled coordinately in some situations, but separately in others. It is now 

clear that epigenetic mechanisms can lead to time-dependent and stimulus-specific alterations 

in the expresssion of functional modules [191]. Epigenetic modifications like histone 

modifications and CpG-island methylation in promotor regions of critical transcription factors 

(so called masterswitch transcription factors) of all of these functional programmes have been 

described and are controlled by microRNAs, DNMTs, HDAC, histone acetylases (HAT 

CBP/p300, p/CAF) histone lysine methylases (EZH2, CARM, PRMT) and demethylases 

(LSD1, JMJD3) [192, 193].  Emerging research indicates that epigenetic mechanisms that 

control the lineage development and polarization of monocytic phagocytic system and Th1, 

Th2 and Treg cells can be transmitted across multiple generations [84, 89, 194, 195]. 

Smoking, diesel exhaust, diet conditions, hygiene, dust mite, obesity seem have major 

influence on epigenetic programming of immune cell populations and inflammatory disease 

severity in asthma, allergy, rheumatoid arthritis, bowel disease [196-202]. Similarly, 

hypertension, obesity and lack of physical activity can have longlasting effects on  epigenetic 

reprogramming of monocytes/macrophages and endothelial cells promoting differentiation 

into more proatherogenic phenotypes and increased risk of cardiovascular disease [68, 180, 

182-185, 203]. 
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Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional, 

phytochemical and metabolic factors 

Human epidemiological studies and appropriately designed dietary interventions in animal 

models have provided considerable evidence to suggest that maternal nutritional imbalance 

and metabolic disturbances, during critical time windows of development, may have a 

persistent effect on the health of offspring and may even be transmitted to the next generation  

[29, 32, 204-208]. This has led to the hypothesis of „„fetal programming‟‟ and new term 

„„developmental origin of health and disease‟‟ (DOHaD): common disorders, such as obesity, 

cardiovascular disease (CVD), diabetes, hypertension, asthma, cancer and even schizophrenia, 

take root in early nutrition during gestation and continues during lactation [28, 32, 209-214]. 

The various non-Mendelian features of metabolic disease, cancer or chronic inflammatory 

disorders, clinical differences between men and women or monozygotic twins and 

fluctuations in the course of the disease are consistent with epigenetic mechanisms in the 

influence of fetal and/or lifelong nutrition or stochastic events on adult phenotype [29, 32, 

204-208, 215, 216].  Thus, lifetime shapes the multitude of epigenomes not only within, but 

also across generations [29, 207]. Interest in transgenerational epigenetic effects of food 

components has been fueled by observations in Agouti mice fed with a soy polyphenol diet, 

which revealed epigenetic changes in DNA methylation patterns in their offspring and 

protected against diabetes, obesity and cancer across multiple generations [217-219].  

However, only weak transgenerational effects could be observed with soy polyphenols in 

Daphnia Magna, despite the presence of functional DNMTs [220]. Feeding pregnant mice 

with a diet rich in methyl donors altered DNA methylation at well defined CpG regions which 

led to decreased transcription of Runx3 and more sever asthma in offspring. Bronchial 

biopsies and alveolar macrophages of asthmatics revealed a disturbed epigenetic regulation of 

gene expression (increased HAT and decreased HDAC2 activity) [221]. Furthermore, the 

honeybee (Apis mellifera) is probably the clearest example of induction of alternative 

phenotypes and epigenotypes by nutrition in early life [222]. Female bees are genetic clones. 

However, queens are distinct from workers in their morphology, capacity to reproduce, 

behavior, and longevity. The difference between the queen and worker castes lies in the 

exposure of the genetically identical larvae to royal jelly, an as yet incompletely defined 

mixture of proteins, amino acids, vitamins, lipids, and other nutrients [223-225]. 

