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ABSTRACT 
 
Heme oxygenase (HO)-1 is the inducible isoform of the first and rate-limiting enzyme of 

heme degradation. Induction of HO-1 protects against the cytotoxicity of oxidative stress and 

apoptotic cell death. More recently, HO-1 has been recognized to have major 

immunomodulatory and anti-inflammatory properties, which have been demonstrated in HO-

1 knockout mice and a human case of genetic HO-1 deficiency. Beneficial protective effects 

of HO-1 in inflammation are not only mediated via enzymatic degradation of proinflammatory 

free heme, but also via production of the anti-inflammatory compounds bilirubin and carbon 

monoxide. The immunomodulatory role of HO-1 is associated with its cell type-specific 

functions in myeloid cells (including macrophages and monocytes) and in endothelial cells, 

as both cell types are crucially involved in initiating inflammatory responses. This review 

covers the molecular mechanisms and signaling pathways that are involved in HO-1 gene 

expression. In particular, it is discussed how key nuclear factors such as the redox-

dependent transcriptional activators NF-E2 related factor 2 (Nrf2), NF-B and AP-1 along 

with the transcription repressor BTB and CNC homologue 1 (Bach1) mediate inducible HO-1 

gene expression. The role of central pro- and anti-inflammatory cellular signaling cascades 

including p38 MAPK and phosphatidylinositol-3 kinase (PI3K)/Akt in HO-1 regulation is 

highlighted. Finally, we summarize emerging strategies that apply targeted pharmacological 

induction of HO-1 for therapeutic interventions in inflammatory conditions. 
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INTRODUCTION 

Heme oxygenase (HO) catalyzes the first and rate-limiting enzymatic step of heme 

degradation and produces carbon monoxide (CO), iron and biliverdin [1-3], which is 

converted into bilirubin (BR) via biliverdin reductase. Two genetically distinct HO isozymes, 

HO-1 and HO-2, are known. HO-2 represents the constitutive non-inducible isoform and is 

primarily expressed in brain and testis [4]. By contrast, the inducible isoform HO-1, which 

exhibits low basal expression levels in most cells and tissues, is highly up-regulated by a 

wide variety of oxidative stress stimuli. Due to its regulatory pattern, induction of HO-1 has 

generally been considered to be an adaptive cellular response against the toxicity of 

oxidative stress [5-10]. More recently, HO-1 has also been recognized to exhibit important 

immunmodulatory and anti-inflammatory functions. A potential link between HO-1 and 

inflammation has initially been shown in an animal model, in which specific up-regulation of 

HO enzyme activity attenuated complement-dependent inflammation [11]. Shortly thereafter, 

it has been demonstrated in a HO-1 knockout mouse model that these animals develop a 

chronic inflammatory disease and are highly vulnerable to an experimental sepsis induced by 

the classical pro-inflammatory mediator endotoxin [12]. Importantly, phenotypical alterations 

in the only known human case of genetic HO-1 deficiency are highly similar to those 

observed in HO-1 knockout mice [13]. By contrast, HO-2 deficient mice have an intact 

immune system, but exhibit major neurological defects [14]. Independently, targeted 

overexpression of HO-1 has been shown to have beneficial effects in various experimental 

animal models of inflammation [2, 15]. Due to the critical role of HO-1 in immunological 

responses [16-18], the mechanisms of its immunomodulatory functions are currently under 

intense investigation. 

In this review, we discuss the current understanding of how HO-1 may mediate its anti-

inflammatory effects in myeloid and endothelial cells. Moreover, we summarize the 

regulatory role of major transcription factors (TFs) and signaling pathways that govern the 

inducible HO-1 gene expression. Finally, we highlight the therapeutic potential of targeted 

pharmacological induction of HO-1. 
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1. Cell-specific immunomodulatory functions of HO-1 in myeloid and endothelial cells 

Inflammation is a complex reaction of the immune system in vascularized tissues at sites of 

an infection, toxin exposure or cell injury. Although HO-1 is expressed in all cells and tissues 

the salutary anti-inflammatory effects of HO-1 appear to be critically dependent on its cell 

type-specific functions in myeloid and endothelial cells. 

