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Implementation of logical gates on infinite dimensional quantum oscillators

In this paper we study the error in the approximate simultaneous controllability of the bilinear Schrödinger equation. We provide estimates based on a tracking algorithm for general bilinear quantum systems and on the study of the finite dimensional Galerkin approximations for a particular class of quantum systems, weakly-coupled systems. We then present two physical examples: the perturbed quantum harmonic oscillator and the infinite potential well.

I. INTRODUCTION

A. Logical gates

Quantum computation relies on the idea to store an information in the state of quantum system. This state is described by the wave function, that is, a point ψ in the Hilbert sphere of L 2 (Ω, C), where Ω is a Riemannian manifold.

When submitted to an excitation by an external field (e.g. a laser), the time evolution of the wave function is governed by the bilinear Schrödinger equation i ∂ψ ∂t = -1 2 ∆ψ + V (x)ψ(x, t) + u(t)W (x)ψ(x, t), (1) where V, W : Ω → R are real functions describing respectively the physical properties of the uncontrolled system and the external field, and u : R → R is a real function of the time representing the intensity of the latter. When the manifold Ω is compact, the linear operator i(∆/2 -V ) admits a set of eigenstates (φ n ) n∈N .A logical gate, or quantum gate, is a unitary transformation in L 2 (Ω, C) for which some finite dimensional space of the form span{φ 1 , φ 2 , . . . , φ n } is stable. To build a given logical gate Υ from the system (1), one has to find a control law u such that the propagator Υ u T at a certain time T of (1) satisfies Υ u T (φ j ) = Υφ j for every j = 1, . . . , n. The main difficulty with this problem is that the space L 2 (Ω, C) has infinite dimension. For the sake of simplicity, one often only considers the case where Ω is a finite union of points (or, equivalently, L 2 (Ω, C) is finite dimensional). Nevertheless, most of the usual quantum systems evolves on non trivial manifolds Ω. This papers deals with the effective implementation of some simple logical gates on models of quantum oscillators on 1-dimensional manifolds.

B. Quantum control

The problem of driving the solutions of (1) to a given target has been intensively studied in the past decades, both in the finite and infinite dimensional case. Many advances have been done in the infinite dimensional case, when there is only one source and one target. The interested reader may refer, for instance and among many other references, to [START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF], [START_REF] Beauchard | Semi-global weak stabilization of bilinear Schrödinger equations[END_REF] for the theoretical viewpoint and to [START_REF] Belhadj | A stable toolkit method in quantum control[END_REF] for numerical aspects. In particular, it was proved in [START_REF] Ball | Controllability for distributed bilinear systems[END_REF] that exact controllability is impossible in general. This does not prevent to study approximate controllability of (1), that is to replace the condition Υ u T (φ j ) = Υφ j by Υ u T (φ j )-Υφ j ≤ ε for every j = 1, . . . , n. To the best of our knowledge, there are only very few results of simultaneous controllability in the infinite dimensional case and the only available effective control techniques have been described in [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] and [START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF].

Recently, we noticed in [START_REF] Boussaid | Weaklycoupled systems in quantum control[END_REF] that a certain class of bilinear systems are precisely approached by their Galerkin approximations. Two important examples of these so-called weakly-coupled systems are the quantum harmonic oscillator and the infinite potential well. The structure of weaklycoupled systems permits precise numerical simulations for the construction of quantum gates.

C. Content of the paper

The theoretical background is recalled in Section II. Besides a quick survey on simultaneous control techniques for Equation (1), we give precise definitions and approximation results for weakly-coupled systems. In Section III we apply these results to a perturbation of the quantum harmonic oscillator and we provide estimates for the error in the controllability in a suitable finite dimensional approximation. Similarly, in Section IV we study the infinite potential well.

