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Optimization of ultrasonic arrays design and setting using a Differential Evolution
algorithm
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Gif-sur-Yvette cedex, France.

Abstract

The optimization of phased-array design and setting can be a delicate task when done manually through parametric studies. An
optimization method based on an Evolutionary Algorithm and numerical simulation is proposed and evaluated. The Randomized
Adaptive Differential Evolution has been adapted to meet the specificities of the addressed applications and in particular to solve
multi-objective problems with the implementation of the concept of Pareto’s optimal set of solutions. The algorithm has been
implemented and connected to the ultrasonic simulation modules of the CIVA software used as forward model. The efficiency of
the method is illustrated on two realistic cases of application: The optimization, considered as a mono-objective problem, of the
position and delay laws of a flexible array inspecting a nozzle and the optimization of the design of a surrounded array and its delay
laws, considered as a constrained bi-objective problem.
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1. Introduction

Over the last decade, the use of ultrasonic arrays for Non
Destructive Evaluation has continuously increased and phased-
array techniques play now a major role in the field. Phased-
arrays offer numerous advantages in terms of coverage, sensi-
tivity and imaging capabilities. They allow to overpass some
limitations of conventional ultrasonic inspections and to tackle
increasingly complex inspections. The price to pay for these
enhanced capabilities is the complexity increase of the design
of the array (number and arrangement of elements) and the def-
inition of the inspection setup (T-R functionalities, electronic
delays, transducer displacements, etc.). Nowadays, efficient ul-
trasonic models are available which can help the expert in these
tasks. Up to now this is done through computational parametric
studies, which can be time-consuming, fastidious, and some-
how delicate. Moreover, due to the necessarily small number of
tested set of parameters such manual optimization may lead to
one local optimum and miss a better global solution. The moti-
vation of the present work is to propose, prototype and evaluate
an automated optimization method based on the use of ultra-
sonic simulation tools connected to an Evolutionary Algorithm.

Evolutionary Algorithms (EAs) have been used by several
authors to solve array optimization problems [1]. Chen ef al.
[2] used an Evolution Strategy to design a transducer by look-
ing for the emission surface shape that minimizes the number
of rings of an annular phased-array. This algorithm has been
used to design an array in order to inspect titanium bullets [3].
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Yang et al. [4] used a Genetic Algorithm to design a sparse
array transducer. Gueudre et al. [5] used a Genetic Algo-
rithm to characterize heterogeneous welds based on ultrasonic
data inversion. EAs have also been applied in many other do-
mains, e.g., optimization of focus pattern delay laws for ultra-
sound surgery using a Genetic Algorithm [6] or the retrieval of
spheres buried in subsoil using a Differential Evolution [7]. In
this work, among many available EAs, which makes non-trivial
a choice, the so-called Randomized Adaptive Differential Evo-
lution (RADE) [8] has been chosen in view of its good per-
formance in solving engineering optimization problems and its
small number of tuning parameters. RADE has been extended
in order to solve multi-objective problems, as well as to han-
dle constraints and criteria of accuracy on the variables. These
algorithms, described in section 2, have been implemented and
connected to the ultrasonic module of CIVA [9, 10]. This mod-
ule allows to compute beams radiated by arrays in different ma-
terials and to simulate signals arising from defects in complex
geometries [11]. Through this connection, it has been possible
to evaluate the method on realistic NDE cases. In sections 3
and 4 we give two examples of such cases, illustrating respec-
tively mono-objective and multi-objective problems. The first
one concerns the optimization of the positioning of a flexible
array on a complex part (a nozzle) and of the applied electronic
delays. The second one (constrained bi-objective problem) con-
cerns the design and set up of an array for the inner inspection
of a pipe. A brief conclusion follows in section 5.
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2. Optimization algorithm

The algorithms that have been used to optimize ultrasonic
inspections are described in this section. Since RADE is able
to solve only unconstrained mono-objective problems, exten-
sions are proposed to handle constraints, accuracies, and multi-
objective strategies.