 

1.1. Myeloid cells  

Myeloid cells comprise monocytes, macrophages and dendritic cells, which play crucial 

regulatory roles in the innate and adaptive immune system [19]. For example, macrophages 

ingest and kill invading microorganisms as a first line of defense and are activated by various 

immunological stimuli such as microbial products and cytokines to initiate inflammatory 

immune responses [20]. In rodent macrophages, HO-1 has been shown to be up-regulated 

by lipopolysaccharide (LPS) [21-23], which then attenuates the expression of various 

proinflammatory genes including cyclooxygenase-2, inducible nitric oxide (NO) synthase 

(iNOS), tumor necrosis factor (TNF)- or interleukin (IL)-6 [18, 24] (Figure 1). In contrast to 

the LPS-dependent induction of HO-1 in rodent macrophages, gene expression of HO-1 is 

down-regulated by treatment with LPS in human monocytes [25]. More recently, the myeloid 

cell-specific immunomodulatory functions of HO-1 have also been investigated in a 

conditional HO-1 knockout mouse model. Mice with myeloid cell-specific genetic HO-1 

deficiency exhibited a defect of the interferon- pathway along with pathological immune 

responses in experimentally induced infections and an experimental autoimmune 

encephalomyelitis [26]. Finally, HO-1 is also important for the function of dendritic cells, 

which are the main cell population for antigen-presentation and for intiation of adaptive 

immune responses. Specifically, targeted up-regulation of HO-1 has been shown to modulate 

maturation and cell-specific functions of dendritic cells in human and mouse models [17, 27]. 

In conclusion, HO-1 appears to have versatile functions via immunomodulation of myeloid 

cells. 
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1.2. Endothelial cells 

Endothelial monolayers are intimately linked with inflammation, because they constitute a 

barrier between the peripheral blood stream and inflamed tissues. The endothelium regulates 

recruitment and transmigration of immunologically active blood cells such as 

polymorphonuclear leukocytes and T lymphocytes to the site of an inflammation [28, 29]. 

HO-1 has been shown to directly affect the cellular interactions of polymorphonuclear 

leukocytes with endothelial cells in an in vivo rat model, in which increased HO activity down-

regulated the adhesion of these cells during experimental oxidative stress conditions [30]. 

Independently, major pathological alterations of the endothelium have been observed in HO-

1 knockout mice, in which endothelial cells were more susceptible to apoptotic cell death and 

denudation from the extracellular matrix [31]. Independently, anti-inflammatory endothelial 

protection via HO-1 has been shown to be mediated via its ability to down-regulate TNF-

induced expression of various adhesion molecules [32, 33]. More recently, it has been 

reported that HO-1 was involved in the recruitment of endothelial progenitor cells to the site 

of an experimental vascular injury in various animal models [34].  

Thus, HO-1 counteracts inflammatory reactions via modulation of various endothelial cell 

functions.  

 

2. Anti-inflammatory functions of HO-1: degradation of proinflammatory free heme 

and production of the anti-inflammatory compounds BR and CO 

The mechanisms that mediate the anti-inflammatory effects of HO-1 are not understood in 

detail. It has been appreciated in recent years, however, that the enzymatic degradation of 

proinflammatory free heme and the production of the anti-inflammatory compounds 

biliverdin/BR and CO may play major roles to counteract inflammatory reactions.  

Heme consists of a tetrapyrrole ring with a central iron ion and is an abundant compound in 

mammalians with contradictory biological functions. On the one hand, heme plays a 

physiological role for oxygen and mitochondrial electron transport as an essential prosthetic 

group of hemoglobin, myoglobin and cytochromes [35, 36]. On the other hand, non-protein 
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bound free heme is highly toxic as it may cause oxidative stress. Due to the prooxidant 

properties of free heme, which have been shown in various animal and cell culture models, 

the enzymatic synthesis and degradation of this molecule is tightly controlled [35, 37, 38]. 

More recently, free heme has also been shown to have proinflammatory properties [10, 15, 

39]. For example, heme has been demonstrated to be responsible for the increased influx of 

leukocytes into organs during an experimental inflammation in vivo [40]. Detrimental 

proinflammatory effects of free heme have also been shown in an animal model of 

experimental cerebral malaria, in which the heme-dependent detrimental effects were more 

pronounced in HO-1 deficient mice [41]. Thus, it is conceivable that the enzymatic 

degradation of proinflammatory free heme via HO-1 plays a critical role for the anti-

inflammatory functions of HO-1 [10, 15, 37-39]. 