II. GENERAL THEORETICAL RESULTS

A. Framework and notations

We reformulate the problem (1) in a more abstract framework. In a separable Hilbert space H endowed with norm

• and Hilbert product •, • , we consider the evolution problem

dψ dt = (A + uB)ψ (2) 
where (A, B) satisfies Assumption 1. Assumption 1: (A, B) is a pair of linear operators such that 1) for every u in R, A + uB is essentially skew-adjoint;

2) A is skew-adjoint and has purely discrete spectrum (-iλ k ) k∈N , associated to the Hilbert basis (φ k ) k∈N of eigenvectors of A. From Assumption 1.1, one deduces that, for every piecewise constant u, u : t →= j u j χ (tj ,tj+1) (t), with 0 = t 0 ≤ t 1 ≤ . . . ≤ t N +1 and u 0 , . . . , u N in R, the solution t → Υ u t ψ 0 of (2) has the form

Υ u t ψ 0 = e (t-tj-1)(A+uj-1B) • • e (tj-1-tj-2)(A+uj-2B) • • • • • e t0(A+u0B) ψ 0 , for t ∈ [t j-1 , t j ).
Remark 1: With extra regularity hypotheses, it is possible to define the propagator of (2) for a larger class of controls. For instance, when B is bounded, for every t, Υ t : u → Υ u t admits a unique continuous extension to L 1 loc (R, R).

B. Control results

Definition 1: Let (A, B) satisfy Assumption 1. A subset S of N 2 couples two levels j, k in N, if there exists a finite sequence (s 1 1 , s 1 2 ), . . . , (s q 1 , s q 2 ) in S such that (i)

s 1 1 = j and s q 2 = k; (ii) s j 2 = s j+1 1 for every 1 ≤ j ≤ q -1; (iii) φ s j 1 , Bφ s j 2 = 0 for 1 ≤ j ≤ q.
The subset S is called a connectedness chain for (A, B) if S couples every pair of levels in N. A connectedness chain is said to be non-resonant if for every (s

1 , s 2 ) in S, |λ s1 - λ s2 | = |λ t1 -λ t2 | for every (t 1 , t 2 ) in N 2 \{(s 1 , s 2 ), (s 2 , s 1 )} such that φ t2 , Bφ t1 = 0.
Definition 2: Let (A, B) satisfy Assumption 1. The system (A, B) is approximately simultaneously controllable if for every Υ ∈ U (H) (unitary operators acting on H), ψ 1 , . . . , ψ n ∈ H, and ε > 0, there exists a piecewise constant function

u ε : [0, T ε ] → R such that Υψ j -Υ uε Tε ψ j < ε.
for every j = 1, . . . , n.

The following sufficient condition for approximate simultaneous controllability has been given in [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF].

Proposition 1: Let (A, B) satisfy Assumption 1 and admit a non-resonant chain of connectedness. Then (A, B) is approximately simultaneously controllable.

C. Weakly-coupled systems

Definition 3: Let k be a positive number and let (A, B)

satisfy Assumption 1.1. Then (A, B) is k weakly-coupled if for every u ∈ R, D(|A + uB| k/2 ) = D(|A| k/2
) and there exists a constant C such that, for every

ψ in D(|A| k ), |ℜ |A| k ψ, B l ψ | ≤ C| |A| k ψ, ψ |. Definition 4: Let N ∈ N. We define the projection π N : ψ ∈ H → k≤N φ k , ψ φ k . The Galerkin approximation of (2) of order N is the system in H ẋ = (A (N ) + uB (N ) )x (Σ N )
where

A (N ) = π N Aπ N and B (N ) = π N Bπ N are the compressions of A and B (respectively).
We denote by X u (N ) (t, s) the propagator of (Σ N ) associated with a piecewise constant functions u.

Proposition 2: Let k and s be non-negative numbers with 0 ≤ s < k. Let (A, B) satisfy Assumption 1 and be k weakly-coupled Assume that there exist d > 0, 0 ≤ r < k such that Bψ ≤ d ψ r/2 for every ψ in D(|A| r/2 ). Then for every ε > 0, K ≥ 0, n ∈ N, and (ψ j ) 1≤j≤n in D(|A| k/2 ) n there exists N ∈ N such that for every piecewise constant function u

u L 1 < K =⇒ Υ u t (ψ j ) -X u (N ) (t, 0)π N ψ j s/2 < ε,
for every t ≥ 0 and j = 1, . . . , n.