Studies of human populations following famine have suggested that pathologies in later life 

are dependent on the timing of nutritional insult during pregnancy. Follow up of the Dutch 

Hunger Winter cohort showed that cardiovascular disease was more prevalent in offspring of 



Page 17 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 16 

mothers who were severely undernourished during the first trimester of their pregnancies in 

1944-1945, as compared to those born to mothers whose pregnancies were more advanced at 

the time of nutrional insult [226-228]. Also paternal patterns of nutrition during the 

prepubertal growth period in children in Överkalix, in Sweden during the nineteenth century 

are associated with differential risk of early cardiovascular death in their grandchildren [229, 

230]. Today, various different epigenetic changes have already been characterized which are 

involved in atherogenesis [28, 29, 65, 67, 231]. Hypercholesterolemia, obesity, 

hyperhomocysteinemia, high glucose are important CVD risk factors which are implicated in 

enhanced inflammatory signaling and long-lasting effects are driven by epigenetic 

reprogramming, promoting differentiation of monocytes/macrophages into more 

proatherogenic phenotypes [68, 181, 182, 232]. Recent evidence suggests that the 

pathogenetic role of hyperhomocysteinemia in vascular diseases might be mediated via 

Adenosyl-homocystein (Hcy) accumulation and DNA methylation. Hcy competes with S-

adenosylmethionine (SAM; the methyl-group donor) for binding on DNMT, which may lead 

to passive loss of methylation in replicating DNA. High blood Hcy levels correlate with DNA 

hypomethylation and atherosclerosis and can lead to a 35% reduction in DNA methylation 

status of peripheral blood lymphocytes [233-236]. Similarly, insulin, glucose folate or 

flavanol-rich diets interfere with the methyldonor metabolism and the available pool of S-

adenosylmethionine, resulting in DNA methylation changes [236-239]. In contrast, very few 

studies have focused on impact of dietary methyldonors on histone methylation, which is also 

affected by alterations in SAM/SAH ratios [233, 240]. As such, specific dietary classes of 

functional food maybe designed as therapeutic epigenetic modulators in lifestyle disease, such 

as metabolic disorders (diabetes), cardiovascular disease, asthma/COPD, rheumatoid arthritis. 

Epidemiologic and medical anthropological studies have indicated that flavanol-rich diets are 

inversely associated with cardiovascular risk [241-246]. Locus-specific DNA methylation 

changes, both hyper- and hypomethylation, also occur at the promoter level of several genes 

involved in the pathogenesis of atherosclerosis, such as extracellular superoxide dismutase 

(SOD), hormone receptors (glucocorticoid receptor (GR), estrogen receptor (ER), peroxisome 

proliferator-activated receptor (PPAR), arylhydrocarbon receptor, AhR, liver X receptor 

(LXR)), endothelial and inducible nitric oxide synthase (iNOS/eNOS), 15-lipoxygenase 

(LOX), fibroblast growth factor (FGF)2, hypoxia-inducible factor (HIF)1, myc, insulator 

CCCTC binding factor (CTCF) and metalloproteases (MMPs) [68, 183, 247-249]. In a 

proatherogenic murine model, DNA-methylation polymorphisms preceded the appearance of 

histological signs of atherosclerosis [181, 182]. Interestingly, involvement of the inducible 
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JMJD3 demethylase was demonstrated to regulate monocyte/macrophage transdifferentiation 

programs, illustrating that developmental programs are plastic and monocyte lineage 

differentiation is susceptible to inflammatory pathways and oxidative stress [120]. A role for 

the JMJD1A demethylase was demonstrated in metabolic gene expression and obesity 

resistance [250]. Furthermore, it was found that knockdown of the LSD1 demethylase 

affected monocyte adherence in a proatherogenic diabetic mouse model [251]. This suggests 

that LSD1 contribute to metabolic memory through long-term changes in gene expression via 

alterations in chromatin structure [146, 252].  

Poor maternal nutrition has also been associated with increased risk of type 2 diabetes 

mellitus over several generations in North American Indians [253, 254]. Individuals with 

metabolic syndrome, obesity and type II diabetes (T2D) CVD may show a lifelong imbalance 

between energy intake and energy expenditure due to incorrect epigenetic programming 

during their early development as a result of placental insufficiency, inadequate maternal 

nutrition, metabolic disturbances or neonatal medication [205, 253-258]. 