The role of BR as a beneficial compound with potent antioxidant and anti-inflammatory 

effects has only been appreciated in recent years [42, 43]. Protection against experimental 

inflammation via HO-1-derived biliverdin has been shown in animal models of 

proinflammatory cardiovascular [30] and gastrointestinal disorders [44]. Independently, 

beneficial effects of BR have directly been implicated in the protection against endothelial 

activation and dysfunction in human aortic endothelial cells [45]. Interestingly, BR has also 

been suggested to specifically reduce leukocyte transmigration to the site of an experimental 

inflammation via interaction with adhesion molecules [46].  

Although CO is generally considered a toxic gas, it has been recognized to have major 

physiological functions as a signaling molecule [3, 47, 48]. Specifically, HO-1-derived CO has 

been shown to be involved in the regulation of apoptosis, vasodilation and inflammation. In 

an early report on the potential protective effects of this gas, administration of exogenous CO 

blocked the LPS-induced production of proinflammatory cytokines via modulation of p38 

MAP kinase [24]. Similar to the signaling gas NO, CO up-regulates the production of cGMP 

and this mechanism has been implicated in other functions of CO such as vasodilation and 

blockage of smooth muscle cell proliferation. Major potential for future therapeutic 
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applications may have CO-releasing molecules (CORMs), which are compounds that deliver 

CO to its target sites without the toxicity of gaseous CO [49, 50]. 

In summary, HO-1 counteracts inflammatory responses via metabolic conversion of 

proinflammatory free heme and production of the anti-inflammatory compounds BR and CO. 

 

 

3. Redox-dependent TFs mediate the inducible HO-1 gene expression  

Targeted modulation of HO-1 for potential anti-inflammatory therapeutic interventions not 

only requires detailed knowledge of the immunomodulatory effects of HO-1. To achieve this 

goal, it is also necessary to precisely understand the mechanisms that regulate HO-1 gene 

expression.  

HO-1 is induced by a plethora of physiological and pathological stimuli including oxidative 

stress signals, cytokines, bacterial compounds and growth factors. HO-1 expression is 

primarily regulated on the transcriptional level and multiple cis-acting regulatory elements 

(REs) of the HO-1 promoter have been shown to mediate the basal and inducible HO-1 gene 

expression in different species (reviewed in [2, 8, 9, 51]). Two upstream enhancer regions, 

which are termed E1 and E2, play major functional roles for redox-dependent induction of 

HO-1 [52, 53]. Both E1 and E2 enhancer regions contain several antioxidant response 

elements (AREs), which have also been identified in the promoters of other stress-inducible 

antioxidant and phase 2 detoxifying genes [54, 55]. An important difference between the 

rodent and human HO-1 genes with major biological relevance is a GT-microsatellite 

polymorphism, which is localized in the proximal human HO-1 gene promoter region. Lower 

numbers of GT repeats within this polymorphic sequence have been associated with higher 

inducibility of HO-1 gene expression in response to stress stimuli [56] and individuals with 

this allele seem to be protected against cardiovascular disorders (reviewed in [57]).  

In the following, we highlight the critical role of the major redox-dependent TFs NF-E2-related 

factor 2 (Nrf2), BTB and CNC homologue 1 (Bach1), NF-B and AP-1 in regulating the 

inducible HO-1 gene expression. 
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3.1. The Keap1/Nrf2 system 

Redox-dependent transcriptional induction of HO-1 is primarily mediated through the 

cap’n’collar (CNC) TF Nrf2 [58], which was initially identified while screening for proteins that 

interact with the NF-E2 binding motif [59]. Nrf2 forms heterodimers with small Maf proteins 

and up-regulates a program of inducible protective genes via interaction with AREs [55, 60]. 

Activation of Nrf2 by oxidative stress is mainly controlled by the cytosolic inhibitor Kelch-like 

ECH-associated protein 1 (Keap1)[61, 62], also termed inhibitor of Nrf2 [63](Figure 2). 

