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Abstract

This paper extends the MOOD method proposed by the authors in [“A high-order
finite volume method for hyperbolic systems: Multi-dimensional Optimal Order De-
tection (MOOD)”, J. Comput. Phys. 230, pp 4028-4050, (2011)], along two com-
plementary axes: extension to very high-order polynomial reconstruction on non-
conformal unstructured meshes and new Detection Criteria. The former is a natural
extension of the previous cited work which confirms the good behavior of the MOOD
method. The latter is a necessary brick to overcome limitations of the Discrete Max-
imum Principle used in the previous work. Numerical results on advection problems
and hydrodynamics Euler equations are presented to show that the MOOD method
is efectively high-order (up to sixth-order), intrinsincally positivity-preserving on
hydrodynamics test cases and computationaly efficient.
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1 Introduction

In a recent paper [7], an original high-order method, namely the Multidi-
mensional Optimal Order Detection (MOOD) method, has been introduced
to provide up to third-order approximations to hyperbolic scalar or vectorial
solutions for two-dimensional geometry. The present article deals with new ex-
tensions of the method to general unstructured 2D meshes and to sixth-order
convergence in space. Classical high-order reconstructions such as MUSCL or
ENO/WENO methods are based on an a priori limiting procedure to achieve
stability property. The MOOD method follows a fundamentally different way
since the limiting procedure (polynomial degree reduction for instance) is
achieved a posteriori and provides the optimal local polynomial reconstruction
which satisfies given stability criteria.

The quest [41] of the (very) high-order schemes starts in the early 70’s with
the pioneer works of Van-Leer [42] and Kolgan [22–24]. Since this date, a large
literature was dedicated to the limited reconstruction methods for structured
and unstructured meshes. Several strategies became very popular due to their
intrinsic simplicity such that the MUSCL method [3,5,6,19,25,31] or their effi-
ciency to achieve very high-order accuracy such that the ENO/WENO method
[1,20,28,29,35,36,45,17,18,34,48,40], the Discontinuous Galerkin method [8–
11], the ADER method [13,38,39,14,15], the Residual Distribution Scheme
[2,12,32] and the spectral method [16,43,44].

While second-order methods do not require particular cautions, dealing with
higher-order methods leads to at least three specific difficulties which, up to
our knowledge, are not always clearly identified. First point one should not
consider the mean value of a function equivalent to the cell centroid value as
it is often done in the MUSCL community. The point is straightforward to
overcome but important to notice for newcomers in the field of higher-order
numerical schemes. Second point, for vectorial problems the reconstruction
process must be done on mean values of the conservative variables and not
on non-linear combinations of them. This point is often implied in the clas-
sical ENO/WENO papers but is rarely clearly stated and this may mislead
newcomers in the high-order community because the order of accuracy dis-
crepancy can be missed depending on the numerical tests used. Contrarily
one proposes the isentropic vortex in motion test case to numerically prove
that if the primitive variables are used for the reconstruction process then very
high-order of accuracy cannot be reached. Third point the Discrete Maximum
Principle property on mean values should not be used anymore as a guide
line for limitation. We propose in this paper to overcome this difficulty by a
new limiting criteria (or Detection Criteria in the MOOD jargon) adapted to
provide a full high-order method still maintaining robust stability. Simple ex-
amples are introduced within the text when some difficulties related to these
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points are to be expected.

The basic idea of the MOOD method consists of determining the higher poly-
nomial degree of each local cell still satisfying some stability restrictions. To
this end, an iterative process is developed. We perform a local polynomial
reconstruction of degree di for each cell Ki at the current time tn and com-
pute a candidate solution at time tn+1 without any limiting features. Then
a detecting procedure is carried out to check the cells which do not respect
the stability criteria and we reduce the local polynomial degree to obtain a
better stability. We state that the method is a posteriori since the limiting
procedure (namely the polynomial degree reduction) is performed after the
candidate solution computation. Such a situation is very useful to test the
admissibility of the solution. Furthermore, one has to carry out the limiting
algorithm if, and only if, it is necessary while the traditional a priori method
performs unnecessary limitation.

In this paper we propose extensions of the MOOD method which take into
account the three difficulties mentionned above. More precisely different detec-
tion processes both for the advection and hydrodynamics equations are devel-
oped. We numerically prove that these detection processes provide the effective
higher-order of accuracy on smooth profiles (up to sixth-order). Moreover we
show that for the hydrodynamics equations the method is positivity-preserving
by construction and we numerically observe this behavior. The test case have
been carried out on non-regular, polygonal and non-conformal meshes and the
last test case of the paper show the ability of the MOOD method to simulate
complex physics from an experimental set-up of the impact of a shock wave
on a cylindrical cavity.

The paper is organized as follows. Section 2 is dedicated to the generic frame-
work used to describe the MOOD method where the high-order finite volume
scheme is presented. Several obstacles to achieve high-order reconstruction
are pointed out and the polynomial reconstruction based on the mean value
approximation is detailed. In Section 3, we introduce new criteria to obtain
very high-order accurate schemes still preserving local stability. To show the
MOOD method efficiency, numerical tests both for the scalar and the vectorial
case are carried out in Section 4. We mainly focus on the method accuracy
and its robustness. We draw some remarks and future developments in the
last section.
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2 The MOOD method

2.1 General concept

The MOODmethod is a generic procedure that solves multidimensional hyper-
bolic system of equations on an unstructured grid in the Eulerian framework.
Given different numerical finite volume schemes the MOOD method provides
an optimal choice for each computational cell by mitigating accuracy vs ro-
bustness. From an abstract point of view the MOOD algorithm involves two
main ingredients: An ordered list of numerical schemes and a set of constraints
with detection criteria which defines the desirable properties the numerical so-
lution should have.

The over-topping numerical scheme represents the best scheme one would like
to employ. Usually this scheme is the most accurate but less robust one. At
the very end of the list lays the least accurate but more robust scheme which
is assumed to be satisfactory in all possible situations due to the stabilization
effect generated by its intrinsic numerical dissipation. In this paper the list
is composed of a robust first-order scheme (an upwind or a Rusanov, HLL,
HLLC scheme as instance) while several second or higher-order schemes using
polynomial reconstructions compose an ordered list of desirable schemes (see
Fig. 1 for instance). The second ingredient is the detecting procedure of a set
of constraints which determine the local eligibility of the solution for each cell.

We recall that discontinuous solutions may not be handled with high-order re-
constructions since local spurious and unphysical oscillations may take place.
The low-order numerical scheme should be used to prevent the numerical ap-
proximations from oscillating and force to respect some constraints or mathe-
matical properties that depend on equations under consideration. The numer-
ical solution is considered as eligible if it fulfills given properties. As instance
the positivity of certain variables such as density or pressure in hydrodynam-
ics equations or the Discrete Maximum Principle for advection equation shall
be considered.

In this paper the k-th numerical scheme of the list is a finite volume scheme
using unlimited piecewise polynomial reconstruction of degree k. Ultimately
this scheme has a k+1th-order of accuracy for smooth solutions. Consequently
the LO scheme is the generic firs-order finite volume scheme and the HO-1
scheme corresponds to an unlimited MUSCL method.

The core of the MOOD method is a loop over the cells to determine the
optimal polynomial degree one can safely use to produce an eligible numerical
solution. It amounts to select a numerical method in the ordered list of Fig.1.
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Fig. 1. Schematic representation of an ordered list of numerical schemes used in
the MOOD method. The bottom scheme is the most robust but least accurate one
denoted “Low-Order”. All over-topping schemes are successively more accurate but
less robust. The MOOD method is designed to choose the more adapted scheme for
each cell of the computational domain.