Recently, evidence emerged that also timing (preconception, pregnancy, lactation, neonatal 

life, early life, pre-/post-menopause, puberty) of various dietary exposures may be vitally 

important in determining health beneficial effects, as epigenetic plasticity changes continually 

from conception to death [259]. In principle; epigenetic changes occurring during embryonic 

development will have a much greater impact on the overall epigenetic status of the organism 

because, as they can be transmitted over consecutive mitotic divisions, alterations occurring in 

single embryonic stem cells will affect many more cells than those occurring in adult stem 

and /or somatic cells during postnatal development [206]. Epigenetic plasticity further also 

depends on other processes such as chromosomal instability, telomere shortening, metabolic 

cycles, mitochondrial deteriorations, and oscillatory, circadian or seasonal rhythms of 

systemic hormone levels (hypothalamic-pituitary-adrenal (HPA) axis)  [28-30, 258-262]. In 

addition to epigenetic imprinting during crucial periods of development, stochastic or 

genetically and environmentally triggered epigenomic changes (epimutations) occur day after 

day and accumulate over time, as maximal differences in DNA methylation profiles are 

observed in aged monozygotic twins with a history of non-shared environments [6, 8]. 

Concerning nutritional transgenerational inheritance there is increasing evidence in both 

plants and animals that, following nutritional intervention (caloric, iron and protein 

restriction, polyphenol-, folate-, micronutrient-,  fat- or carbohydrate-rich diet), maternal 

diabetes, during pregnancy and lactation can affect the following generation(s) [38, 207, 211, 

218, 219, 263, 264]. Although it has long been thought that the epigenomic profile is wiped 
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clean in the embryo shortly after fertilization, with the exception of imprinted genes, 

methylation clearing is not complete after fertilization and on a global DNA level is reduced 

to 10%  [265, 266]. Alternatively, it can not be excluded that transgenerationally inherited 

nutritional effects may also depend on polycomb proteins [207, 267-269], miRNA profiles 

[12, 270] or epigenetic capacitor properties of hsp proteins  [271-273]. 

A next challenge will be to determine which adverse epigenomic marks are reversible by 

specific diets, drugs or lifestyle changes [29, 32, 38, 259]. Numerous botanical species and 

plant parts contain a diverse array of polyphenolic phytochemicals which exert health-

beneficial effects in man by its anti-inflammatory, anti-oxidant, phytohormone, cardio-

protective, cancer preventive and anti-bacterial properties, by maintaining immune 

homeostasis (hormesis) [274, 275]. Phytochemicals have also succesfully been applied for 

regenerative medicine and cancer stem cell therapy [173, 276-280].  Oxidative stress and 

inflammatory damage plays an important role in epigenetic reprogramming of expression of 

cytokines, oncogenes and tumor suppressor genes, thereby setting up a ground for chronic 

inflammatory diseases and carcinogenesis  [97, 100, 281]. As such chemoprevention, the 

strategy to inhibit, retard, or even reverse the epigenetic stage of chronic inflammation is one 

of the most rational approaches to reduce the global burden of non communicable lifestyle 

diseases [3, 100, 211]. Today, various nutritional natural compounds (including 

epigallocatechingallate, resveratrol, genistein, curcumin, isothiocyanates …) have been 

characterized which interfere with enzymatic activity of DNMT, Class I, II, IV HDAC, HAT 

and Class III HDAC sirtuins (SIRT) which modulate inflammatory responses and 

immunological senescence ([32-41, 213, 282] and references included, see Table 1). HDACs 

are zinc metalloproteins which rely on Zn
2+

  for their activity and are divided into 4 classes 

based on their homology with yeast HDACs. Class III HDACs, called sirtuins are zinc-

independent but nicotinamide adenine dicnucleotide (NAD
+
)-dependent. Class I, II, IV 