Numerous prooxidant stimuli cause dissociation of Nrf2 from Keap1, which then permits 

subsequent nuclear translocation of Nrf2 [63, 64]. In a zebrafish model it has been 

demonstrated that various chemicals activate Nrf2 in a compound-specific manner via the 

modulation of various regulatory sites of Keap1 [65]. More recently, the Keap1/Nrf2 pathway 

has also been shown to be activated by the regulator protein p62 in experimental conditions 

that cause autophagy [66]. Thus, the Keap1/Nrf2 system appears to be a central sensor for a 

broad spectrum of unfavourable cellular conditions. 

It is important to point out, that the Keap1/Nrf2 module may not only be regulated by 

prooxidant stimuli, but also by stress-independent signals such as glycogen synthase kinase 

(GSK)-3-dependent phosphorylation (Figure 3). Finally, it is not clear whether Nrf2-

dependent induction of HO-1 is part of a general Nrf2-regulated antioxidant response that 

includes other Keap1/Nrf2-regulated genes such as NAD(P)H:oxidoreductase or thioredoxin 

reductase-1. A potential mechanism that could mediate Nrf2-specific induction of HO-1 

involves the brahma-related gene 1 (BRG1). BRG1 has been shown to be necessary for the 

specific recruitment of Nrf2 to the promoter of the HO-1 gene, but not to that of other phase 2 

detoxifying genes [67].  

In conclusion, the redox-dependent Keap1/Nrf2 system plays a central role for HO-1 

induction in response to oxidativ stress. 
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3.3. The transcription repressor Bach1 

The transcription repressor Bach1 has been recognized to be a key regulator of the inducible 

HO-1 gene expression (Figure 2). Bach1 was initially identified as a regulator of globin gene 

expression in erythroid cells [68]. Similar to Nrf2, Bach1 belongs to the CNC family of TFs 

and forms heterodimers with small Maf proteins that bind to Maf recognition elements [60, 

69] such as AREs of the HO-1 promoter. In contrast to Nrf2, Bach1 has six heme regulatory 

motifs, which are crucial for its regulatory functions. Bach1 has initially been shown to 

repress HO-1 gene expression in the presence of low levels of intracellular heme. When 

intracellular heme levels are elevated, Bach1 changes its conformation and dissociates from 

the HO-1 promoter, allowing Nrf2 to bind to the ARE and to activate HO-1 gene expression 

[70] (Figure 2). More recently, heme has also been shown to control cellular Bach1 protein 

levels via a mechanism that involves proteasomal degradation of this protein [71]. As free 

heme exhibits major proinflammatory effects, it is conceivable that Bach1 might play a 

regulatory role in inflammation. In line with this notion, a regulatory link between Bach1 and 

the proinflammatory cytokine IL-6 has recently been elucidated in Bach1 knockout mice in 

the context of hyperoxic lung injury [72]. 

Bach1 does not only regulate HO-1 gene expression by heme, but also by other prooxidant 

compounds such as cadmium [73], diamide [74] and sodium arsenite [75]. More recently, the 

regulatory role of Bach1 in stress-dependent HO-1 induction has also been shown to be 

dependent on the differentiation status of keratinocytes in cell culture [76]. 

The interplay between Bach1 and Nrf2 to regulate HO-1 gene expression is discussed 

controversially. As an example, sodium arsenite has been shown to cause Bach1-specific 

HO-1 induction independent from Nrf2, whereas sodium arsenite-dependent regulation via 

this mechanism was not observed for other ARE-regulated genes such as thioredoxin 

reductase-1 [75]. Similarly, it has recently been demonstrated that knockdown of Bach1 in 

human keratinocytes specifically up-regulated gene expression of HO-1, but not that of other 

Nrf2-regulated genes [77]. In contrast, other investigators have reported that Bach1 induced 

HO-1 gene expression in coordination with a subset of other Nrf2-regulated genes [78, 79]. 
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In conclusion, the interplay of Bach1 and Nrf2 is crucial for the redox-dependent HO-1 

induction and might give this system a high range of plasticity to adapt to adverse cellular 

conditions.  

 

3.4. NF-B 

The NF-κB/Rel family of proteins comprises several TFs that regulate the inducible gene 

expression of various immunological and antioxidant protective responses including the up-

regulation of major proinflammatory cytokines, adhesion molecules and antioxidant stress 

proteins [80, 81]. Under basal conditions NF-κB is contained in the cytoplasm by inhibitor of 

NF-κB (I-κB). In response to multiple signals the regulatory NF-B subunits p50 and p65 

dissociate from I-κB and subsequently translocate to the nucleus [82, 83]. Although NF-κB 

has been shown to be induced by stimuli that are also known to up-regulate HO-1 gene 

expression, the role of this TF in HO-1 gene regulation has been discussed controversially. 