To this end, given a generic cell Ki and its neighbor cells Kj having edge eij
in common, we first recall two definitions introduced in [7] and then give a
new one to extend the MOOD concept:

• di is the Cell Polynomial Degree (CellPD) which represents the degree of the
polynomial reconstruction on Ki.

• dij = dji = min(di, dj) are the Edge Polynomial Degrees (EdgePD) corre-
sponding to the degrees of the polynomial reconstructions used to compute
approximations of the solution on edge eij.

• A is a set of prescribed physical and/or stability constraints. If for each cell
Ki the mean values of the numerical solution fulfill the constraints then the
numerical solution is said to be A-eligible.

The last item concerns the detecting procedure to distinguish if a candidate
solution is eligible according to a set of constraints. In practice we decrement
the di for any cell Ki which does not respect all the constraints. Such a cell
is called problematic. Moreover since neighbor cells fluxes may be affected by
this process, the decrementation is spread over the direct neighborhood. Such
a polynomial degree decrementation for a problematic cell is repeated up to a
di > 0 for which the set of constraints is fulfilled or to di = 0. At that ultimate
step the robust and diffusive LO scheme is employed and its first-order solution
is always taken as valid. In other words unlike traditional high-order schemes
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(using a priori limiting procedure), we introduce an a posteriori detecting
procedure where the decision to alter the polynomial degree is carried out
after computing the candidate solution.

We finally highlight that such a procedure may be interpreted as a try and fail
algorithm. Such a generic strategy might be adapted to other classes of method
such as the Discontinuous Galerkin method and detect the best polynomial
degree in each cell or Finite Element method and detect the most appropriate
finite element one can employ in a cell.

2.2 Framework

Let us consider a generic autonomous hyperbolic equation defined on a domain
Ω ⊂ R

2, t > 0 which casts in the conservative form

∂tU +∇ · F (U)= 0, (1a)

U(·, 0)=U0, (1b)

where U = U(x, t) is the vector of unknown functions, x = (x, y) denotes a
point of Ω, t is the time, F is the physical flux function and U0 is the initial
condition. Boundary conditions shall be prescribed in the following.
We assume that the computational domain Ω is a polygonal bounded set of
R

2 divided into convex polygonal cells Ki, i ∈ Eel, ci being the cell centroid
and Eel the cell index set. For each boundary edge, Ki ∩ ∂Ω, we introduce a
virtual cell Kj with j /∈ Eel which represents the exterior side of Ω and denote

by Ebd the index set of all virtual cells. Ẽel = Eel∪Ebd is the index set of all cells.
This notation avoids a special treatment for boundary edges in the scheme,
and provides a natural notation for ghost cells should they exist or not.

For each cell Ki, one denotes by eij the common edge between Ki and Kj,

with j ∈ ν(i) ⊂ Ẽel, ν(i) being the index set of all the elements which share
an edge with Ki. The extended neighborhood is represented by the index set
ν(i) ⊂ Ẽel of all Kj such that Ki ∩Kj 6= ∅ (see Fig. 2).
Moreover |Ki| and |eij| measure the surface of Ki and the length of eij re-
spectively while nij is the unit outward normal vector to eij pointing from
Ki to Kj. At last, qr

ij, r = 1, ..., R represent the Gaussian quadrature points
employed for numerical integration on edge eij.

The generic first-order explicit finite volume scheme is given by

Un+1
i = Un

i −∆t
∑

j∈ν(i)

|eij|
|Ki|

F(Un
i , U

n
j ,nij), (2)
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Fig. 2. Mesh notation. Index set ν(i) corresponds to blue cells with dots, ν(i) cor-
responds to non-white cells.

where F(Un
i , U

n
j ,nij) is a numerical flux which satisfies the classical properties

of consistency and monotonicity. To provide higher-order accuracy, we sub-
stitute in equation (2) the first-order approximation Un

i and Un
j with better

approximations of U at the quadrature points of edge eij leading to the generic
spatial high-order finite volume scheme

Un+1
i = Un

i −∆t
∑

j∈ν(i)

|eij|
|Ki|

R∑

r=1

ξrF(U
n
ij,r, U

n
ji,r,nij), (3)

where Un
ij,r and Un

ji,r, r = 1, ..., R are high-order approximations of U at
quadrature points qrij ∈ eij, r = 1, ..., R on both sides of edge eij and ξr
denote the quadrature weights.

For the sake of simplicity, let us write the scheme under the compact form

Un+1
h = Un

h +∆t HR(Un
h ), (4)

with Un
h =

∑

i∈Eel

Un
i 1IKi

the constant piecewise approximation of function U

and operator HR being defined as

HR(Un
h ) := −

∑

i∈Eel


 ∑

j∈ν(i)

|eij|
|Ki|

R∑

r=1

ξrF(U
n
ij,r, U

n
ji,r,nij)


 1IKi

. (5)

Finally to provide a high-order method in time, we use the third-order TVD
Runge-Kutta method (RK3, see [36]) which corresponds to a convex combi-
nation of three explicit steps
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Un+1
h =

Un
h + 2U (3)

h

3
with





U (1)

h = Un
h +∆t HR(Un

h )

U (2)

h = U (1)

h +∆t HR(U (1)

h )

U (3)

h = Û (2)

h +∆t HR(Û (2)

h )

(6)

where Û (2)

h is the convex combination (3Un
h + U (2)

h )/4.

2.3 Arbitrary degree polynomial reconstruction

In the introduction we have reminded one classical obstacle to reach higher-
order of accuracy when polynomial reconstruction is to be used. It is well-
known that the mean value Ui of a regular function U on Ki is approximated
by the value of the solution at the cell centroid, U(ci), with an error of O(h2)
where h represents the characteristic length of the cell. It results that any
reconstruction based on geometrical arguments using U(ci) in place of Ui can
only provide second-order approximation.

Therefore as classical higher-order finite volume methods the MOOD method
is based on polynomial reconstructions from mean values on cells. Let us
consider a generic reconstructed polynomial of degree d, given mean values U
on a generic cell K, under the form

Ũ(x; d) = U +
∑

1≤|α|≤d

Rα


(x− c)α − 1

|K|
∫

K
(x− c)α dx


, (7)

where c is the centroid of K, x a generic point in K and Rα are the unknowns
polynomial coefficients where α= (αx, αy) ∈ N

2 is a multi-index with |α| =
αx + αy. Note that by construction, the mean value on K of the polynomial
function is equal to U since the integral overK of the term between parenthesis
in (7) vanishes. It thus fulfills the conservation property on K.

There exist several techniques [1,28] to determine the coefficientsRα. Here, we
consider a least square approximation of neighbor mean values Uj where Kj

belongs to a compact stencil S(K). It amounts to minimizing the functional

E(Ũ) =
∑

j∈S(K)

ωk

[
1

|Kj|
∫

Kj

Ũ dx− Uj

]2
, (8)

where ωk are positive weights used to provide a better condition number. In
particular, the condition number of the associated linear system dependents
on the spatial characteristic length thus we use the solution proposed in [28]
to overcome this problem.
In practice, we do not directly solve the symmetric linear system associated
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with the minimization problem. Instead we use the technique from [4,29] where
an over-determined linear system is solved in a least-squares sense with a QR
decomposition using Householder transformations.
The reconstructed polynomial Ũ is thus exact for any polynomial function
of degree lower than d which provides the consistency of the reconstruction
method and further the status of a (d + 1)th-order numerical method.

Remark 1 In 2D, at least N (d) = (d + 1)(d + 2)/2− 1 neighbors are needed
to provide the minimal number of equations. However for the sake of robustness
more cells are involved. In details, we use at least 5 cells for d = 1, 8 cells for
d = 2, 16 cells for d = 3, 20 cells for d = 4 and 26 cells for d = 5.

