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Let A be a matrix in GL d (Z) of infinite order. In a recent paper, G. Levitt and V. Metaftsis prove that for any sufficiently large integer n the matrix A n is not conjugated to a companion matrix. We first prove a local version of this theorem. Then, we give an effective statement, using diophantine methods. We also discuss several related problems.

Introduction

The present paper considers certain diophantine issues arising from the study of the rank of the so-called mapping tori groups. These groups have been studied in a number of papers. For more on this, we referred to the article [START_REF] Levitt | Rank of mapping tori and companion matrices[END_REF] of Levitt and Metaftsis who in fact pointed out to us the question which we now analyze.

Let A ∈ GL d (Z). The natural action v → Av induces a semidirect product

G = Z d A Z = Z d , t | tvt -1 = Av
where we identify the generator 1 of Z with A. Let OR(A) be the minimum number of vectors whose A-orbits generate Z d and let rank(G) be the minimum number of generators of G. In [START_REF] Levitt | Rank of mapping tori and companion matrices[END_REF] the Authors shows that Theorem 1.1 (Levitt-Metaftsis) rank(G) = 1 + OR(A) .

In particular, G can be generated by two elements if and only if A is conjugate in GL d (Z) to a companion matrix.

We recall that a companion matrix is one of the shape

       0 * 1 0 * . . . . . . * 1 0 * 1 *        .
See also the end of this section for equivalent properties.

Since the conjugacy problem is decidable in GL d (Z) (cf. [START_REF] Grunewald | Solution of the conjugacy problem in certain arithmetic groups[END_REF]), one can decide whether G has rank 2 or not.

Motivated by a topological result of J. Souto [START_REF] Souto | The rank of the fundamental group of certain hyperbolic 3-manifolds fibering over the circle[END_REF], they then prove: Theorem 1.2 (Levitt-Metaftsis) Let A ∈ GL d (Z) be of infinite order. Consider the family of finitely generated groups G n = Z d A n Z. Then there exists n 0 = n 0 (A) such that rank(G n ) > 2 for n ≥ n 0 . In other words, for n ≥ n 0 the matrix A n is not conjugate to a companion matrix in GL d (Z).

Their proof is based on the Skolem-Mahler-Lech Theorem on linear recurrence sequences. An alternative approach to this last result follows from a local argument in Z p which amount to reduction modulo p, using equations in S-units. This approach actually shows a bit more, upon excluding the matrices all of whose eigenvalues are roots of unity. Namely, under the assumption that some complex eigenvalue of A ∈ GL d (Z) has infinite order, we shall prove the finiteness of the set of n ∈ Z such that A n is conjugate to a companion matrix in GL d (F p ) for all primes p outside a prescribed (but arbitrary) finite set S. In section 2 we prove: Theorem 1.3 Let S be a finite set of prime numbers and let A ∈ M d (Z). Suppose that A has two nonzero eigenvalues whose ratio is not a root of unity. Then there are only finitely many integers n such that for all primes p ∈ S the reduction modulo p of the matrix A n is conjugate to a companion matrix in GL d (F p ).

Let us pause for some remarks on this statement.

Remark 1.4 i) Assume A ∈ GL d (Z).
If the ratio of any two eigenvalues of A is a root of unity, then in fact all the eigenvalues must be roots of unity, because their product is det A = ±1.

ii) We remark that the assumption on the eigenvalues is necessary here, and (if S = ∅) cannot be replaced with the weaker one that A ∈ GL d (Z) has not finite order. This is shown by examples like S = {l},

A = 1 1 0 1 .
We notice that A has infinite order, nevertheless each of the powers A l m , m ∈ N, is conjugate to a companion matrix over F p , for all p = l, and actually over the ring Z[1/l].