This might be explained by the fact that functional B-elements have remained elusive for a 

long while, because indirect approaches including computer-based sequence predictions, 

treatment with pharmacological NF-B inhibitors and dominant negative mutants of I-B have 

been applied in most studies.  

In two recent reports functional binding sites for NF-B of the promoters of the rat and mouse 

HO-1 genes have been identified. A κB element of the proximal rat HO-1 gene promoter 

region has been shown to control HO-1 up-regulation by the phorbol ester phorbol myrisate 

acetate (PMA), which is an activator of macrophages. PMA-dependent up-regulation of HO-1 

gene expression was not observed in cells from mice, which were deficient for the NF-κB 

subunit p65 and was mediated via an I-κB-kinase-independent pathway [84]. Moreover, Li 

and colleagues have described a functional κB element in the mouse HO-1 promoter. These 

authors have shown that a mechanism involving the NF-κB subunits p50 and p65 as well as 

the inducible NO-synthase mediated HO-1 up-regulation in vivo [85].  

In summary, NF-B appears to be directly involved in the induction of HO-1 gene expression.  
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3.5. Activating protein-1 (AP-1) 

The TF AP-1 is composed of structurally and functionally related members of the Jun (c-Jun, 

JunB and JunD), Fos (c-Fos, FosB, Fra1 and Fra2) and activating TF (ATF) protein families. 

Dimers of these proteins regulate gene expression via interaction with AP-1 sites, which are 

also known as TPA-responsive elements (TREs). Inducible gene expression via AP-1 has 

been shown to be involved in a diverse range of cellular responses including immunological 

and antioxidant stress responses [86, 87]. Similar to NF-B, AP-1 is up-regulated by a wide 

variety of prooxidant and pro-inflammatory stimuli. Alam and colleagues have initially 

reported that AP-1 played a crucial role for the induction of the mouse HO-1 gene [53, 88]. 

Subsequently, various functional AP-1 sites, which mediated inducer-dependent gene 

expression of HO-1, have been identified in the promoter regions of the rat and human HO-1 

genes [51, 88-91]. Elucidation of the molecular mechanisms that are involved in AP-1-

dependent HO-1 gene regulation has turned out to be challenging for two major reasons. 

First, the classical AP-1 (TGATGCA) site is contained in the consensus sequence of AREs 

(TGCTGAGTCA), which are localized in the E1 and E2 regions of the HO-1 gene promoter 

and serve as major target sites for Nrf2 [58]. Cross-talk of Nrf2 with members of the AP-1 

family, however, appears to be highly complex. As an example, c-Jun has recently been 

shown to directly interact with Nrf2 to activate the expression of the ARE-regulated genes 

NAD(P)H:quinone reductase and glutamate-cysteine ligase catalytic subunit by the chemical 

compound 4-hydroxy-2-nonenal [92]. Moreover, others have shown that Nrf2 might indirectly 

regulate the inducible expression of the glutamate-cysteine ligase catalytic subunit gene via 

activation of AP-1 [93]. Second, AP-1 sites in the HO-1 promoter mediate inducer-dependent 

HO-1 gene expression via mechanisms that involve synergistic cooperation of AP-1 with 

other TFs such as USF2 or SP-1. This has been shown for regulation of the rodent and 

human HO-1 genes in various cell culture models [94-97].  

In summary, we have highlighted the role of various redox-dependent TFs that mediate the 

complex regulation of inducible HO-1 gene expression. Detailed overviews on this issue 

have also been given by others [2, 8, 51]. 



Page 12 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 12 

4. Signaling cascades that mediate HO-1 gene regulation   

In general, activation of TFs is regulated by intracellular signaling cascades, which are 

controlled by modules of kinases/phosphatases and redox reactions. In the following, we 

highlight major signalling cascades that mediate HO-1 induction and are involved in the 

regulation of inflammatory immune responses.  