III. THE PERTURBED QUANTUM HARMONIC OSCILLATOR

A. Physical model

The quantum harmonic oscillator is one of the most studied quantum system. Schrödinger equation reads

i ∂ψ ∂t (x, t) = - 1 2 ∂ 2 ψ ∂x 2 + 1 2 x 2 -u(t)x ψ(x, t) , (3) 
where

x ∈ Ω = R. With the notations of (2), A = -i(-∆ + x 2 )/2 and B = ix.
An Hilbert basis of H made of eigenvectors of A is given by the sequence of the Hermite functions (φ n ) n∈N , associated with the sequence (-iλ n ) n∈N of eigenvalues where λ n = n-1/2 for every n in N. In the basis (φ n ) n∈N , B admits a tri-diagonal structure:

φ j , Bφ k =    -i √ k -1 if j = k -1 -i √ k if j = k + 1 0 otherwise,
A chain of connectedness for this system is given by S = {(n, n + 1) : n ∈ N}. The chain S is resonant indeed |λ n+1 -λ n | = 1 for every n in N. As a matter of fact, the system (3) is known to be non-controllable (see [START_REF] Mirrahimi | Controllability of quantum harmonic oscillators[END_REF], [START_REF] Illner | Limitations on the control of Schrödinger equations[END_REF]). We consider a perturbation of this system. Consider the inverse A -1 of the operator A. The family (φ n ) n∈N is a family of eigenvectors for A -1 associated with the eigenvalues (-i/λ n ) n∈N . For every η ≥ 0 we set A η = A + ηA -1 . Since A and A -1 commute then (φ n ) n∈N is a family of eigenvectors for A η associated with the eigenvalues

(-iλ η n ) n∈N where λ η n = λ n + η/λ n . The set S is a non- resonant chain of connectedness for system (A η , B) for every η > 0. Indeed λ η n+1 -λ η n = 1 -4 η 4n 2 -1 and, clearly, λ η n+1 -λ η n = λ η m+1 -λ η m if and only if n = m.
By Proposition 1 the system (A η , B) is approximately simultaneously controllable. Moreover by [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF]Theorem 2.13] we have also an upper bound on the L 1 -norm of the control independent of the error. For instance we can steer approximately the first level φ 1 to the second φ 2 with a control law with L 1 -norm smaller than 5π/4. Another consequence is that a quantum gate for φ 1 , φ 2 , and φ 3 is approximately reachable, that is for every ε > 0, there exists t ε > 0 and a piecewise constant function u ε such that Υ uε tε (φ j )φ σ(j) < ε where σ is the 3-cycle which exchanges 1, 2 and 3. This can be achieved with

u ε L 1 ≤ π/2(1 + √ 2/2).

B. Estimates

In the following, we only consider control of L 1 -norm less than K = π/2(1 + √ 2/2). The particular tri-diagonal structure of system (A η , B) is very useful for a priori estimates on the components of the propagator. Indeed if u L 1 ≤ K, by [10, Remark 6], we have that

| φ n+1 , Υ u t (φ j ) | ≤ (2K) n-2 (n -2)! (2n -3)! (n -2)! , (4) 
for every n in N, n ≥ 3 and j = 1, 2, 3.

We use (4) to find estimates on the size N of the Galerkin approximation whose existence is asserted by Proposition 2.