On the other hand, we note that in the special case S = ∅, the conclusion of the Theorem holds even if A ∈ GL d (Z) has all eigenvalues roots of unity, but it is not of not finite order, see Proposition 2.1 in section 2.

iii) We also remark that for d > 1 there are integral unimodular matrices which are conjugate to a companion matrix in GL 2 (F p ) for all p (and indeed in SL 2 (Z p ) for all p) but not conjugate to a companion matrix over Z. Thus Hasse principle does not hold in the present situation. We provide an explicit example at the end of section 2. This shows that, even in the case S = ∅, the finiteness predicted by the Theorem is a priori a stronger assertion than the finiteness of the set of integers n such that A n is conjugate to a companion matrix over Z.

We give other complements to the results of [START_REF] Levitt | Rank of mapping tori and companion matrices[END_REF]. In section 3 we prove the following effective version of Theorem 1.2: Theorem 1.5 Let A ∈ GL d (Z) be a matrix of infinite order. Let Z be the set of positive integers n such that A n is conjugate in GL d (Z) to a companion matrix. Then there exists an effective absolute constant c > 0 such that

max Z ≤ cd 6 (log d) 2 .
We could ask for a strong version of Theorem 1.2. Let A ∈ GL d (Z) of infinite order. It is true that there exists n 0 = n 0 (A) such that OR(G n ) is "large" for n ≥ n 0 ? Levitt and Metaftsis give a simple counterexample to this statement. It is enough to choose integers h, k > 1 such that k + h = d and matrices A 1 ∈ GL k (Z), A 2 ∈ GL h (Z) with A 1 of infinite order and with A 2 conjugate to a companion matrix of finite order m . The matrix

A = A 1 0 0 A 2 is then of infinite order, but OR(A n ) ≤ k + 1 for n ≡ 1 mod m.
In section 4 we investigate more closely this problem. We formulate a conjecture which predicts that for a "generic" matrix A we would have OR(A n ) = 2 for infinitely many integers n. We shall relate this conjecture to another one concerning algebraic numbers and we shall give some evidence for it.

In section 5, we partially answer another question posed in [START_REF] Levitt | Rank of mapping tori and companion matrices[END_REF]. Let A ∈ M d (Z) be nonsingular and consider the so-called ascending HNN-extension

Z d * A = Z d , t | tvt -1 = Av .
By this notation it is meant that Z d * A is generated by Z d and t subject to the relations written on the right. We remark that Z d * A is a semidirect product if and only if A ∈ GL d (Z).

Levitt and Metaftsis ask if one can generalize Theorem 1.1 to such groups. We generalize the method of [START_REF] Levitt | Rank of mapping tori and companion matrices[END_REF], characterizing the rank of Z d * A in terms of the A-orbits. Then we give a positive answer to their question for 2 × 2 matrices.

Notations Let O be a ring and let A ∈ M d (O) be a d × d matrix with coefficient in O. We denote by OR O (A) the minimum number of elements needed, such that their A-orbits generate O d .

Let k be a field and let A ∈ M d (k). Then it is well known that OR k (A) is equal to the number of invariant factors of A. In particular, OR k (A) = 1 if and only if A is conjugate in GL d (k) to a companion matrix. This is in turn equivalent to require that the eigenspace of A relative to any eigenvalue has dimension 1. It is also equivalent to the fact that the minimal polynomial of A has degree d.

In what follows we shall consider matrices A ∈ M d (Z). We simply write OR(A) for OR Z (A).

An alternative proof using equations in S-units

In this section we first state and prove a Proposition which shows special cases in which the conclusion of Theorem 1.3 holds, with different assumptions. Then we prove Theorem 1.3 and we give some further remarks. Proposition 2.1 Let A ∈ M d (Z) and assume that A has at least one eigenvalue counted with multiplicity at least 2. Then, for all integers n > 1 and for all primes p | n, the matrix A n is not conjugate to a companion matrix in GL d (F p ).

In particular, if all the eigenvalues of A are roots of unity and A has infinite order, then for n > 1 there exists a prime p such that the matrix A n is not conjugate to a companion matrix in GL d (F p ).

Proof. By assumption the characteristic polynomial f (t) ∈ Z[t] of A has a multiple factor, and we may write f (t) = g 2 (t)h(t) for suitable monic polynomials g, h ∈ Z[t], with deg g ≥ 1.