2.1. Optimization problem

Whenever an engineering problem is to be solved by an EA,
it should be transformed into an optimization problem that is
given, in most general form, as

Minimize fj(X) l=1,...,N,
Subjectto  g,,(X) <0 m=1,...,N, e))
xJL.ijij/ j=1,...,N

A candidate solution X = [xy;...;xy] is a vector of N vari-
ables tested to evaluate how well it solves the problem. The
problem is defined with N, objective functions f; that have to be
representative of the problem at hand; and N, constraint func-
tions g,. The lower and upper bounds are respectively given
by the vectors X- = [xf;...;x4] and XY = [xV;. ;%Y and
define the search range of all variables.

2.2. RADE

This algorithm is derived from differential evolution [12]
(DE) with auto-regulation of one tuning parameter (the muta-
tion factor). It makes a population of candidate solutions to
converge to the optimum using three evolutionary operators:
mutation, crossover, and selection. One loop of those opera-
tors is called a generation. The ith candidate solution of the kth
generation is noted X(k) and its jth variable x(k) The strategy
used is denoted as DE/rand/ 1/bin [12].

The first step is the initialization of the population by a uni-
form distribution in the search domain defined by

(0) _ L U L
X =X+ rand(xj - xj) 2)

where rand is a random real between 0 and 1. Then, evolu-
tionary operators are used to create new candidate solutions.

Mutation creates new vectors (V;kﬂ) =[v (k“), Y fi,”)]) by
adding perturbations to a reference solutlon
vED = x0 4 F(x® - x©) 3)
C

where a, b and c are randomly chosen in the parent population
such that a # b # ¢ # i, and where F; is the mutation factor, a
self-adapted tuning parameter linked to the ith candidate solu-
tion of the population (X;), as follows. F; is initialized with a
random value between 0.1 and 0.9; then, each five generations,
F; is reinitialized as well for half of the solutions ka) with the
lowest evolution of their objective function I (see [8] for more
details):

rx®) = fx*) - rx®) 4

Crossover yields vectors U D) — &0, (k+1)] by com-
i il

bining variables between the new and parent solutlons

L
X (k1) X5 (k+1)
’-L u.. 41‘ u..
ij ij
L | //J 7

Figure 1: If a new variable u(}kﬂ) is generated out of the search range, it is put

back inside by axis symmetry on the closest boundary.

LD _ { x%é if rand > C, or j;and = )
“ij vii otherwise
where j T““d is randomly chosen in interval [1, N] for each so-
lution i and C, € [0.1;0.7] is a user-defined parameter called
crossover rate. Selection keeps solutions that improve in the
objective function sense:

XU+D)

i

{ U§k+1) iff(U;k+1))<f(X§k)) ©

ka) otherwise

This evolution is performed until stopping criteria are satis-
fied. Many [13] can be introduced but the most common one
is a maximum number of generations (k,,,.), which will be the
one chosen here.

2.3. Constraint handling

Two kinds of constraints have to be handled. First, since
evolutionary operators provide diversity, some U, ®+1) can be out
of the search range defined by X” and XV. So, variables u(k“)
are reintroduced by symmetry on the closest boundary (ﬁgure

1):

2x§/ u(;'l) if u(k+1) > xﬁ.j
™D =8 2 i u<"+” < xk )
u(k+1) otherwise

ij

The other constraints are inequalities on some variables. The

method used here is similar to the one in [14]. It is based on

the notion of feasible solutions that respect all inequalities and

non-feasible solutions that do not respect at least one. This in-

formation is given for a candidate solution X at the generation
k by the constraint violation function (g® (X)), defined by

&y max(0, (X

2®(x) = Z ((k)g (X)) @)
m=1 gm,Max

where gm Way 18 the maximum value observed on the constraint

gm until generation k. Afterwards, to generate the least mod-

ifications in the algorithm, an equivalent objective function

(7™ (X)) is defined by

X
1+ g() if gO(X) > 0

£~ 7 . ©)
ORI otherwise

Max Min

) =



where fzt(;?n and f;ﬁx are, respectively, the minimum and the
maximum values observed on the objective function f until
generation k.