First, let N ≥ j and notice that

d dt π N Υ u t (φ j ) = (A (N ) + uB (N ) l )π N Υ u t (φ j ) +u(t)π N B(Id -π N )Υ u t (φ j ).
Hence, by variation of constants, for every t ≥ 0,

π N Υ u t (φ j ) = X u (N ) (t, 0)π N φ j + t 0 X u (N ) (t, s)π N B(Id -π N )Υ u s (φ j )u(τ )dτ. (5)
Therefore, since X u (N ) (t, s) is unitary and for the tri-diagonal structure of the system we have, for j = 1, 2, 3,

π N Υ u t (φ j ) -X u (N ) (t, s)φ j ≤ K π N B(Id -π N )Υ u t (φ j ) = K|b N,N +1 || φ N +1 , Υ u t (φ j ) | = K √ N | φ N +1 , Υ u t (φ j ) | ≤ 2 N -1 K N -1 (N -2)! (2N -3)! (N -3)! .
Using K = π/2(1 + √ 2/2) < 2.69, it is enough to consider a Galerkin approximation of size N = 420 to get π N Υ u t (φ j ) -X u (N ) (t, s)φ j ≤ 10 -4 for j = 1, 2, 3.

C. Numerical simulations

For simulations, we choose η = 1. To induce the transition between levels 1 and 2, the control law we use is a piecewise constant 4π periodic function, taking value 1 for 0 ≤ t < 5. 10 -3 and taking value 0 for 5. 10 -3 ≤ t ≤ 4π. We apply this control for 314 periods, that is during a time of 1256π .

To induce the transition between levels 2 and 3, the control law we use is a piecewise constant 12π/5 periodic function, taking value 1 for 0 ≤ t < 5. 10 -3 and taking value 0 for 5. 10 -3 ≤ t < 12π/5. We apply this control for 222 periods.

The simulations are done on a Galerkin approximation of size 420, which garantees π N Υ u t (φ j ) -X u (N ) (t, s)φ j ≤ 10 -4 for j = 1, 2, 3. At final time T , the resulting propagator is such that

| Υ u T φ 1 , φ 3 | > 0.998, | Υ u T φ 2 , φ 1 | > 0.999 and | Υ u T φ 3 , φ 2 | > 0.
999. The time evolution of the moduli of the first coordinates of Υ u t (φ j ) for j = 1, 2, 3 is depicted in Figures 1, 2, and3.

All the computations were done using the free software NSP, see [START_REF]A free software for numerical computations[END_REF]. The source code for the simulation is available at [1].The total computation time is less than 4 minutes on a standard desktop computer. 

IV. PARTICLE IN A BOX

A. Physical model

We consider now the case of a particle confined in (0, π). This model has been extensively studied by several authors in the last few years and was the first quantum system for which a positive controllability result has been obtained. Beauchard proved exact controllability in some dense subsets of L 2 using Coron's return method (see [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], [START_REF] Beauchard | Practical stabilization of a quantum particle in a one-dimensional infinite square potential well[END_REF] for a precise statement). Nersesyan obtained approximate controllability results using Lyapunov techniques. In the following, we extend these controllability results to simultaneous controllability and provide some estimates of the L 1 -norm of the controls achieving simultaneous controllability.

The Schrödinger equation writes

i ∂ψ ∂t = - 1 2 ∂ 2 ψ ∂x 2 -u(t)xψ(x, t) (6) 
with boundary conditions ψ(0, t) = ψ(π, t) = 0 for every t ∈ R. In this case H = L 2 ((0, π), C) endowed with the Hermitian product ψ 1 , ψ 2 = π 0 ψ 1 (x)ψ 2 (x)dx. The operators A and B are defined by

Aψ = i 1 2 ∂ 2 ψ ∂x 2 for every ψ in D(A) = (H 2 ∩ H 1 0 ) ((0, π), C), and Bψ = ixψ. An Hilbert basis of H is (φ k ) k∈N with φ k : x → sin(kx)/ √ 2. For every k, Aφ k = -ik 2 /2φ k .
For every j, k in N,

b jk := φ j , Bφ k = (-1) j+k 2jk (j 2 -k 2 ) 2 if j -k odd 0 otherwise.
Despite numerous degenerate transitions, the system is approximately simultaneously controllable (see [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF]Section 7]).