HDAC inhibitors characteristically contain a Zn
2+

 chelating group consisting of a thiolate, 

thiol, hydroxamate, carboxylate, mercaptoamide, epoxide or ketone group. Natural HDAC 

inhibitors can be divided in following groups based on their chemical characteristics: 

carboxylates, organosulfides, isothiocyanates, hydroamates, cyclic tetrapeptides and  

macrocyclic depsipeptides [35]. In contrast to natural HDAC inhibitors, only few natural 

products (i.e. niacine, vitamin B3, dihydrocoumarin) have been identified as inhibitors of 

class III HDACs. Reciprocally, various natural flavonoids have been identified as activators 

of class III HDACs (SIRTs). Finally, turmeric and green tea have been identified as sources of 

natural inhibitors of p300/CBP HAT. Finally DNMT inhibitors work mainly through one of 



Page 20 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 19 

the following mechanisms, either covalent trapping of DNMT through incorporation into 

DNA (i.e. nucleoside analogues decitabine, 5-azacytidine), non-covalent blocking of DNMT 

catalytic active site (i.e. EGCG, parthenolide), interruption of binding site of DNMT to DNA 

(i.e. procaine), degradation of DNMT (i.e; decitabine), or suppression of DNMT expression 

(i.e. miRNAs). Furthermore, a number of natural compounds act as multifunctional ligands by 

simultaneously acting on nuclear hormone receptors and changing activity of histone 

modifying enzymes and DNMTs [283-287]. Of special note, although health protective anti-

oxidant or anti-inflammatory effects of dietary factors and extracts have frequently been 

demonstrated in in vitro experiments at concentrations which can never be achieved in vivo,  

“epigenetics” sheds a more realistic light on dietary studies, as longlife exposure at 

physiological concentrations can remodel the epigenome in a cumulative fashion by repetitive 

effects on the epigenetic machinery [241, 288-291].  Particular attention needs to be given to 

natural compounds which can trigger opposite effects on HDAC/HAT/DNMT or histone 

(de)methylase (H(D)MT) depending on the concentration or cell type-specific metabolisation 

[34, 35]. It should also be stressed that it is not known whether all of them can be considered 

authentic epigenetic modifiers because it has not yet been demonstrated whether the 

epigenetic modifications that they induce are stable over time.  Interestingly, even transient 

exposure to a specific dietary component can induce long-lasting epigenetic changes in the 

promoter of the NFB subunit p65, which acts as a master switch in inflammatory gene 

expression [146]. Alternatively, compounds may chemically interfere with histone mark 

interacting effector domains (such as chromo-, bromo- or tudor domains) [47, 292, 293]. 

However, one should be careful with interpretation of in vitro compound screenings or 

cofactor activity assays based on peptide-protein interactions, as this may not always 

represent true targets in vivo [294, 295]. 

Besides specific interference of the diet with chromatin modifying enzymes and DNMTs at 

particular target genes, global epigenetic changes can also occur following biochemical 

metabolisation of dietary factors, which can deplete cellular pools of acetyl-CoA, NAD
+
 and 

methyldonors, resulting in unbalanced DNA methylation and/or protein acetylation or 

methylation [282, 296, 297]. For example diets lacking in substrate or cofactors in 

methyldonormetabolism can contribute to DNA hypomethylation by impairing synthesis of 

SAM [234]. This methylation cycle is frequently cited to explain relations between diet and 

epigenetic changes [233, 298]. However, even without nutritional deficiency of methyl 

groups, impaired synthesis of SAM and perturbed DNA methylation can happen when the 

need for the synthesis of the detoxification enzyme glutathione transferase (GSH) synthesis 
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increases [299].  Diets or nutritional compounds which affect energy metabolism or 

mitochondrial respiration can have global epigenetic effects upon changes in NAD
+
 

availability and SIRT activity [300]. Since SIRT activation has been linked to longevity 

(increased lifespan and healthy aging) and mimics a caloric restricted diet, SIRT activators 

such as resveratrol represent a major class of caloric mimetic epigenetic modulator 

phytochemicals which could reverse metabolic disease [297].  