Take n > 1 and choose p to be any prime divisor of n. If A n was conjugate to a companion matrix over F p , its minimal polynomial over F p would have degree d, and the same would hold for A p (because

A n ∈ F p [A p ]). However g(A p )h(A p ) ≡ g p (A)h p (A) = (g p-2 (A)h p-1 (A))f (A) = 0 (mod p). But deg g(t)h(t) < d, a contradiction.
Concerning the last assertion of the Proposition, note that if all the eigenvalues of A are roots of unity and A has infinite order, then A has at least one eigenvalue counted with multiplicity at least 2; for otherwise A would be diagonalizable (over Q) and hence of finite order. It is now sufficient to choose p as any prime divisor of n and to apply the previous part.

Before proving Theorem 1.3 we briefly recall some facts concerning the places of a number field K. For more details, see [START_REF] Bombieri | Heights in Diophantine geometry[END_REF], chapter 1, section 2 . Any absolute value of K induces a topology on K. Two absolute values | • | 1 , | • | 2 on K are said to be equivalent if they induce the same topology. It may be proved that this happens if and only if there exists l > 0 such that |x| 1 = |x| l 2 for all x ∈ K. An equivalence class of absolute values is called a place. We say that a place is non-archimedean (or finite) if the corresponding absolute values satisfy the ultrametric inequality |x + y| ≤ max(|x|, |y|). In this case, the restriction of | | to Q is a p-adic absolute value for some rational prime p. Let v be a finite place and let | | be one of the corresponding absolute value. Then

R v = {x ∈ K, | |x| ≤ 1} is a local ring. Let K(v) be its residue field. Let α ∈ K. If α ∈ R v we call reduction of α (at v) the image α mod v of α in K(v)
; otherwise we say that the reduction of α is not defined.

Proof of Theorem 1.3. By assumption we may pick nonzero complex eigenvalues λ, ξ of A, such that their ratio is not a root of unity (so in particular λ = ξ). Consider the number field K = Q(λ, ξ) and let x λ , x ξ be respective eigenvectors of A in K d \ {0}.

We let Σ be the set of places of K obtained as the union of the following sets:

(a) the set of archimedean places and the set of places above primes in S;

(b) the set of those places at which either λ or ξ is not a unit;

(c) the set of those places at which the reductions of λ and ξ coincide;

(d) the set of those places at which the reductions of x λ or x ξ are not defined or are linearly dependent.

Then Σ is a finite set of places of K. Suppose now that n is an integer such that A n is conjugate to a companion matrix over F p , for every prime p ∈ S. Fix v ∈ Σ and denote with a tilde the reduction modulo v.

We contend that λn = ξn . In fact, assuming the contrary we deduce that Ãn has the linearly independent eigenvectors xλ , xξ relative to the same eigenvalue λn . But then, in view of the characterization recalled at the end of section 1, Ãn cannot be conjugate to a companion matrix over the residue field of v. On the other hand if this residue field has characteristic p, we have p ∈ S (because v ∈ Σ); so A n is conjugate to a companion matrix over F p ; this is a contradiction which proves the claim.

This conclusion may be reformulated as the assertion that η n := λ n -ξ n is a Σ-unit for such an integer n; on the other hand both λ n , ξ n are Σ-units, due to our choice of Σ (see property (b)). So each relevant integer n provides a solution (η n /λ n , ξ n /λ n ) to the Σ-unit equation X + Y = 1 (i.e. to be solved in in Σ-units X, Y of K). But this equation has only finitely many solutions, due to a well-known (rather deep) Theorem in the theory of diophantine equations (see [START_REF] Bombieri | Heights in Diophantine geometry[END_REF], chapter 5). Hence (ξ/λ) n can take only finitely many values. Since ξ/λ is neither zero nor a root of unity, this proves that n too takes values in a finite set. This proves the Theorem.

We remark that the above equation in Σ-units is of special type, and this allows an entirely elementary treatment in special cases (that is, without relying on the deep result alluded to in the proof).

We also remark that Baker's theory of linear forms in logarithms allows to find effectively the finite set of relevant integers n, provided A and S are given effectively. This shall be implicit in the effective treatment in the next section.