This equivalent objective has interesting properties: if 0 <
7®(X) < 1 then X is feasible; if 1 < p®(X) < 2 then X is
non-feasible. Thus, it can replace the objective function for the
selection (equation 6) while it respects Deb’s proposition [15],
as well as for the calculation (equation 4) of F; since it does not

depend on the order of magnitude due to normalization.

2.4. Accuracy handling

RADE had been designed to solve real-variable problems.
Since it is interesting to take into account a precision step that
determines the accuracy beyond which the solution is of no use
to the end-user, a modification (accuracy handling) has been
made as described now. The first task is to sample the search
space with using the precision step. Then, whenever a new can-
didate solution (Ul(k”)) is created, the algorithm finds the clos-
est solution on the chosen grid (called formatted solution) given
by

(k+1) _ L
k+) _ L, P i J
u; =X+ X; ﬂoor[—xp ] (10)
J
(k+1) - . k+1) _p .
where U;™" is the formatted solution of U;™", x; the precision

of jth variable, and floor(a) computes the integer part of a.

Yet, one still has to care for diversity preservation since loss
of diversity leads to being unable to generate useful new solu-
tions. That is, the mutation operator (equation 3) cannot add
a perturbation if Xék) and X® are too close or equal. So, if
the formatted solution has already been computed, one is sim-
ply looking for the closest, non-computed solution on the grid
within the neighborhood. In brief, computation time is spared
since solutions too close to one another are not computed; and
the optimal solution found makes sense, from the design point
of view, since it has no unusable digits.

2.5. Multi-objective

The main difficulty faced with multi-objective problems is
that two solutions cannot be easily compared, e.g., since one
objective might be better reached and another one less or vice-
versa. Then, so-called non-dominated sorting is often em-
ployed, as is implemented herein. The start point is that a so-
lution X; dominates X, if ¥(X;) < ¥(X») [16, chap. 8] where
FX) = [AHX), ..., fn,(X)], this being defined as

Vi€ [1,n,], filXy) < fi(X2)

and F(X,) # F(Xa) an

FX)<TFXp) e {

Obviously, solutions can be sorted out in order to produce
sets of solutions with an attached rank. Rank one is defined
by S, which is the set of all solutions that are not dominated:
the Pareto optimal set. Rank two is defined by S», which is
the set of all solutions only dominated by some solutions from
Si. And so on for the next ranks. Obviously, S; yields the

X
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Figure 2: The Pareto optimal solutions (red circles) are all non-dominated so-
lutions of all computed feasible candidate solutions (S; U S U S3 U S4 U Ss)
in objective functions frame (f; and f>).

best compromises between all objectives and is our main tar-
get. Figure 2 shows an example with five ranks of candidate
solutions. The rank of a candidate solution X is noted as y(X).
This non-dominated sorting is performed on a database con-
taining all feasible candidate solutions that have been evaluated
since the initialization.

Since candidate solutions can be ordered with non-
dominated sorting, solutions from the same rank should be or-
dered so as to favor the most isolated ones, a good spread of so-
lutions being aimed at in the Pareto optimal set. To achieve it, a
diversity preservation method is applied, involving the normal-
ized crowding-distance, as inspired from the crowding-distance
method [17], properly modified to avoid infinite values. That
is, the density of solutions surrounding X in its rank set is esti-
mated via the average distance of two solutions on either side of
X for each objective, and is denoted 6¥’(X). The modification
considers the distance between the first and last solutions of the
rank to estimate the diversity of those solutions.

Then the selection is designed for multi-objective problems
to first favor the solution with the best rank, then with the high-
est normalized crowding-distance[17]. An equivalent objec-
tive function (7(X)) for constrained multi-objective optimiza-
tion that makes sense to perform the self-adaptation of Fj, is
then defined as

X
k © L 8X b > 0
nPX) = 5000 (12)
YPX) - otherwise
nl)

where )(;lf,)ax is the total number of ranks at generation k.