 

Conclusion 

The phenotype of an individual is the result of complex gene-environment interactions in the 

current, past and ancestral environment, leading to lifelong remodelling of our epigenomes. In 

recent years, several studies have demonstrated that disruption of epigenetic mechanisms can 

alter immune function and and that epimutations not only contribute to various cancers but 

also to the development of diabetes, allergy, CVD and rheumatoid arthritis. Various 

replication-dependent and -independent epigenetic mechanisms are involved in 

developmental programming, lifelong recording of environmental changes and transmitting 

transgenerational effects. It is likely that understanding and manipulating the epigenome, a 

potentially reversible source of biological variation, has great potential in chemoprevention or 

stabilization of chronic inflammatory disorders.  Much attention is currently focusing on 

modulating hyper/hypomethylation of key inflammatory genes by dietary factors as an 

effective approach to cure or protect against inflammatory disease [32-41, 213, 282]. In this 

respect, “Let food be your epigenetic medicine” could represent a novel interpretation of what 

Hippocrates said already 25 centuries ago.  As such, it will be a challenge for future anti-

inflammatory therapeutics and preventive cancer research to identify novel epigenetic targets 

which allow selective modulation of the inflammatory signaling network in the diseased 

tissue and/or microenvironment [275, 301-306]. Given several encouraging trials, prevention 

and therapy of age- and lifestyle-related diseases by individualised tailoring of optimal 

epigenetic diets or supplements are conceivable. However, these interventions will require 

intense efforts to unravel the complexity of these epigenetic, genetic and environment 

interactions. Another goal is to evaluate their potential reversibility with minimal side effects 

as diet components may reprogram malignant cells as well as the host immune system and 

HPA-axis depending on the bioavailability of the dietary compounds [32, 133, 149, 150, 289, 

291] (See Figure 3). There is some concern that epigenetic therapy with dietary inhibitors of 

DNMT, HDAC, histon(de)methylases in longterm treatment setups may suffer from lack of 

specificity [283, 292, 294].  As such, the possible alternative  is to combine nonselective 
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epigenetic therapies with more targeted approaches [46]. For example, combined treatment of 

specific transcription factor inhibitors and/or hormone receptor ligands with epigenetic drugs 

may trigger synergistic activities at subsets of inflammatory genes  [43, 46, 307-309]. An 

excellent example of cooperation between a dietary vitamin A-derivative targeting a nuclear 

receptor and the HDAC inhibitor butyrate has been described in the treatment of acute 

promyelocytic leukemias [33]. Finally, microRNA and long ncRNA pathways also hold 

promise to join soon the arsenal of epigenetic combination therapies, as their target sequence 

specificity may bridge the gap between genetic and epigenetic changes [12, 79-81]. In 

conclusion, studies are revealing a dazzling complexity in the mechanisms leading to dynamic 

alterations of the epigenome and the need of combination therapies targeting different 

chromatin modifiers, to reverse disease prone epigenetic alterations to preserve healthy aging. 

Medical benefits of dietary compounds as epigenetic modulators, especially with respect to 

their chronic use as nutraceutical agents, will rely on our further understanding of their 

epigenetic effects during embryogenesis, early life, aging as well as through different 

generations.  
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Figure 1 

Interplay of inflammatory and metabolic stress pathways in nutritional epigenetic effects in 

lifestyle diseases. mut, mutation; SNP, single nucleotide polymorphism; miR, microRNA, 

ncRNA, noncoding RNA. 