Remark 2 In the introduction we have stated that in the general case one
should not identify the mean value of a non-linear combinaison with the non-
linear combinaison of mean values. Let ρ and φ be two regular functions on
cell Ki and ρi, φi, (ρφ)i, denote their respective exact mean values. A Taylor
expansion with respect to the centroid of the cell gives (ρφ)i = ρiφi + O(h2).
For instance let us consider the one-dimensional variables ρ, φ and (ρφ) and
their mean values on cell K1 = [0, h]

ρ(x) = 1 + x, φ(x) = 1− x, (ρφ)(x) = 1− x2,

ρ1 = 1 +
h

2
, φ1 = 1− h

2
, (ρφ)1 = 1− h2

3
.

We then deduce that |(ρφ)1 − ρ1φ1| = h2/12 leading to a second-order error.
As instance it is well known that for Euler system of equations the non-linear
transformation of the conservative mean values into primitive ones introduces
a second-order error in the general case.

2.4 Algorithm

Let us assume that we have access to a given sequence Un
h = (Un

i )i∈Eel of mean
value approximations at time tn, the goal is to build an eligible sequence
Un+1
h = (Un+1

i )i∈Eel at time tn+1 = tn + ∆tn in the sense that each approxi-
mation Un+1

i respects a set of constraints A. We only consider here a forward
Euler time step without loss of generality. The MOOD method algorithm is
the following:

1. Initialization at tn. The MOOD procedure starts by initializing the CellPD
to di = dmax and by computing the coefficients of the polynomial recon-
struction Ũi(x; di) on each cell.

2. Evaluation of EdgePD and values at Gauss points.We compute the EdgePD
dij on each edge and use polynomial function Ũi(x; dij) and Ũj(x; dij) to
compute approximations of U at Gaussian points on eij.
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3. Computation of candidate solution U⋆
h . Numerical fluxes are computed

using the reconstructed solution at Gauss points and one time step is
carried out to provide a candidate U⋆

h at time tn+1 = tn +∆tn.
4. Check U⋆

i for A-eligibility. If di 6= 0 we check the A-eligibility of each
mean value U⋆

i with respect to the constraints set A. In the case U⋆
i is

notA-eligible then CellPD di is decremented. If all cells areA-eligible then
the candidate solution is valid and we set Un+1

h = U⋆
h else the solution is

recomputed following steps 2., 3. and 4.

Remark 3 Only cells Ki where CellPD has been decremented and their neigh-
bors in the compact stencil ν(i) have to be re-updated. Consequently only these
cells will have to be checked for the next iterations of the MOOD procedure
within the current time step. This dramatically reduces computational cost.

Remark 4 Since polynomial reconstruction is costly in CPU time and mem-
ory, we proposed in [7] to truncate Ũi(·; dmax) to obtain lower-order polynomi-
als. However we found that for dmax > 2 this technique implies non desirable
behavior on discontinuous profiles as the reconstruction stencil remains large.
Moreover numerical experiments show that a one-by-one degree decrementa-
tion leads to avoidable computational effort since the decrementation procedure
is usually performed around discontinuities. We thus slightly modify the decre-
mentation algorithm by jumping from d = dmax to d = 2 and then from d = 2
to d = 0 if needed. This also reduces the computational effort while provid-
ing equivalent results on a wide range of test cases compared to a one-by-one
decrementation.

Remark 5 Polynomial reconstruction on boundary cells are treated using ghost
cells in order to to be consistent with the prescribed boundary conditions.

The major difficulty remains to determine a list of constraints which both
provides a very high accurate solution while avoids numerical artifacts such
as spurious oscillations in the vicinity of discontinuity. This is the purpose of
the next section.
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3 Detection process

The list of constraints A corresponds to eligible criteria that the numerical
approximation has to fulfill. To this end, detection process is necessary to
list where the candidate numerical solution fails to respect the constraints.
Such process must be very carefully designed to preserve high accuracy for
regular solutions whereas discontinuities should be treated with the lower order
scheme to avoid non-physical oscillations. The first subsection deals with the
advection problem and a new detection process called u2 and based on a
smoothness detector. In the second subsection the Euler system is considered:
Two detection processes are proposed and we show the positivity-preserving
property of the MOOD method.

3.1 Advection problem: The u2 detection process

Solutions of autonomous scalar hyperbolic problems satisfy the Maximum
Principle property. Such a property is also valid for advection problem with
divergence free velocity. Therefore the Discrete Maximum Principle (DMP)
seems to be a good candidate to detect problematic cells. Unfortunately, as
mentioned in the introduction, the strict DMP applied to mean values reduces
the order of accuracy to two (see the appendix for an example), and thus can
not be used alone. Classical studies show that the accuracy discrepancy only
occurs at extrema [33,30,21]. We will then mainly focus on extrema since the
DMP detection process is still relevant where the solution is locally monotone.
We propose the relaxation of the strict DMP at smooth extrema in order to
avoid accuracy discrepancy. This leads to the introduction of an additional
procedure to detect smooth extrema. Notice that in (W)ENO type of meth-
ods the DMP is not strictly enforced which implies that extrema are well
approximated and consequently arbitrary high-order of accuracy is achieved.
The first detection criteria is the DMP: No polynomial degree decrementing is
performed for cells where the DMP is satisfied. Let us now consider a cell Ki

where U⋆
i does not fulfill the DMP. Two situations may arise whether we deal

with a discontinuity or a smooth extrema. The major difficulty is to give a
concrete definition of the concept of a smooth extrema from a numerical point
of view. Actually a function may be considered irregular for a coarse mesh but
regular with a finer one. We try to overcome this difficulty by introducing the
following definition.

Definition 6 Let Ki be a cell and Ũi = Ũi(.; 2) a polynomial reconstruction
of degree 2 for an underlying function U. We define the second derivatives in
x and y directions by Xi = ∂xxŨi ∈ R and Yi = ∂yyŨi ∈ R. We will refer to
these second derivatives as “curvatures”.
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For all cell Kj, j ∈ ν(i), we define the maximal and minimal curvatures as

Xmin
i = min

j∈ν(i)
(Xi,Xj) and Xmax

i = max
j∈ν(i)

(Xi,Xj) ,

Ymin
i = min

j∈ν(i)
(Yi,Yj) and Ymax

i = max
j∈ν(i)

(Yi,Yj) .

We now introduce the new detection criterion to select smooth extrema.

Definition 7 A numerical solution U⋆
i in cell Ki which violates the DMP is

nonetheless eligible if

Xmax
i Xmin

i > 0 and Ymax
i Ymin

i > 0, (9)

|Xmin
i |

|Xmax
i | ≥ 1− εi and

|Ymin
i |

|Ymax
i | ≥ 1− εi, (10)

where εi is a cell dependent parameter defined by

εi = (∆xi)
1

2m , with ∆xi = |Ki|
1
m ,

m being the spatial dimension (m = 2 here).

Such a detection criterion is motivated by the following considerations. For a
given mesh, the solution is locally considered as non-oscillating if condition
(9) is fulfilled meaning that, at the numerical level, the “curvatures” of the P2

approximation have the same sign.
Moreover for a given mesh, the solution is considered locally C2 from a nu-
merical point of view if condition (10) is fulfilled. The parameter ε is a mesh
dependent coefficient which prescribes the tolerance. Such criteria verifies if
the “curvatures” are almost identical in the vicinity of cell Ki with respect to
the local characteristic space length ∆xi.
The choice of ε derives from numerous tests. In fact our numerical experi-
ments have shown that ε scales like a cell dependent characteristics length to
a power depending on the dimension of space (tests have been carried out in
1D and 2D). It seems to the authors to be the best compromise to gain a very
high-order of convergence while maintaining reasonable monotonicity. Finally
we remark that at the limit ε = 0 we recover the DMP.