3. One example of mono-objective problem

3.1. Problem description

This first example given here concerns the inspection of a
nozzle with a 8x8 flexible array operating at 2 MHz. The
sought defects are breaking cracks on the inner surface at the
junction of the two pipes and oriented radially relatively to the
secondary pipe as depicted in figure 3. The control is performed
from the outside. The probe is scanned on the conical part of the
secondary pipe and delays (computed by CIVA) are applied in
order to focus the beam in the region of interest. The defects are
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Figure 3: Schematic view of the nozzle inspection. The array probe is located
on the outer surface of the secondary pipe. The sought defect is schematized at
the junction of the two pipes. The focal point is materialized by the green dot.

name description interval
Position of the array on the nozzle

accuracy unit

Y vertical position  [30; 100] 0.5 mm

(©] angular position [0;90] 0.3 degree

a probe rotation [0;90] 0.5 degree
Focal point coordinates relative to the probe center

r distance [100;250] 1 mm

0 polar angle [-80; 80] 0.3 degree

© azimuthal angle  [-80; 80] 0.3 degree

Table 1: Variables defined to optimize position and setting of a flexible array
for a nozzle inspection.

detected thanks to the corner echo involving the reflexion on the
inner surface of the nozzle. The objective of the optimization
is to find both the position of the array and the focusing point
(inputted in the delays computation) that maximize the ampli-
tude of this echo for the different possible angular positions ®
of the defect. The problem is not trivial since this amplitude
both depends on the deviation of the beam and on the angle of
incidence on the defect. A manual optimization study had been
previously performed by an expert for different possible angu-
lar positions of the defect. Solutions given by the presently pro-
posed method can be compared to the solution obtained by the
expert. Results presented here are obtained for a defect oriented
along the primary pipe axis ¥ (® = 0°).

3.2. Variables and objective function

The variables of the problem are the position and orientation
of the transducer and of the focal point witch is the input of the
delay laws computation. They are listed in Table 1 with their
search intervals and precision below which the information is
considered useless.

Each candidate solution X generated by the algorithm is eval-
uated through one objective function f defined as

JX) = =Apax(X) (13)

Figure 4: B-Scans comparison between solutions obtained by the expert and
the RADE.

Y ® o' r 6 1%
Xexp 91 49 20 153 44 0
Xgrape 945 546 225 188 394 04

Table 2: Parameters of the solutions obtained by the expert (X,y,) and the
RADE (XgapE).

where A,,,,(X) is the amplitude of the corner echo computed by
CIVA, the defect located at ® = 0° being assumed to be planar
with a height H = 5 mm.

3.3. Results and discussion

For all the defect orientations (®), which have been investi-
gated the solutions given by the automated method are, at least,
as good as the solutions manually obtained by the expert in
terms of signal magnitude. In the particular case ® = 0°, the
amplitude of the corner echo has been improved of +5 dB. This
improvement is illustrated in figure 4 by the two correspond-
ing simulated Bscan. The parameters of the two solutions are
listed in Table 2. The following values of tuning parameters
have been used to perform the optimization: Cr = 0.7, NP = 30
and k,u,, = 100. In this example then 3030 candidate solutions
have been generated and evaluated by the algorithm. The mean
computation time required for one simulation being 42 seconds,
the optimization process asked for about 36h total running time,
on a standard PC. The evolution of the amplitude correspond-
ing to the solution selected at each generation is reported in
figure 5 for two versions of the algorithm: with and without
accuracy handling. The amplitudes displayed are given in deci-
bels, the 0 dB level being the manual solution. It can be seen
that the accuracy handling significantly reduces the number of
generations and therefore the corresponding computation time
required to converge to the optimized solution: 33 generations
and 12 hours vs. 50 generations et 18 hours.