 

4.1. p38 MAPK 

It has been known for many years that activation of MAPKs plays a central role for the 

induction of HO-1 gene expression [51] (Figure 3). Three major subfamilies of MAPK are 

known: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 

MAPK [98]. While ERK is primarily considered to be activated in response to hormones and 

growth factors, JNK and p38 are primarily induced by stress-related stimuli [98, 99]. Due to 

space limitations, it is not intended to give a comprehensive overview on how various MAPKs 

might mediate HO-1 gene regulation, but rather discuss the specific role of p38 MAPK for 

HO-1 regulation.  

Similar to HO-1, p38 MAPK has been shown to be involved in antioxidant and anti-

inflammatory responses. Not surprisingly, gene expression of HO-1 and p38 MAPK are 

activated by the same or similar stimuli. Numerous reports have demonstrated that inhibition 

of p38 activity by specific small molecule inhibitors, dominant negative mutants or gene 

silencing strategies blocked HO-1 induction in response to multiple stimuli [2, 9, 51] (Figure 

3). Of note, the  and  isoforms of p38 play counter-regulatory roles to the p38  and  

isoforms, which has been demonstrated for sodium arsenite- and LPS-dependent induction 

of HO-1 [100, 101]. Unexpectedly and contradictory to what is generally thought on the 

activating role of p38 MAPK on HO-1 gene expression, inhibition of p38 has been 

demonstrated to up-regulate HO-1 gene expression in human hepatoma cells via interaction 

with the TF Nrf2 [102, 103]. These findings have essentially been confirmed in an 

independent report, in which pharmacological inhibition and genetic deficiency of p38 also 

up-regulated HO-1 gene expression [104]. Increased levels of HO-1 gene expression in 
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p38-deficient cells might be explained by the fact that these cells contain increased levels of 

intracellular ROS as compared to wild type cells [105]. Because p38 is a sensor of ROS, 

cross-talk between HO-1 and p38 may have additional yet unknown functions in the context 

of oxidative stress and inflammation. It is also important to point out that p38 is not only an 

upstream regulator of HO-1, but that p38 is also a downstream target of HO-1. Silva and 

colleagues have demonstrated that increased HO-1 activity degraded p38 in endothelial 

cells suggesting that these two molecules might form a physiological relevant feedback loop 

to regulate apoptosis [106]. 

In summary, p38 and HO-1 make up a closely linked signaling module with major regulatory 

functions in antioxidant and anti-inflammatory cellular responses.   

 

4.2. The phosphatidylinositol-3 kinase (PI3K)/Akt pathway 

PI3K/Akt is an anti-apoptotic survival pathway and is regulated by a number of receptor-

dependent mechanisms that are activated by growth factors and cytokines [107]. Moreover, 

in models of PI3K genetic deficiency an essential role of this kinase has been implicated in 

the regulation of inflammatory reactions [108]. Accumulating experimental evidence has 

indicated that activation of PI3K/Akt not only up-regulates HO-1 gene expression, but that the 

protective effects of this signaling cascade might be intimately linked with the salutary effects 

of HO-1 [109]. HO-1 gene expression has been shown to be up-regulated via PI3K/Akt in 

immunological cells in response to various signals such as prostaglandins or the 

pharmacological compounds [2, 94, 109, 110]. A more recent report has shown that HO-1 

induction was mediated via activation of this signaling cascade by a mitochondrial redox-

dependent pathway in vascular endothelial cells [111]. Finally, it has been suggested that 

PI3K/Akt and GSK3 may have counter-regulatory functions in HO-1 gene regulation. The 

complex interplay between these two kinases appears to involve mechanisms that control 

the nuclear localization of Nrf2 and Bach1[112, 113] (Figure 3). Details on the underlying 

regulatory mechanisms, however, are largely unknown.  
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In conclusion, the PI3K/Akt cascade is a key mediator of HO-1 induction in response to 

cytokines and growth factors. 

 

4.3. IL-10 and the Jak-STAT pathway 

The anti-inflammatory cytokine IL-10, which is a major inhibitor of activated macrophages 

and dendritic cells, has consistently been shown to induce HO-1 gene expression as 

reported by Lee and Chau [114] as well as by others [115-117]. Although the signaling 

cascades that couple HO-1 gene expression to the IL-10 receptor are not clear, activation of 

STAT3 has repeatedly been suggested to be involved in this regulatory pathway [116]. Jak-

STAT signaling plays a key role in the immune system and mediates major cytokine-

activated pathways. In endothelial cells STAT3 has been shown to be necessary to mediate 

the HO-1 dependent protection against hyperoxic lung injury [118]. Functional STAT3 

elements have recently been identified in the promoter regions of the rat [119] and human 

[120] HO-1 genes. Interestingly, a positive feedback circuit between IL-10 and HO-1 has 

been shown to be functional, which might amplify the anti-inflammatory effects of IL-10 in 

LPS-stimulated macrophages [114].  