The set of constraints A for advection equation is thus constituted by the
DMP relaxed by the smooth extrema detector described above. The detection
process is called u2 detection in reference to the second-order derivatives and
is summarized in the sequel.
Being given a sequence U⋆

h = (U⋆
i )i∈Eel , the u2 detection procedure in the case

of the advection problem is given by the following algorithm.
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1. The DMP criterion is first checked on each cell Ki

min
j∈ν(i)

(Un
i , U

n
j ) ≤ U⋆

i ≤ max
j∈ν(i)

(Un
i , U

n
j ). (11)

2. If U⋆
i does not satisfy (11) then

a- Compute Xk,Yk for k ∈ ν(i)
⋃{i} and coefficient εi,

b- Check criteria (9) and (10). If cell i is not a smooth extrema then di
is decremented, else U⋆

i is eligible.

3.2 Euler system: Two detection processes and positivity-preserving

The compressible hydrodynamics Euler system of equations is the following
hyperbolic unsteady non-linear system involving conservation of mass, mo-
mentum and total energy

∂t




ρ

ρu

ρv

E




+ ∂x




ρu

ρu2 + p

ρuv

u(E + p)




+ ∂y




ρv

ρuv

ρv2 + p

v(E + p)




= 0. (12)

The primitive variables are the density ρ, the velocity U = (u, v) and the
pressure p. The pressure is linked to two thermodynamical variables such as
density and specific internal energy ε through an Equation Of State (EOS)
p = p(ρ, ε). As instance the classical ideal gas law states that p = (γ − 1)ρε
where γ is the ratio of specifics heats. Moreover the total energy E is such
that E = ρ(ε+ 1/2‖U‖2).
Even if the DMP property is used in most of limiting procedures (MUSCL
technique as instance), the DMP property does not make sense in the case of
the Euler system, for the density or the total energy for instance, since the
velocity is not divergence free. Consequently we can not rely only on DMP.
We propose here two detecting procedures which we have been widely experi-
mented and present in the next sections the pros and cons of such procedures.

3.2.1 Physical Admissible Detection (PAD)

The first and minimal detection criteria consists of ensuring the physical mean-
ingfulness of the primitive variables, namely positivity of density and pressure.
Then the set of constraints A are used to test if the candidate solution satisfies
ρ⋆i > 0 and p⋆i > 0. Note that p⋆i is not a conservative variable and derives
from nonlinear combinations of conservative ones. The PAD algorithm is the
following.
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1. The Physical Admissibility criterion is first checked on each cell Ki

ρ⋆i > 0, p⋆i > 0. (13)

2. If the PAD criterion is not satisfied then di is decremented, else U∗
i is

eligible.

The PAD procedure only consists of maintaining the physical meaningful-
ness of the numerical approximation. In other words, the high-order MOOD
method coupled with the PAD Detection Process is positivity-preserving for
density and pressure. This point is further discussed in section 3.2.3.

3.2.2 Extension of the u2 detection process

Physical admissibility of the solution is not enough to prevent oscillations in
the vicinity of discontinuities. It is a precondition but we require an supple-
mentary detection criterion to decide whether the numerical solution is locally
smooth or not. To this end, we adapt the u2 criterion to the density variable
using local P2 polynomial reconstruction ρ̃i = ρ̃i(.; 2) to evaluate Xi = ∂xxρ̃i
and Yi = ∂yyρ̃i. The u2 detection algorithm for the Euler system is thus the
following.

1. The PAD criterion is first checked on each cell Ki. If it is not satisfied
then di is decremented and Steps 2. and 3. are skipped.

2. The DMP criterion of the density function is checked on each cell Ki

min
j∈ν(i)

(ρni , ρ
n
j ) ≤ ρ⋆i ≤ max

j∈ν(i)
(ρni , ρ

n
j ). (14)

3. If ρ⋆i does not satisfy (14) then
a- Compute Xk,Yk for k ∈ ν(i)

⋃{i} and coefficient εi,
b- Check criteria (9) and (10). If cell i is not a smooth extrema then di

is decremented for any conservative variable, else U∗
i is eligible.

The set of constraints A consists of the PAD, and the u2 detection process on
the density. Note that the density is thus the variable onto which the detection
is performed. However there is a large number of possible choices of detection
variables and decrementing procedures.

3.2.3 Positivity-preserving property

One important property a scheme must fulfill is to be positivity-preserving,
that is given a set of physically admissible mean values the scheme provides
another set of physically admissible ones. It is absolutely mandatory for the
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simulation to continue. In the case of the Euler equations density and pressure
must be positive but this is not straightforwardly ensured by most of classical
MUSCL or ENO/WENO schemes and most of simulation codes need a spe-
cial treatment when the positivity is violated. Indeed designing a positivity-
preserving scheme may be a difficult task and often leads to a more complex
scheme because of the classical a priori limitation philosophy. This classical
difficulty is stated by the authors in [49] page 2754 as “ It is very difficult
to design a conservative high-order accurate scheme preserving the positiv-
ity”. However the a posteriori treatment implies that the MOOD method is
intrinsically positivity-preserving assuming the three following points:

1. The lowest order scheme is positivity-preserving, in our case it is the
first-order finite volume one.

2. The positivity of density and pressure are parts of the set of constraints
A.

3. The EdgePD strategy is upper-limiting see [7] definition 9 page 4033. This
implies that if the CellPD of a given cell is 0 then this cell is fully updated
with the first-order scheme.

The proof that the MOOD method is positivity-preserving is analogous to the
one in theorem 10 page 4033 of [7]. In short, given a candidate solution one
checks the positivity of density and pressure. If a cell is problematic that is
to say density or pressure is negative then the CellPD is decremented. The
next candidate solution is computed and checked again: Either this next can-
didate is positive or the decrementing process carries on until the CellPD is
zero. In this latter case points 1. and 3. necessarily imply the positivity of
the candidate solution. As this process is the same for any cell it leads to a
positivity-preserving solution in a finite number of MOOD iterations.
In the numerical section we propose the Noh test case for which our imple-
mentation of the classical MUSCL scheme generates a negative pressure and
fails to complete the simulation whereas the MOOD method always gives a
physical meaningful solution.
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4 Numerical tests

MOOD has been implemented into a 2D unstructured (polygonal) code which
can deal with advection equation and hydrodynamics equations. The polyno-
mial reconstruction ranges from piecewise constant up to piecewise polyno-
mial of fifth degree. Following remark 4 one uses two decrementing sequences:
P5-P2-P0 and P3-P2-P0. It implies that only two precomputed matrices for the
reconstruction step per cell are only stored in memory for d = dmax and d = 2.
The flux computation involves integrals which are approximated using Gaus-
sian numerical integration. We use two Gaussian points on edges for P2 and
P3 reconstructions and three for P5 to reach the expected order of accuracy
for numerical integrations. Time integration is performed with the RK3-TVD
method given by system (6). We apply the MOOD procedure detailed in sec-
tion 2 to each sub-step of the RK3-TVD. The CellPD are thus reinitialized to
dmax at the beginning of each time sub-step. By default we use classical time
step control with CFL=0.6. In the case of convergence study we use a fixed
time step ∆t = ∆xr/3 to reach rth-order of accuracy. Given a variable ϕ the
relative L1 and L∞ errors are measured by:

err1 =

∑
i∈Eel |ϕN

i − ϕ0
i ||Ki|∑

i∈Eel |ϕ0
i ||Ki|

and err∞ =
maxi∈Eel |ϕN

i − ϕ0
i |

maxi∈Eel |ϕ0
i |

,

where (ϕ0
i )i and (ϕN

i )i are respectively the cell mean values at initial time
t = 0 and final time t = tfinal = N∆t.
The unstructured meshes used in this paper are of different kinds, logically
rectangular, Delaunay triangulation, Voronoi tessellation and non-conformal
polygonal mesh. Contrarily to what was done in [7] the whole detection is
made a posteriori, namely we do not check if the reconstructed values at Gauss
points are physically admissible or not. If they are not, the flux and the cell
mean values are usually undefined therefore the cell is flagged as problematic.