4. One example of multi-objective problem

4.1. Problem description

The second example given in this contribution concerns the
inner inspection of a stainless steel pipe by a surrounded ar-
ray, depicted on figure 6. It is solved as a constrained multi-
objective problem. The inner diameter of the pipe is 50 mm and
its thickness 5 mm. The aim of the control is to detect cracks
oriented along the pipe axis with 45° compressional waves. The
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Figure 5: Evolution of the objective function (the maximum of the echo am-
plitude) during the optimization process with (in blue) and without (in red)
accuracy handling. The manual solution corresponds to the 0 dB level.

Electronic scan

Figure 6: Schematic view of the pipe inspection problem.

array is moved along the axis Z while electronic commutation is
used to inspect the whole section of the pipe. The pipe is filled
by water. The goal is to optimize the design of the array, and
the electronic setting: the electronic commutation and applied
delay laws. The number of available channels, and therefore the
maximal number of elements of the array, is fixed at 256. The
objective is to guarantee the good characteristics of the beam,
direction (45° on the defect) and focalization on the outer sur-
face, and to minimize grating-lobes.

4.2. Variables

The optimization concerns the design of the array (dimen-
sions, arrangement and central frequency of the elements) the
definition of the commuting aperture and the angular deviation
defining the electronic delays. The variables, search intervals
and accuracy are listed in Table 3.

4.3. Objective functions

The definition and evaluation of the objective functions are
based on the computation by CIVA of the ultrasonic beams ra-
diated by the array in the pipe and corresponding to the different

name description interval acc. unit
Design of the array

l length along 7

[1.0;10.0] 0.5 mm

g gap Dbetween ele- [0.1;1.0] 0.1 mm
ments

w elements width [0.2;1.5] 0.1 mm

f central frequency [2.0;10.0] 1.0 MHz

Electronic setting

n number of active [3;20] 1 -
commuting elements
for the sequence

6 polar coordinate of  [45;80] 1 degree

the focal point on the
outer surface

Table 3: Variables defined to optimize design and setting of an array for a pipe
inspection.

Computation zone

—

Figure 7: Sketch of the computation zone and array setting. The electronic
delays applied to the rotating active aperture are plotted in red.

candidate solutions. More precisely, only the longitudinal com-
ponent is calculated and the reflection on the outer surface is
not taken into account. Computation parameters are sketched in
figure 7. The computation zone is a rectangular grid of 161 x61
points, distant of 0.2 mm along both axis. The steel is assumed
to be isotropic with compressional wave velocity of 5650 m/s
and negligible attenuation. The sound wave velocity in water
is set at 1483 m/s in water. For each deviation angle 6 and ac-
tive aperture, the delay law applied to the array is computed
by using the geometrical approach available in the CIVA pack-
age. Two objective functions are defined: (f}) ensures a beam
orientation as close as possible to 45° on the defect, and (f>)
maximizes the ratio between useful amplitude distribution in-
side the beam and unwished amplitude distribution outside the
beam. The later mainly corresponds to the possible apparition
of the grating lobe, which is to be avoided.

4.3.1. Beam orientation
The objective function f; is defined as the difference between

45° and the average orientation in the beam. This average ori-
entation is evaluated on a set of pixel A; of highest amplitudes.

1S
fi(X) = N;MS - (X)) (14)

The orientation (angle «;) assigned to one pixel A; is issued
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Figure 8: Definition of the parameters related to the objective function fi,
sketched on the map of the computed ultrasonic field corresponding to one can-
didate solution.
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Figure 9: Definition of the parameters related to the objective function f>, illus-
trated on the map of the computed ultrasonic field corresponding to one candi-
date solution.

from the local direction of propagation d, output of the CIVA
computation. a; measures the angle between CZ and the normal
of the outer surface at B; (see figure 8).