Taken together, the IL-10 pathway is an important regulator of HO-1 gene expression in 

mononuclear cells. 

 

4.4. The toll-like receptor (TLR)-4 pathway 

HO-1 induction by LPS is mediated via (a) TLR-4 coupled pathway(s) and has been 

extensively studied in macrophages [21, 23]. Interestingly, Figueiredo and colleagues have 

recently demonstrated that heme led to HO-1 gene expression via direct interaction with 

TLR-4 and suggested that this interaction could at least partially explain the proinflammatory 

LPS-like effects of heme [121]. HO-1 gene expression by LPS in macrophages is not only 

induced via a TLR-4-dependent mechanism, but increased HO-1 activity has also been 

shown to have inhibitory effects on intracellular signaling, that is initiated by TLR-4-activation. 

The inhibitory effect of HO-1 on TLR-4 signaling could be regulated via HO-1-derived CO, 
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which blocked translocation of TLR-4 into lipid rafts [122] and/or the interaction of TLR-4 with 

the structural membrane protein caveolin-1 [123]. This regulatory interplay between TLR-4 

and HO-1 appears to form a negative feedback loop, which might inhibit excessive activation 

of macrophages by LPS.  

Taken together, activation of the central proinflammatory TLR-4 cascade leads to HO-1 gene 

activation and a negative feedback circuit in macrophages might be of major significance for 

the regulation of inflammatory responses. 

 

5. Pharmacological induction of HO-1 as an anti-inflammatory therapeutic target  

A promising near term approach to apply HO-1 for therapeutic interventions is the targeted 

induction of this inducible enzyme via pharmacological compounds. In the following, we 

discuss how pharmacological induction of HO-1 might be applicable for specific anti-

inflammatory therapeutic interventions.  

Metalloporphyrins such as cobalt protoporphyrin IX, which are prototypical inducers of HO-1 

and are commonly used in experimental cell culture and animal models, do not seem to be 

applicable for clinical interventions, because they lack cell-specificity and are severely toxic. 

Similarly, the HO substrate heme, which is one of  the most potent inducers of HO-1 and has 

been approved for the treatment of acute intermittent porphyria (heme arginate), only has 

limited potential for the treatment of inflammatory disorders. By contrast, a growing number 

of currently available pharmacologic compounds, which induce HO-1 and are applied in 

standard therapies, might be useful for clinical interventions in inflammatory disorders. As an 

example, statins, which have initially been introduced to prevent atherosclerosis via their 

cholesterol-lowering effects, have recently also been recognized to exhibit anti-inflammatory 

effects via HO-1 induction [124, 125]. Moreover, treatment with 5-aminosalicylic acid (5-

ASA), which is one of the pharmacologic standard therapies of inflammatory bowel disease, 

has been shown to mediate its protective anti-inflammatory effects at least in part through 

up-regulation of HO-1 in an animal model of colitis [126]. Finally, various polyphenols, which 

are a group of antioxidant compounds and are currently investigated for their anti-
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inflammatory and anticancer activities, have been shown to provide anti-inflammatory 

protection via the induction of HO-1 [127].  

Due to the cell-type specific immunomodulatory effects of HO-1, targeted up-regulation of 

HO-1 in myeloid and endothelial cells seems to be a straightforward anti-inflammatory 

therapeutic option. In fact, accumulating evidence has demonstrated that specific HO-1 

induction in these cells protects against inflammatory reactions. As an example, it has 

recently been demonstrated in an in vivo rat model that cell-specific up-regulation of HO-1 in 

liver tissue macrophages via the cytokine adiponectin protects against experimental ethanol-

dependent inflammation [117]. Other compounds, which have been shown to mediate 

myeloid cell-specific induction of HO-1, are the cardiovascular hormone atrial natriuretic 

peptide [128] and the clinically applied antiprotease compound 4-(2-aminoethyl)-

benzenesulfonyl fluoride (AEBSF) [94]. Clearly, these compounds might be applicable to 

specifically induce HO-1 in myeloid cells for therapeutic interventions. In endothelial cells, 

quercetin and theaflavin have been shown to provide specific HO-1-dependent anti-

inflammatory protection in an ApoE knockout mouse model of atherosclerosis [129]. 