4.1 Advection equation

Let us consider the scalar linear advection of a quantity u with velocity V (x)




∂tu+∇.(V u) = 0,

u(., t = 0) = u0,
(15)

where V (x) is a continuous function on Ω ∈ R
2 and u0 is the initial condition.

Boundary conditions are prescribed as periodic ones on ∂Ω.
The Double Sine Translation (DST) is first tested on Delaunay triangulations
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and Voronoi tessellations in order to prove that on smooth solution MOOD can
actually maintain very high-order of accuracy with the u2 detection criteria.
Only second-order of accuracy is reached when DMP detection criterion is
used. The second test is the Solid Body Rotation (SBR) that is used to prove
that MOOD-u2 can preserve smooth extrema but can still limit discontinuous
profiles. This problem is further used to show the improvement obtained when
polynomial reconstruction degree is increased, in other word when high-(P1)
and very high-order (P3, P5) numerical schemes are used.

4.1.1 Double Sine Translation (DST)

Let Ω be the unit square. We consider a constant velocity V = (2, 1) and the
C∞ initial condition

u0(x, y) = sin(2πx) sin(2πy).

The final time is tfinal = 2.0. Periodic boundary conditions imply that the
exact final solution coincides with the initial one. The solution is therefore
always smooth during the computation.
The computations are carried out on series of successively refined Delaunay
triangulations (from 456 up to 29184 cells, see an example in Fig. 3 left panel)
and polygonal Voronoi tessellations (from 300 up to 19200 cells, see Fig. 3
right panel). Note that the meshes are far from being regular, see right panel
of Fig. 3 fro instance. We plot in Fig. 4 the convergence curves obtained on

Fig. 3. Example of Delaunay (left) and Voronoi (right) meshes for the DST problem.

the series of Delaunay triangulations and Voronoi tessellations. The MOOD
method with the DMP detection process is displayed on top panels whereas
the u2 Detection Process is on bottom panels. It clearly shows the strong lim-
itation implied by the DMP since only 3rd-order and 2nd-order are reached in
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L1 and L∞ norms respectively independently of the polynomial degree. On
the contrary the proposed u2 Detection Process reaches the expected order of
convergence. This is actually explained by the fact that only polynomials of
maximal degree are used during the whole computation, i.e. no CellPD decre-
menting is ever recorded.
L1 and L∞ errors and rates are given in Table 1 for the DMP and the u2 de-
tection criteria. One observes that the optimal order of convergence is reached
for the u2 detection criterion whereas only second-order accurate results are
obtained when the DMP is used.
This accuracy test on smooth functions is passed by the MOOD method with
u2 Detection Process, the next section is thus dedicated to the study of its
behavior on non-smooth profiles.

Fig. 4. Error curves for the DST problem for series of Delaunay meshes (empty
symbols) and of Voronoi meshes (filled symbols) for the DMP detection process
(top) and the u2 one (bottom).
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DMP detec. process u2 detec. process

Deg./Type Cell Nb L1 error L∞ error L1 error L∞ error

P2/Delaunay 456 1.775E-01 — 2.629E-01 — 1.656E-01 — 1.549E-01 —

1824 2.303E-02 2.95 8.016E-02 1.71 2.351E-02 2.82 2.283E-02 2.76

7296 3.142E-03 2.87 2.522E-02 1.67 3.049E-03 2.95 2.995E-03 2.93

29184 4.391E-04 2.84 8.082E-03 1.64 3.870E-04 2.98 3.784E-04 2.98

P2/Voronoi 300 4.804E-01 — 5.278E-01 — 4.423E-01 — 4.339E-01 —

1200 7.483E-02 2.68 1.359E-01 1.96 7.482E-02 2.56 7.070E-02 2.62

4800 9.779E-03 2.94 3.432E-02 1.99 9.788E-03 2.93 9.348E-03 2.92

19200 1.244E-03 2.97 1.039E-02 1.72 1.233E-03 2.99 1.176E-03 2.99

Expected order 3 3 3 3

P3/Delaunay 456 6.383E-02 — 1.801E-01 — 9.474E-03 — 1.007E-02 —

1824 8.369E-03 2.93 5.920E-02 1.61 5.751E-04 4.04 7.916E-04 3.67

7296 9.916E-04 3.08 2.057E-02 1.53 3.611E-05 3.99 4.664E-05 4.09

29184 1.185E-04 3.06 7.146E-03 1.53 2.140E-06 4.08 2.774E-06 4.07

P3/Voronoi 300 1.158E-01 — 2.826E-01 — 6.431E-02 — 5.961E-02 —

1200 2.263E-02 2.36 9.234E-02 1.61 4.017E-03 4.00 3.632E-03 4.04

4800 2.157E-03 3.39 2.787E-02 1.73 2.583E-04 3.96 2.539E-04 3.84

19200 2.393E-04 3.17 9.295E-03 1.58 1.649E-05 3.97 1.718E-05 3.89

Expected order 4 4 4 4

P5/Delaunay 456 6.098E-02 — 1.691E-01 — 3.034E-04 — 3.715E-04 —

1824 9.660E-03 2.66 6.383E-02 1.41 6.796E-06 5.48 9.939E-06 5.22

7296 1.359E-03 2.83 2.399E-02 1.41 1.207E-07 5.82 1.831E-07 5.76

29184 1.704E-04 3.00 8.574E-03 1.48 1.767E-09 6.09 2.836E-09 6.01

P5/Voronoi 300 1.352E-01 — 2.610E-01 — 4.584E-03 — 4.955E-03 —

1200 2.213E-02 2.61 9.116E-02 1.52 7.327E-05 5.97 8.740E-05 5.83

4800 2.119E-03 3.38 2.914E-02 1.65 1.341E-06 5.77 1.573E-06 5.80

19200 2.449E-04 3.11 1.005E-02 1.54 3.017E-08 5.47 3.703E-08 5.41

Expected order 6 6 6 6

Table 1
L1 and L∞ errors and convergence rate for the DST problem for the MOOD method
with DMP and u2 detection process.
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4.1.2 Solid Body Rotation (SBR)

First introduced by R.J. Leveque in [25], the Solid Body Rotation test on the
unit domain consists of one rotation of three shapes: a hump, a cone and a
slotted cylinder. Each shape is located within a circle of radius r0 = 0.15

Hump centered at (x0, y0) = (0.25, 0.5)

u0(x, y) =
1

4
(1 + cos(πmin(r(x, y), 1))).

Cone centered at (x0, y0) = (0.5, 0.25)

u0(x, y) = 1− r(x, y).