B. Estimates

Using Proposition 2 to estimate the error done when replacing infinite dimensional system by its Galerkin approximation one finds, for u L 1 = 9π/16 (see [START_REF] Boussaid | Weaklycoupled systems in quantum control[END_REF]Remark 4]

, with K = 9π/16, d = π, k = 1, r = 1, c 1 (A, B) ≤ π + 2, ε = 10 -3 ), that if N > 1.6 10 7 , then π N Υ u t φ 1 -X u (N ) (t, 0)φ 1 ≤ 10 -3 .
This estimation is definitely too rough to allow easy numerical simulations: matrix B (10 7 ) has about 5 10 13 nonzeros entries, the numerical simulations at such scale are difficult without large computing facilities. We have to go more into details to obtain finer estimates.

Assume that, for some N in N and η > 0, the control u : [0, T ] → R is such that, for every t in [0, T ],

X u (N ) (t, 0)π 3 -π 3 X u (N ) (t, 0) ≤ η.
We have

π 3 X u (N ) (t, s) -X u (N ) (t, s)π 3 = π 3 X u (N ) (t, 0)X u (N ) (0, s) -X u (N ) (t, 0)X u (N ) (0, s)π 3 = X u (N ) (t, 0)(π 3 X u (N ) (0, s) -X u (N ) (0, s)π 3 ) +(π 3 X u (N ) (t, 0) -X u (N ) (t, 0)π 3 )X u (N ) (0, s) so that π 3 X u (N ) (t, s) -X u (N ) (t, s)π 3 ≤ 2η. (7) 
Projecting ( 5) on the first 3 components we have, for j = 1, 2, 3 that

π 3 Υ u t (φ j ) -π 3 X u (N ) (t, 0)φ j ≤ t 0 π 3 X u (N ) (t, s)π N B(Id -π N )Υ u s (φ j ) u(s)ds ≤ t 0 X u (N ) (t, s)π 3 B(Id -π N )Υ u s (φ j ) u(s)ds + t 0 (π 3 X u (N ) (t, s) -X u (N ) (t, s)π 3 ) B u(s)ds ≤ T 0 |u(t)|dt ( π 3 B(Id -π N ) +2 B sup t π 3 X u (N ) (t, 0) -X u (N ) (t, 0)π 3 ) ).( 8 
)
By skew-adjointness, π 3 B(Id-π N ) = (Id-π N )Bπ 3 . This last quantity tends to zero, and we are able to give estimates of the convergence rate. Indeed,

(Id -π N )Bφ 1 2 ≤ k>N 2k (k -1) 2 (1 + k) 2 2 ≤ 4 k>N 1 (k -1) 6 ≤ 1 (N -2) 5 .
Similarly,

(Id -π N )Bφ 2 2 ≤ √ 2 (N -3) 5 (Id -π N )Bφ 3 2 ≤ 2 (N -4) 5 .
The procedure to induce a given transformation, up to a given tolerance ε > 0, on the space span{φ 1 , φ 2 , φ 3 } is the following:

1) Use estimates given in [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] to give an a priori upper bound K on the L 1 -norm of the controls one will use. 2) From K and ε, find N such that K π 3 B(Id -π N ) ≤ ε/2. 3) In the finite dimensional space span{φ 1 , . . . , φ N }, consider the bilinear system ẋ = (A (N ) + uB (N ) )x and find a control u achieving the desired transition up to ε/(2K) and such that u L 1 ≤ K. This can be done using standard averaging procedures (see for instance [START_REF] Sanders | Averaging methods in nonlinear dynamical systems[END_REF]). 4) Use [START_REF] Belhadj | A stable toolkit method in quantum control[END_REF] to get an upper bound of the distance of the trajectories of (Σ N ) and the actual infinite dimensional system.

C. Numerical simulations

We illustrate the above procedure on an example. Fix ε = 7 10 -2 . We would like to find u : | φ 2 , Υ u T φ 3 | > 1 -ε at final time T . For this example, we are not interested in the respective phases but the method can easily be generalized to address this point (see Section IV-D below).