 

Figure 2 

Working model illustrating crosstalk of inflammatory and metabolic stress pathways with 

epigenetic regulation in the nucleus. For example, transcription of the highly conserved IL6 

gene promoter requires binding of activator protein AP1, CREB and nuclear factor NFB 

transcription factors in response to various stimuli  [310, 311], with strict stereospecific 

requirements for optimal cofactor recruitment, promoting a promoter enhanceosome model 

with multiple transcription factor/cofactor interactions, in which NFB is the primary trigger 

for IL6 gene induction in response to TNF. Inflammatory stimuli (i.e. TNF, virus, bacteria) or 

metabolic stress (including oxidative stresss, endoplasmic reticulum (ER) stress or unfolded 

protein response (UPR) stress, for example during obesity or malnutrition) can activate the 

IKK-complex, responsible for IB-phosphorylation, which allows NFB to translocate to the 

nucleus, following degradation of IB in the proteasome.   IL6 gene expression also requires 

activation and recruitment of the mitogen- and stress-activated protein kinase-1 (MSK1) to 

elicit selective chromatin relaxation at the IL6 gene promoter, upon phosphorylation of NFB 

p65 S276 and histone H3 S10, followed by further CBP/p300 recruitment and HAT-

dependent acetylation of the IL6 promoter enhanceosome/chromatin environment [115].  

Highly elevated expression levels of AP1 Fra1 and NFB in ER-deficient tumor cells increase 

chromatin accessibility (DNA hypersensitive sites) in the proximal IL6 gene promoter. Of 

particular interest, dietary anti-inflammatory phytochemicals such as soy polyphenol genistein 

[149, 150, 274] and withanolide withaferin A [312] are able to silence the highly promiscuous 

IL6 promoter nucleosome configuration by lowering the cellular amounts of Fra1 and NFB 

activity, concomitantly with decreased histone H3 phosphoacetylation levels and increased 

DNA methylation  [133, 149, 150]. 

 

Figure 3.  

Flowchart which summarizes the complex and multilayered regulation of nutritional 

epigenetic effects.  
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Table 1. Overview of nutritional epigenetic effects by dietary phytochemicals  (summarized 

from  [32-41, 213, 282] and references included). Suffix I, inhibitor; suffix a, activator, for 

example HDACi, HDAC inhibitor, or SIRTa, SIRT activator 

 

Bioactive 
Phytochemical 

Natural 
Source 

Disease Target 
Epigenetic 
mechanism 

In vitro / In vivo 
Target genes / 

microRNAs 

3,3-
diindolylmethane 

Broccoli Cancer Decreased HDAC 
levels 

In vitro / in vivo COX2 

6-methoxy-2E,9E-
humuladien-8-one 

Ginger Cancer HDACi In vitro  

Allylmercaptan Garlic Cancer HDACi In vitro/in vivo P21/WAF 

Anacardic Acid Cashew nuts Cancer, Leukemia HATi In vitro  

Apigenin Parsley, celery Cancer DNMTi In vitro  

Betanin Beetroot red Cancer DNMTi In vitro  

Biochanin A Soy Cancer DNMTi 
HDACi 

In vitro / in vivo 
Daphnia 

 

Butyryc acid Fermentation 
dietary fibers 

Cancer HDACi In vitro / In vivo  

Caffeic acid Coffea Cancer 
Inflammation 
Energy metabolism 

DNMTi 
HDACi 

In vitro RAR, CDKN2A 

Catechin Green tea Cancer 
Lymphocytes 

DNMTi 
HATi 

In vitro RAR 

Chlorogenic acid Coffea Cancer DNMTi 
HDACi 

In vitro RAR, CDKN2A 

Coumaric acid 
Cinnamic acid 

Cinnamon Cancer DNMTi 
HDACi 

In vitro / in vivo  

Coumarin 
analogues 
Dihydrocoumarin 

Melilotus 
officinalis 
(Sweet clover) 

Cancer, Leukemia,  SIRTi 
p53 acetylation 

In vitro  

Curcumin Turmeric 
(Curcuma 
longa L.) 