Slotted cylinder centered at (x0, y0) = (0.5, 0.75)

u0(x, y) =




1 if |x− 0.5| < 0.25, or y > 0.85,

0 elsewhere,

where r(x, y) =
1

r0

√
(x− x0)2 + (y − y0)2. To perform the rotation, we use the

velocity V (x) = (−y + 0.5, x− 0.5) and the final time tfinal = 2π corresponds
to one full rotation.
For this test case we use a genuinely unstructured and non-uniform mesh made
of 5190 triangles see Fig. 5 where we also display the initial data in isolines
view, see also Fig. 6 top-left panel where a side view of the initial data is
provided. This mesh is refined around the slotted disk, the ratio between the
largest and smallest edge length is approximately 7. The three shapes while
rotating move across the refined and coarse zones. The purpose is to emphasize
the effects on the numerical results of using a truly non-regular mesh.
We plot in Fig. 6 profile views of the solution obtained from three methods
but all with a P5 polynomial reconstruction. First the MOOD method with
the DMP Detection Process, then the MOOD method with the u2 Detection
Process, and finally the unlimited version of the FV scheme. These results
show on one hand that the solution with u2 Detection Process on the non-
smooth slotted cylinder is almost the same as for the DMP. On the other hand
it shows that the u2 solution on the two smooth profiles are exactly the ones
obtained by the unlimited scheme. In other words, the u2 Detection Process
maintains the same accuracy as an unlimited scheme on smooth profiles and
almost the monotonicity of a limited scheme on non-smooth ones. The same
conclusion applies for any other polynomial degrees tested hence we have
skipped these figures. In Fig. 7 are displayed a zoom on the slotted disk at
the final time for the initial/final, the limited MUSCL scheme (MLP [31]),
MOOD-P1, MOOD-P3 and MOOD-P5 with u2 detection process.
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Fig. 5. Initial mesh and initial data for the SBR problem. The mesh is composed
of 5190 triangles refined around the slotted disk. The resulting mesh is genuinely
non-uniform.

In Table 2 are gathered the errors for P3 and P5 in order to show that the u2
Detection Process provides a slightly better accuracy than the DMP detection
process. Finally we display in Table 3 the min/max values of the final numer-

L1 Error DMP u2 UNLIMITED

P3 3.219E-1 3.171E-1 3.734E-1

P5 2.690E-1 2.621E-1 3.223E-1

Table 2
L1 error for the SBR problem for different detection processes and polynomial
degrees.

ical solution for the limited MUSCL method (MLP), MOOD-P1, MOOD-P3

and MOOD-P5 all with DMP detection or u2 Detection Process. This table
shows that the u2 detection process permits slight undershoots which is one
of the reasons MOOD can reach high-order accuracy.
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Initial≡Final MOOD-P5 DMP

MOOD-P5 u2 UNLIMITED P5

Fig. 6. Profiles of the SBR solution for the initial/final exact solution, MOOD-P5

with DMP detection process, MOOD-P5 with u2 detection process, MOOD-P5 with-
out any limitation.

Method MUSCL MOOD-P1 MOOD-P3 MOOD-P5

Detec. DMP u2 DMP u2 DMP u2

Min 5.58E-10 0.00E+00 -2.45E-03 3.27E-08 -1.31E-03 1.10E-08 -5.60E-05

Max 7.48E-01 8.53E-01 8.51E-01 9.49E-01 9.54E-01 9.61E-01 9.60E-01

Table 3
Minimal and maximal mean values for the SBR problem for different detection
processes and polynomial degrees.
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Fig. 7. Profiles of the SBR solution for the initial/final exact solution (top), for
a limited MUSCL method (MLP) and MOOD-P1, MOOD-P3, MOOD-P5 with u2
detection process.
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4.2 Euler system

In this section we test the MOOD method on unstructured meshes for hydro-
dynamics problems governed by the Euler system. First we need to assess the
effective numerical accuracy of the method on a smooth problem for which an
exact solution exists. We choose an isentropic vortex which presents a smooth
profile during the entire simulation and, as such, permits the estimation of
errors and convergence orders. In a second test we run the Double Mach
reflection problem to highlight the good capacity of the MOOD method to
capture strong shocks and contact discontinuities. Moreover we provide CPU
cost and memory storage tables. Next the Noh problem is used to assess the
positivity-preserving property of the MOOD method. Last we propose a gen-
uine physical problem extracted from [37] for which experimental results are
available.

4.2.1 Isentropic vortex

The isentropic vortex problem is detailed in [35] and [47], therefore we only
mention the basic data for the sake of consistency. The simulation domain Ω
is the square [−5, 5]× [−5, 5] and we consider an initial gas flow given by the
following condition (ambient gas) ρ∞ = 1.0, u∞ = 1.0, v∞ = 1.0, p∞ = 1.0,
with a normalized ambient temperature T ∗

∞ = 1.0 computed with the perfect
gas equation of state and γ = 1.4.

A vortex centered at xvortex = (xvortex, yvortex) = (0, 0) is added to the ambient
gas at the initial time t = 0 with the following conditions u = u∞ + δu,
v = v∞ + δv, and T ∗ = T ∗

∞ + δT ∗

δu = −y′
β

2π
exp

(
1− r2

2

)
, δv = x′ β

2π
exp

(
1− r2

2

)
,

δT ∗ = −(γ − 1)β

8γπ2
exp

(
1− r2

)
.

with r =
√
x′2 + y′2, (x′ = x − xvortex, y

′ = y − yvortex) and vortex strength is
given by β = 5.0. Consequently, the initial density is given by

ρ = ρ∞

(
T ∗

T ∗
∞

) 1
γ−1

=

(
1− (γ − 1)β

8γπ2
exp

(
1− r2

)) 1
γ−1

(16)

We assume periodic condition on the boundary and the exact solution at any
time t is the same vortex but translated.
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The goal of the present test is to highlight the stagnation of the rate of ac-
curacy when primitive variables are used for the polynomial reconstructions
instead of conservative ones. As pointed out in the previous section, nonlin-
ear operations on means values reduces the method order up to at most a
second-order one. We have performed the numerical simulations of the isen-
tropic vortex problem with the same mesh using the less restrictive Physical
Admissible Detection (PAD) procedure to provide effective very high-order.
A series of refined meshes (from 200 up to 51200 cells) are successively used
to compute the numerical solution.

In Table 4 are gathered the L1 and L∞ errors and rates of convergence for
MOOD-P2, MOOD-P3, MOOD-P5 using the Physical Admissible Detection
Clearly, conservative variable reconstructions provide the optimal convergence
rate whereas the reconstruction with primitive variables is systematically re-
duced to a second-order one. We also display in Fig. 8 the convergence curves

Conservative variables Primitive variables

Deg. Cell Nb L1 error L∞ error L1 error L∞ error

P2 200 1.850E-02 — 2.680E-01 — 2.002E-02 — 2.884E-01 —

800 6.519E-03 1.50 1.255E-01 1.09 7.621E-03 1.39 1.771E-01 0.70

3200 1.444E-03 2.17 2.208E-02 2.51 1.536E-03 2.31 4.054E-02 2.13

12800 2.504E-04 2.53 3.631E-03 2.60 2.554E-04 2.59 6.060E-03 2.74

51200 3.347E-05 2.90 4.923E-04 2.88 4.540E-05 2.49 8.756E-04 2.79

Expected order 3 3 3 3

P3 200 1.137E-02 — 1.880E-01 — 1.424E-02 — 2.384E-01 —

800 2.504E-03 2.18 4.686E-02 2.00 3.530E-03 2.01 8.358E-02 1.51

3200 3.524E-04 2.83 5.977E-03 2.97 5.666E-04 2.64 8.835E-03 3.24

12800 1.947E-05 4.18 3.725E-04 4.00 1.377E-04 2.04 1.649E-03 2.42

51200 1.069E-06 4.19 1.996E-05 4.22 3.460E-05 1.99 4.091E-04 2.01

Expected order 4 4 4 4

P5 200 8.193E-03 — 1.200E-01 — 1.161E-02 — 1.915E-01 —

800 1.762E-03 2.22 3.433E-02 1.81 2.492E-03 2.22 3.740E-02 2.36

3200 6.767E-05 4.70 1.133E-03 4.92 5.482E-04 2.18 6.112E-03 2.61

12800 1.011E-06 6.06 2.237E-05 5.66 1.382E-04 1.99 1.598E-03 1.94

51200 2.583E-08 5.29 4.809E-07 5.54 3.462E-05 2.00 4.039E-04 1.98

Expected order 6 6 6 6

Table 4
L1 and L∞ errors and convergence rates for the isentropic vortex problem with
MOOD and the Physical Admissible Detection Process. Comparison between con-
servative and primitive variables polynomial reconstructions for different polynomial
degrees.

corresponding to the errors of Table 4. Finally we also mention that when the
vortex is not in motion, i.e. (u∞, v∞) = (0, 0), then the reconstruction using
primitive variables does produce the correct order of convergence.
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Fig. 8. Convergence curves for the isentropic vortex. Top figures correspond to the
reconstruction with primitive variables while bottom figures use reconstruction with
conservative variables. The left column represents the L1-norm error and the right
column the L∞-norm error. The PAD detection process has been used.