[0, T ] → R such that | φ 3 , Υ u T φ 1 | > 1 -ε, | φ 1 , Υ u T φ 2 | > 1 -ε and
From [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF], the transition can be achieved with controls of L 1 -norm smaller than 5π/4(9/8 + 25/24). Using controls with better efficiencies (as described in [START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF]), we can use controls with L 1 -norm smaller than 2(9/8 + 25/4) = 13/3.

Using the above estimates, one sees that if N = 20, then

K π 3 B(Id -π N ) ≤ 13 3 √ 2 (N -4) 5/2 ≤ 6 10 -3 .
Last, we define u by u(t) = cos(3t)/20 for 0 ≤ t ≤ 72 and u(t) = cos(5t)/20 for 72 < t ≤ T = 138. We check that T 0 |u(t)|dt ≤ 13/3. One checks numerically that π 3 X u (20) (t, 0) -X u (20) (t, 0)π 3 ≤ 1.3 10 -3 for t ≤ 138. From (7), we get, for every t, s ≤ T π 3 X u (N ) (t, s) -X u (N ) (t, s)π 3 ≤ 2.6 10 -3 . From (8), we have, for j = 1, 2, 3,

π 3 Υ u t (φ j ) -π 3 X u (N ) (t, 0)φ j ≤ 13 
3 (6 10 -3 + 8.2 10 -3 ) ≤ 6.1 10 -2 .

Conclusion follows from the numerical computations

| φ 3 , X u (20) (T, 0)φ 1 | ≈ 0.99924 | φ 1 , X u (20) (T, 0)φ 2 | ≈ 0.99943 | φ 2 , X u ( 
20) (T, 0)φ 3 | ≈ 0.99949. The actual precision is likely much better than 6.1 10 -2 which is known for sure. However, our estimates do not allow a better conclusion.

The evolutions with respect to the time of the moduli of the first coordinates of X u (20) φ k for k = 1, 2, 3 are represented in Figures 4, 5, and6.

All the computations were done using the free software NSP, see [START_REF]A free software for numerical computations[END_REF]. The source code for the simulation is available at [2]. The total computation time is less than 4 minutes on a standard desktop computer. 

D. Possible improvements

If one is interested not only in the modulus but also in the respective phases of the final points, it is enough to replace the functions t → cos(3t)/20 and t → cos(5t)/20 above by t → cos(3t + θ 1 )/20 and t → cos(5t + θ 2 )/20 respectively, where θ 1 and θ 2 are suitable phases.

In order to get better precision in the approximation (i.e. a smaller ε), it is enough to replace the functions t → cos(3t)/20 and t → cos(5t)/20 above by the functions t → cos(3t)/L and t → cos(5t)/L with L large enough. The price to pay for a better precision is an increase in the time needed for the transfer.

V. CONCLUSION AND FUTURE WORKS

We have shown how it was possible to implement a quantum gate on two types of infinite dimensional quantum oscillators. Our method provides rigorous estimates and permits numerical simulations that can be run on standard desktop computers.

A limitation of our models is that the Schrödinger equation neglects decoherence. This approximation may be justified
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 12 Fig.1. Time evolution of the moduli of the first three coordinates of Υ u t φ 1 in the case of the perturbed harmonic oscillator. First coordinate in blue, second coordinate in green, third coordinate in red. For the sake of readability, time scale is 1:100, total duration around 5500.
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 3 Fig.3. Time evolution of the moduli of the first three coordinates of Υ u t φ 3 in the case of the perturbed harmonic oscillator. First coordinate in blue, second coordinate in green, third coordinate in red. Time scale is 1:100.
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 4 Fig.[START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF]. Time evolution of the moduli of the first three coordinates of Υ u t φ 1 in the case of the potential well. First coordinate in blue, second coordinate in green, third coordinate in red.
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 56 Fig.5. Time evolution of the moduli of the first three coordinates of Υ u t φ 2 in the case of the potential well. First coordinate in blue, second coordinate in green, third coordinate in red.

for time small with respect to the relaxation time of the quantum system. Future works may focus on the optimization of the time of implementation.