Crohn’s Disease, 
Ulcerative colitis 
Inflammatory disease 
Cancer, Leukemia 
Neurodegeneration 
Alzheimer 
Diabetes 
Heart Failure 
Epilepsy 

DNMTi 
HATi 
HDACi 

In vitro / In vivo 
Plasmodium 
falciparum, 
Herpes Virus 
Mouse 
Rat 

GATA4, EOMES, 
GZMB, PRF1 
 
Up: miR-22, miR-34a, 
miR-24, miR-181a, 
miR-21,miR-181b, 
miR-27a 
Down: miR-199a, miR-
510, miR-196a, miR-7, 
miR-15b, 
miR-195, miR-374, 
miR-98 

Cyanidin Berries, 
Grapes 

Cancer DNMTi In vitro  

Daidzein Soy Cancer DNMTi 
SIRTa 

In vitro  

Diallyl disulfide Garlic Inflammatory disease 
Cancer 

HDACi In vitro / in vivo 
rat 

p21/WAF 

Ellagic Acids Berries Cancer DNMTi In vitro  

Epicatechin Apples, Cocoa, 
Green and 
black tea  

Inflammatory 
disease, lymphocytes 
Cancer 
CVD 

DNMTi 
HATi 

In vitro  

Epicatechin 
gallate 

Green tea Cancer 
Lymphocytes 

DNMTi 
HATi 

In vitro  

Epigallocatechin Green tea Cancer 
Lymphocytes 

DNMTi 
HATi 

In vitro  

Epigallocatechin 
3-gallate (EGCG) 
 

Green tea Inflammatory disease 
Parkinson 
Cancer, Leukemia 
 
CVD 
 

DNMTi 
HDACi 
HMTi 

In vitro /  In vivo 
Agouti 
Mouse/Human 

RAR, MGMT, MLH1, 
CDKN2A, RECK, TERT, 

RXR, CDX2, GSTP1, 
WIF1, NFkB, IL6, Bmi1, 
Ezh2, Suz12 

Up : let-7, miR-16, 
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Diabetes 
Energy metabolism 
 

miR-18b, miR-20a, 
miR-25, miR-92, 
miR-93, miR-221, 
miR-320 
Down: miR-10a, miR-
18a, miR-19a, miR-
26b, miR-29b, 
miR-34b, miR-98, 
miR-129, miR-181d 

Equol Soy Cancer HDACi In vitro / in vivo 
Drosophila 

 

Fistein Strawberies Cancer  
Inflammatory disease 

SIRTa In vitro  

Flavone Feijoa Cancer HDACi In vitro / in vivo 
Drosophila 

p16,p21,TRAIL 

Folic Acid  
Folate 

Leafy 
vegetables, 
Nuts, 
Sunflower 
seads 
 

Inflammatory disease 
Asthma 
Cancer 
Obesity 
CVD 

Induction of DNA 
methylation 

In vitro / In vivo Up : miR-10a, miR-
10b, miR-9, miR-145, 
miR-30a-3p, 
miR-152, miR-122a, 
miR-125b 
Down: miR-200a, miR-
496, miR-296, miR-
30e-5p, miR-362, 
miR-339, miR-29c, 
miR-154, miR-10a 

Galangin Propolis Cancer DNMTi In vitro  

Garcinol Garcinia Cancer 
HIV 
Leukemia 
Lymphocytes 

DNMTi 
HATi 

In vitro Global downregulation 
gene expression  

Genistein Soy Inflammatory disease 
 
Cancer 

DNMTi 
HATi 
HDACi 
 
Increase DNA 
methylation  
 
Changed protein 
levels DNMTs, 
MBD1, MBD4, 
MeCP2 

In vitro / In vivo 
Agouti 
Daphnids 

RAR, MGMT, 
CDKN2A, GSTP1, 
HMGN5, BTG3, TERT 
P21, p16,PTEN, CCLD, 
p53, FOXA3, SIRT1, 

BTG3, RAR 
 

Up: miR-200b, miR-
200c, let-7b, let-7c, let-
7d, let-7e, miR-663, 
miR-146a, miR-374b 
Down: miR-34c, miR-
376a, miR-196a, miR-
320, miR-654, 
miR-34c, miR-196 

Hesperidin Citrus Cancer DNMTi In vitro  

Isoliquiritigenin Liquorice Cancer SIRTactivator In vitro / in vivo 
Drosophila 

 