4.2.2 Double Mach reflection of a strong shock

The double mach reflection of a strong shock was first proposed in [46]. This
test problem involves a Mach 10 shock in a perfect gas with γ = 1.4, which is
initially positioned at x = 1/6, y = 0 and makes a 60◦ angle with the x-axis.
The gas ahead of the shock is at rest and has uniform initial density ρ0 = 1.4
and pressure p0 = 1. The reflecting wall lies along the bottom of the domain,
beginning at x = 1/6. The region from x = 0 to x = 1/6 along the bottom
boundary at y = 0 is always assigned values for the initial post-shock flow.
Inflow boundary condition on the left side and outflow condition on the right
side are also set. At the top, the boundary conditions are set to describe the
exact motion of the Mach 10 flow (see [11]).
The goal of the test is, on one hand, to quantitatively show the effect of the
polynomial degree reconstruction when dealing with strong shock and, on the
other hand, to observe the capacity of the method to reproduce the complex
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structure due to the contact discontinuities in the right part of the shock.
The mesh has been obtained using the free mesher Gmsh by a refinement of a
coarser Delaunay ones, it is constituted of 102720 triangles (see Fig. 9 top.).
Moreover for all figures 30 isolines between 1.39 and 23 have been drawn.

We depict in Fig. 9 the impact of the polynomial degree of the reconstruc-
tion on the numerical solution using the same mesh. The u2+PAD Detection
Processes has been employed to control the oscillations in the vicinity of the
shock. Clearly the degree of the reconstruction has a strong impact on the
solution accuracy and improve the shock capture. Most relevant parts are the
contact discontinuities in the right zone x ∈ [2.3, 2.7] which show the capac-
ity of the scheme to reduce numerical viscosity when employing higher-order
reconstructions.

Figure 10 is a comparison between the Physical Admissible Detection (PAD)
and the coupling u2+PAD. The u2 Detection Process reduces the oscilla-
tions but increases the numerical viscosity close to contact discontinuities. It
is worth noting that even with a weak Detection Process, namely the PAD
procedure, the MOOD method is still very robust and provides a solution re-
sembling the classical ones from the literature [46]. The choice of the detecting
procedure depends of the simulation goal: Less oscillations with the u2+PAD
or less diffusive with the PAD alone.

To conclude with this test case, we provide in Tables 5 and 6 the cost of the
MOOD method running on a single core of the three following machines (using
-O3 flag for gfortran compiler)

M1 : A laptop with Intel Core2Duo P7550 (2 cores) @ 2.26GHz, 3MB of L2
Cache, 8GB of RAM.

M2 : A server with two Intel Xeon E5335 (4 cores) @ 2.00Ghz, 8MB of L2
Cache, 16GB of RAM.

M3 : A desktop with Intel Core i5 2500 (4 cores) @ 3.30GHz, 6MB of L2 Cache,
8GB of RAM.

This comparison is done on two different meshes, one made of 57600 uniform
quadrilaterals and one Delaunay triangulation with 17624 cells. We compare
MOOD-P2, MOOD-P3 and MOOD-P5 for both the PAD and u2+PAD de-
tection processes. We give in Table 5 the memory cost (in left column) and
the total number of iterations (in right column) for all simulations, while we
provide in Table 6 the total CPU time (in left column) and the time in micro-
seconds needed for one complete time step of a single cell (in right column)
including reconstruction, flux computation and time integration (RK3) of all
variables.
It is fairly difficult to compare the cost of two methods running on different
machines, for instance the method is faster on triangles with M2 compared to
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Fig. 9. Comparison between the P2 (top), P3 (middle) and P5 (bottom) polynomial
reconstructions with the conservative variables using the same mesh. Physical Ad-
missible Detection (PAD) and u2 Detector have been both used to prevent numerical
oscillations

M1 but it is the opposite for quadrilaterals. However according to reference
[15] the MOOD method is competitive when compared to trully unstructured
methods of the same order.
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Fig. 10. Results of the MOOD method with P5. In the top figure, simulation has
been carried out with the Physical Admissible Detection (PAD) Detection Process
while we have both employed the PAD and u2 Detection in the middle figure. The
left bottom and right bottom figure give a zoom of the solution with the PAD and
u2+PAD Detection Process respectively.
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Mesh
P2 - 3rd-order P3 - 4th-order P5 - 6th-order

Detection

memory iterations memory iterations memory iterations

57600 qua.
240Mo 1012 385Mo 998 840Mo 1004 u2+PAD

180Mo 1016 270Mo 1010 572Mo 1031 PAD

17624 tri.
60Mo 1264 105Mo 1265 250Mo 1265 u2+PAD

50Mo 1268 67Mo 1272 165Mo 1275 PAD

Table 5
Memory storage and total number of iterations for the Double Mach problem
according to the different configurations with the MOOD method.

Machine Mesh
P2 - 3rd-order P3 - 4th-order P5 - 6th-order

Detection

total per iter. total per iter. total per iter.

M1

57600 qua.
2157s 37µs 3162s 55µs 8964s 155µs u2+PAD

1346s 23µs 2327s 40µs 8314s 140µs PAD

17624 tri.
601s 27µs 1003s 45µs 1650s 74µs u2+PAD

492s 22µs 762s 34µs 1573s 70µs PAD

M2

57600 qua.
2228s 38µs 4785s 83µs 12371s 214µs u2+PAD

1629s 28µs 3830s 66µs 11629s 196µs PAD

17624 tri.
615s 27µs 922s 41µs 1292s 58µs u2+PAD

521s 23µs 707s 32µs 1079s 48µs PAD

M3

57600 qua.
683s 12µs 1089s 19µs 3696s 66µs u2+PAD

490s 8µs 859s 15µs 3604s 61µs PAD

17624 tri.
265s 12µs 397s 18µs 594s 27µs u2+PAD

230s 10µs 308s 14µs 492s 22µs PAD

Table 6
Total time and cost for one complete time step of a single cell for the Double Mach
problem.
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4.2.3 Noh problem as a positivity-preserving test case.