4.3.2. Amplitude distribution

The spatial extension of the useful beam is defined for each
candidate solution from the —6 dB width A and the direction of
propagation d at the focal point F (see figure 9), which is an
output of the field computation. The second objective function
f>, related to the amplitude distribution, is expressed as

Amp"(X)
Ampout ( X)

where Amp°®"'(X) is the average amplitude of all the pixels lay-
ing outside the useful beam:

LX) = - 15)

Amp™(X) = (Amp*ou (16)

and Amp™(X) is the weighted average amplitude of all the pix-
els laying inside the useful beam:

Amp™(X) = (w;Amp]")iy (17
The weights w; are introduced in order to favor solutions with

highest amplitude on the outer surface. w; decreases with in-
creasing distance to the outer surface /;.

4.4. Constraints

One constraint function is introduced to guarantee that the
number of elements of the array is lower or equal to 256. The
expression of the constraint is:

407

X)= — &
8% = R+ wX)

~256<0 (18)

name variables objectives
I ¢ w f n 0 h h
soll 35 03 02 7 14 67 1° 11dB
sol2 45 03 02 8 16 63 4° 14dB
sol 3 4 03 02 10 13 55 8° 16dB

Table 4: Three interesting solutions from the Pareto front.

4.5. Results and discussion

The following values of tuning parameters have been used to
perform the optimization: Cr = 0.7, NP = 25, and k. = 50.
1530 candidate solutions have been generated among which
1422 were feasible. The evaluation of feasible solutions (im-
plying a field computation) took 50h total running time on a
standard PC. The Pareto optimal sets obtained at generations O,
10, 20 and 50 are depicted in figure 10. At the 50th genera-
tion, the Pareto set is composed of 94 solutions corresponding
to different compromises between f; and f,. Along the front,
fi and f, range respectively from 1° to 25° and from 11 dB to
19 dB. All the solutions have approximately the same values of
array length (I = 4+ 0.5 mm), element width (w = 0.2 mm) and
gap between elements (g = 0.3 mm). Unsurprisingly, these val-
ues correspond to the allowed maximum number of elements
(256) and minimum width of the elements. The three parame-
ters that mostly influence the compromise between the two ob-
jectives are the number of elements in the active aperture n, the
frequency f, and the deviation angle 6. We give three repre-
sentative solutions of the Pareto optimal front corresponding to
reasonable compromises between the two objectives in the Ta-
ble 4. The computed fields associated to these three solutions
can be seen in figure 11. Solution 1 favors the beam orienta-
tion while solution 3 maximizes the focalization on the outer
surface, the solution 2 being an intermediate solution. This ex-
ample illustrates the interest of the algorithm which proposes
in such multi-objective problem the best set of compromises
among with the expert can select the final solution.

5. Conclusion

A method based on the use of a Differential Evolution
algorithm, the Randomized Adaptive Differential Evolution
(RADE) has been proposed to optimize array design and set-
ting. The RADE has been adapted to meet the specificities of
the addressed NDT applications and in particular to: i) man-
age the constraints on the variables in the problem: bounding
domain and inequality constraints, ii) consider the finite preci-
sion of the variables, iii) solve multi-objective problems with
the implementation of the concept of Pareto’s optimal set of so-
lutions. The algorithm has been implemented and connected to
the ultrasonic simulation modules of the CIVA software plat-
form. For one given solution (expressed as a set of parameters
input into the simulation) the value of the objective function is
inferred from the result of the corresponding simulation. The
method has been evaluated on two realistic cases of application
considered respectively as one mono-objective problem and one
constrained multi-objective problem: the optimization of the
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Figure 10: Pareto optimal sets obtained each ten generations during the optimization of the surrounded array, where f2’13 (X) = 20log(— fo(X)).

Solution 1

Solution 2

Solution 3

Figure 11: Maps of the computed ultrasonic field corresponding to the three
solutions of Table 4.

positioning and electronic delays applied to a flexible array in-
specting a nozzle and the optimization of the array design and
electronic delays for a pipe inspection. The results confirmed
the ability of the algorithm to converge towards the desired so-
lution within a reasonable time. The comparison with manual
reference solutions when available highlighted the equivalent or
better quality of the solution provided by the algorithm.
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