Isothiocyanate 
(6-Methylsulfinyl-
hexylisothio-
cyanate) 

Broccoli, 
Japanese 
horseradish 
(Wasabi) 
 

Anti-platelet effects 
Cancer 

HDACi In vitro P21, GSTP1 

Kaempferol Apples, nuts, 
tea, onions 

Cancer SIRTa   

Luteolin Parsley, celery Cancer DNMTi 
SIRTactivator 

In vitro / In vivo 
Drosophila 

 

Lycopene Tomatoes, 
Watermelon 
Apricots 
Pink guava 
Grapefruit, 
Rosehip 

Cancer: Breast, 
Colon 

DNMTi In vitro GSTP1, RAR, HIN1 

MCP30 Bitter melon 
seeds 
(Momordica 
charantia) 

Cancer HDACi In vitro  

Myricetin Berries Cancer DNMTi In vitro  
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Naringenin Citrus Cancer DNMTi In vitro  

Parthenolide Feverfew 
(Tanacetum 
parthenium) 

Arthritis 
 
Fever 
Lymphocytic 
leukemia 
Migraine 

DNMTi 
HDAC depletion 

In vitro  

Phloretin Apples Cancer DNMTi In vitro  

Piceatannol 
(Resveratrol 
metabolite) 

Grapes, 
blueberries 

Cancer DNMTi 
SIRTa 

In vitro  

Polyphenon B Black and 
green tea 

Cancer Increased HDAC 
levels 

In vitro/in vivo 
Rat 

 

Pomiferin Maclura 
pomifera 

Cancer HDACi In vitro  

Protocatechuric 
acid 

Olives Cancer DNMTi In vitro  

Quercetin  Citrus: 
Capers, 
Apples, 
Berries, Tea, 
Wine 

Inflammatory disease 
Bowel inflammation 
Asthma 
Cancer  
CVD 
Pulmonary 
dysfunction 

DNMTi 
HDACi 
SIRTactivator 

In vitro IL10, MIP2 

Resveratrol Grapes, 
Blueberries, 
Peanuts,  
Red wine 

Inflammatory disease 
Cancer 
Leukemia 
CVD 
Neuroprotection 

DNMTi 
HDACi 
SIRTa 

In vitro / In vivo 
Yeast 
Mouse 
Rat 
Drosophila 
 

TNF, IL8, RBP 

Rosmarinic acid Rosemary Cancer DNMTi In vitro  

Retinoic Acid Carrots, 
Spinach, Eggs 

Cancer 
Leukemia 

HDACi In vitro  

S-allylmercapto-
cysteine 

Garlic Cancer 
Leukemia 

HDACi   

Sanguinarine Opium poppy Cancer HMTi In vitro   

Selenium Careals, Nuts, 
Legumes, Fish, 
Shellfish,  

Cancer DNMITi 
Induction of DNA 
methylation 

In vitro  

Silibinin 
 

Milk thistle 
(Silybum 
marianum) 

Cancer 
Liver protection 
Inflammatory disease 

Increased histone 
acetylation 
SIRTa 

In vitro p21, p27, CASP3, 
CASP9 

Sinapic acid Sinapis 
(mustard) 

Cancer DNMTi In vitro  

Sulforaphane  Broccoli Inl 
Cancer 

DNMTi 
HDACi 
Decreased DNMT 
levels 

In vitro / In vivo 
Mouse 

RAR, HBD2, p21, BAX 

Syringic acid Red Grape Cancer DNMTi In vitro  

      

Theophylline Black and 
green tea 

Immune cells 
Pulmonary 
inflammation 
Asthma, COPD 
Cancer 

HDACa In vitro  

Ursolic acid Basil Leukemia HDAC inhibitor In vitro  

Withaferin A Ashwagandha 
(Withania 
somnifera) 

Anti-angiogenic 
effects 
Inflammatory disease 
Rheumatoid arthritis 
Asthma  
Cancer 
Leukemia 
Neuroprotection 

Inhibition histone 
acetylation 
Chromatin 
silencing 

In vitro  
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