The goal of the Noh problem in Cartesian geometry is to numerically prove
that the MOOD method is positivity-preserving, see section 3.2.3 for a dis-
cussion on this point. It is a difficut problem well-known in the Lagrangian
community, see as instance [27,26]. Characteristically our implementation of
the classical MUSCL scheme is not able to simulate this problem without cre-
ating negative pressures.
The problem is run in the disk of radius 1.2 centered at (0, 0). We initialize
a perfect gas with γ = 5/3, density ρ0 = 1, pressure p0 = 10−10 and ve-

locity U0(x, y) =
(
−x/

√
x2 + y2,−y/

√
x2 + y2

)
such that ||U0(x, y)|| = 1. A

cylindrical shock wave generated at the origin further diverges until final time
tfinal = 2.0. The exact solution at tfinal is thus given by

{ρ, p, ur} =





{
16, 16

3
, 0
}

if r < rs,
{
(1 + 2

r
), 10−10,−1

}
if r > rs,

(17)

where r is the radius, ur the radial velocity and rs = 2/3 the shock wave
position. This problem is simulated on a polygonal mesh made of 19756 cells
with about 100 cells in the radial direction. Notice that the mesh is made of
seven layers of quadrangles separated with degenerated polygons, see Fig. 11.
We display the MOOD-P3 results for the density maps (left panels) and the
density as a function of cell radius (right panels) in Fig. 11. The top panels
correspond to the PAD detection process whereas the bottom ones correspond
to the u2+PAD one. One oberves that the symmetry is almost perfectly re-
produces. The PAD detection process is only intended to ensure the physical
meaningfulness of the solution but does not prevent oscillations to occur. In-
dependently of the order of the scheme the PAD always provides a meaningful
solution. As a consequence the u2+PAD does also and moreover removes the
oscillation after the shock wave.
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Fig. 11. Noh problem at tfinal = 2.0 on a polygonal grid — Left: Density map and
mesh — Right: Cell density as a function of cell radius vs exact solution — Top
panels correspond to the PAD detection process — Bottom panels correspond to
the u2+PAD detection process.
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4.2.4 Impact of a shock on a cylindrical cavity

We finally test the ability of MOOD method to capture physics in realistic
conditions by simulating the experiment proposed in [37] where a planar shock
impacts a cylindrical cavity. We consider the case of a nominal incident shock
Mach number of 1.33 in ambient air (with γ = 1.4) at 0.95 bar pressure.
Moreover we use the domain configuration A (following notation of [37]) we
detail in Figure 12.
The variables initialization is split in two parts, the pre-shock values

(ρ, u, v, p) = (1.1175, 0.0, 0.0, 95000.0),

and the post-shock ones

(ρ, u, v, p) = (1.7522, 166.3435, 0.0, 180219.75),

leading to conditions of [37] at temperature T = 296.15K.

The simulation is only preformed in the lower half part of the domain for
symmetry argument, namely from y = 0 mm to y = 75 mm. The 193615 cells
mesh is composed of triangles, quadrangles but also more general polygons
with non-conformal elements (see Figure 13) to better suit with the complex
geometry of the set-up. Notice that non-conformity is simply handled using
polygons, i.e. no special treatment is used. We also deliberately use a hetero-
geneous mesh to highlight that the MOOD method is not much affected by
the quality of the mesh.

Fig. 12. Domain characteristics for the shock impacting a cylindrical cavity. Red
arrows represent inflow and outflow boundary conditions.

The simulation are carried out with the MOOD-P3 method (fourth-order) us-
ing the PAD and the u2 Detection Process. Pictures are rendered as a full
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Fig. 13. On top, we display the global view of the mesh where the different mesh
zones are clearly visible. On bottom, zooms on the non-convex part of the mesh (on
left) and on the junction between the polar part of the mesh and the quasi-uniform
one (right). Non-conformity are clearly visible.

mesh by symmetry even if the computation was done on a half-domain to
easier compare with physical results of [37]. Figure 14 represents the den-
sity gradient magnitude at six different times to embrace the global behavior
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of the solution. In details, top right is chosen to be compared to Fig. 7 (a)
of [37], bottom center to Fig. 8 (d) and bottom right to Fig. 9 (c) of same
paper. Our results are clearly in agreement with physical results. In Figure
15 different zooms on solution at several times are plotted. On the top part,
density gradient magnitude at a late time is given and is to be compared
to Fig. 14 (b) in [37] while we superpose, in the bottom figure, the velocity
vectors on the density magnitude gradient to show the created vortices at the
entrance of the cavity (left) and highlight the instabilities lying along the wall.
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Fig. 14. Gradient density magnitude is shown at different times. Time 0 corresponds
to the initial shock at position x=0.
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Fig. 15. Zooms on different parts of the solution. On top, gradient density magnitude
is shown at a late time when instabilities are well developed. On bottom, vortices at
the entry of the cavity (left) and the instabilities (right) along the wall are displayed
with density gradient magnitude in color and velocity vectors.
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5 Conclusion and perspectives

The paper presents important new extensions of the MOOD method for un-
steady advection and hydrodynamics equations. We achieve high-order ap-
proximation (up to the sixth-order) with unstructured meshes.
We have proposed new efficient detection processes. and we have proved that
the MOOD method is intrinsically positivity-preserving for the hydrodynam-
ics system of equations assuming that the first-order scheme is. This has been
numerically tested on the Noh problem for which our implementation of the
MUSCL scheme fails due to negative pressures.
We have proposed numerical tests to confirm the very high-order of accuracy
of the method both for the advection and the Euler system (in particular with
the isentropic vortex with non-zero velocity). Moreover we have shown the be-
havior of the very high-order schemes on classical test case such as the double
Mach problem on non-regular grids for which the memory storage and CPU
time have also been also reported proving that the MOOD method is efficient.
The last numerical test showed that the MOOD method on a relatively coarse
and non-conformal polygonal mesh is able to simulate complex physics from
an experimental set-up of the impact of a shock wave on a cylindrical cavity.

Finally we plan to improve the detection procedure, especially for vectorial
problems to achieve a very low diffusion but still preventing the oscillations
from appearing. Application to full three-dimensional problem is also an at-
tractive task since performing an efficient computational solution is always
a challenging problem. The extension of the MOOD method to deal with
steady-state solution needs also more investigations. Overall an important
perspective is the polynomial reconstruction itself. We have observed that the
main computational cost comes from the reconstruction stage and that the
reconstruction quality strongly depends on the stencil employed. Such a point
is of crucial importance from a computational point of view to obtain tractable
complex numerical simulations.

Appendix: The Discrete Maximum Principle on mean values pro-
vides at most a second-order scheme.

We recall that a time explicit scheme preserves the Discrete Maximum Prin-
ciple (DMP) if for all cell Ki

min
j∈ν(i)

(Un
i , U

n
j ) ≤ Un+1

i ≤ max
j∈ν(i)

(Un
i , U

n
j ). (18)

It has been shown in [33,30,21] that any scheme based on the DMP property
reduces the accuracy to second-order for regular functions due to inaccurate
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approximation at extrema. Indeed following [49], let us consider the advection
problem in R to avoid boundary condition issues





∂tU + ∂xU = 0,

U(x, t = 0) = cos(x).
(19)

We consider a uniform discretisation xi = ih, i ∈ Z and h > 0 being the cell
size and initialize the mean value on cell K0 = [0, h] as

U t=0
0 =

1

h

∫ h

0
cos(x) dx =

sin(h)

h
. (20)

Now, let us perform one time step with ∆t = h/2 of a finite volume scheme
which respects the DMP property. The exact solution at time t = h/2 is
U ex(x, h/2) = cos(x− h/2) and accordingly the exact mean value on K0 is

U ex,t
0 =

1

h

∫ h

0
cos(x− h/2) dx =

2 sin(h/2)

h
. (21)

However a Taylor expansion provides

U ex,t
0 =

2 sin(h/2)

h
= 1− h2

24
+O(h4).

But the initial mean values are bounded by

U t=0
0 =

sin(h)

h
= 1− h2

6
+O(h4).

Clearly, the exact mean value U ex,t
0 on cell K0 is greater than the maximum

mean values over all cells at time t = 0 with an error of h2/8 as

|U ex,t
0 − U t=0

0 | ≤ |h
2

24
− h2

6
+O(h4)| = h2

8
+O(h4).

Therefore a scheme which fulfills the DMP property necessarily provides a
solution lower than sin(h)/h, hence after the first cycle the numerical solution
verifies U t

0 ≤ U t=0
0 = 1− h2

6
+O(h4). It follows that the approximation of the

mean value has an error of order O(h2) compared to the exact mean value on
cell K0. Consequently the scheme is at most second-order accurate and DMP-
type of criteria cannot be used strictly for higher than second-order schemes
and has to be relaxed.
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