Moreover, it has recently been demonstrated that the nonsteroidal anti-inflammatory drug 

celecoxib provided specific anti-inflammatory effects in endothelial cells via induction of HO-1 

[111].  

Finally, it is important to point out that targeted up-regulation of HO-1 has failed to provide 

anti-inflammatory protection, when induced after the onset of inflammation. This has been 

shown in animal models of inflammatory bowel disease and pancreatitis, respectively. In 

either case HO-1 was only protective when induced before the onset of experimental 

inflammation [130, 131]. These findings indicate that anti-inflammatory protection via HO-1 

induction is questionable in established inflammation, but might be useful as a preventive 

measure. 

In summary, targeted HO-1 induction in myeloid and endothelial cells has major anti-

inflammatory therapeutic potential. Therefore, identification and characterization of 
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pharmacological compounds that induce HO-1 in a cell-specific and cell context-specific 

manner deserve further attention. 

 

6. Conclusions 

 

1. HO-1 plays key immunomodulatory and anti-inflammatory roles via its cell type-

specific effects in myeloid and endothelial cells.  

 

2. Critical functions of HO-1 are degradation of proinflammatory free heme and 

enzymatic production of the anti-inflammatory compounds CO and BR.  

 

3. The inducible HO-1 gene regulation is mediated via an interplay of redox-

dependent activating TFs and the transcription repressor Bach1, which are under 

the control of a complex network of signaling cascades.  

 

4. Targeted induction of HO-1 in myeloid and endothelial cells has major therapeutic 

potential for the treatment of inflammatory disorders. 
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FIGURE LEGENDS 

 

Figure 1: Regulatory role of HO-1 in the inflammatory response of macrophages  

Schematic presentation on how HO-1 and its products BR and CO might control the balance 

of pro- and anti-inflammatory cytokines in macrophages. This balance plays a major role in 

the activation of macrophages and may thus be critical for the regulation of inflammatory 

reactions. Abbreviations: BR, bilirubin; CO, carbon monoxide; Fe, ferrous iron; IL, interleukin; 

LPS, lipopolysaccharide; LTA, lipoteichoic acid; TNF, tumor necrosis factor-. 

 
Figure 2: Regulation of HO-1 gene expression via the redox-dependent TFs Nrf2 and 

Bach1  

HO-1 gene expression is regulated via the TFs Nrf2 and Bach1, which have counter-

regulatory functions. Under basal conditions the transcription repressor Bach1 binds to AREs 

of the HO-1 promoter. When cellular heme levels are high and in response to stress stimuli, 

Bach1 is removed from the HO-1 promoter. In addition, stress stimuli cause dissociation of 

Nrf2 from Keap1, which activates HO-1 gene expression after nuclear translocation via 

binding to HO-1 AREs. Thus, the interplay between Bach1 and Nrf2 appears to be crucial for 

the regulation of inducible HO-1 gene expression. Abbreviations: ARE, antioxidant response 

element; Bach1, BTB and CNC homologue 1; HO-1, heme oxygenase-1; Keap1, Kelch-like 

ECH-associated protein 1; Nrf2, NF-E2-related factor 2; ROS; reactive oxygen species.  

 

Figure 3: Signaling cascades that target Keap1/Nrf2 and Bach1 to regulate HO-1 gene 

expression 

Schematic presentation of major signaling cascades that are involved in the regulation of 

HO-1 gene expression via interacting with Nrf2 and Bach1. The MAPK p38 has been 

shown to activate, but also to inhibit HO-1 gene expression via the TF Nrf2. GSK3-mediated 

phosphorylation has been shown to regulate the activity of Nrf2 and Bach1. Abbreviations: 

ARE, antioxidant response element; Bach1, BTB and CNC homologue 1; ERK, extracellular-
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regulated kinase; GSK3, glycogen synthase kinase-3; Keap1, Kelch-like ECH-associated 

protein 1; Nrf2, NF-E2-related factor 2; PI3-K, phosphatidylinositol-3 kinase.  
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