Before going ahead with such effective analysis, we give the example promised in Remark 1.4, iii). If we write z = (t, u) with coordinates t, u ∈ O, this may be rephrased saying that det(z,

Example 2.2 Let

Az) = 11t 2 + 7tu -3617u 2 ∈ O * (resp. 11t 2 + 7tu -3617u 2 = 1 in the case of SL 2 (O)).
Consider then the quadratic form

Q(T, U ) = 11T 2 + 7T U -3617U 2 of discriminant ∆ = 7 2 + 4 • 11 • 3617 = 397
• 401 (where 397, 401 are primes). We have 44Q(T, U ) = (22T + 7U ) 2 -∆U 2 . It is easily checked that Q(T, U ) represents 1 over any Z p . Indeed, by the usual Hensel's principle (see [START_REF] Serre | Cours d'arithmétique[END_REF], II.2.2) we have only to pay attention to the special cases p = 2, 11, 397, 401 and prove the solvability of the corresponding congruences (i.e. modulo 8, 11, 397, 401). For p = 2, use Q(1, 1) ≡ 1 (mod 8). In the remaining three cases, use respectively that Q(-3, -1) ≡ 1 (mod 11) and that 44 is a quadratic residue modulo 397 and modulo 401.

We conclude that A is conjugate to a companion matrix in SL 2 (Z p ) for all primes p. 

√

∆ is an integer in Z bounded in absolute value by 2 11ω/∆, which is < 1. Therefore ρ = ρ , so ρ ∈ Z. But this is impossible since 11 is not a square, proving the claim.

3 An effective bound.

In this section we prove the effective version of Theorem 1.2 announced in the introduction.

Proof of Theorem 1.5. We first remark that, by Proposition 2.1 in section 2, we may assume that A has distinct eigenvalues λ 1 , . . . , λ d and that at least one of these eigenvalues is not a root of unity.

We now recall some arguments from [START_REF] Levitt | Rank of mapping tori and companion matrices[END_REF]. Define, as in the proof of Proposition 5.3 of op. cit., the linear recurrence sequences m → u

(k) m (0 ≤ k ≤ d -1) by A m = u (0) m A 0 + • • • + u (d-1) m A d-1 .
These sequences form a basis of the Q-vector space V of linear recurrence sequences associated to the characteristic polynomial of A. Let ∆ n (A) be the determinant of the matrix (u

(k) nm ) 0≤m,k≤d-1 . Let n ∈ N and v 0 ∈ Z d . Then det(v 0 , A n v 0 , . . . , A (d-1)n v 0 ) = ∆ n (A) det(v 0 , Av 0 , . . . , A (d-1) v 0 ) .
Let, as in the statement of the theorem, Z be the set of positive integers n such that A n is conjugate in GL d (Z) to a companion matrix. Thus n ∈ Z if and only if Z d is generated by the A n -orbit of a vector v 0 , which in turn implies that Z d is generated by the A-orbit of v 0 . Thus, if n ∈ Z then there exists v 0 ∈ Z d such that

| det(v 0 , A n v 0 , . . . , A (d-1)n v 0 )| = | det(v 0 , Av 0 , . . . , A (d-1) v 0 )| = 1 .
Hence |∆ n (A)| = 1. On the other hand, let us assume |∆ n (A)| = 1. We may assume that the set Z is not empty, otherwise the conclusion of the theorem is trivial. Hence there exists

v 0 ∈ Z d such that det(v 0 , Av 0 , . . . , A (d-1) v 0 ) = ±1. Thus det(v 0 , A n v 0 , . . . , A (d-1)n v 0 ) = ±1 which shows that n ∈ Z.
The previous discussion proves that n ∈ Z if and only if

|∆ n (A)| = 1. Let D n (A) be the Vandermonde determinant D n (A) = det(λ nm k+1 ) 0≤m,k≤d-1 . Since the recurrence sequences m → λ m k+1 (0 ≤ k ≤ d -1)
give rise to another basis of V , we see that

D n (A) = det(C)∆ n (A) for some C ∈ GL d (Q). Thus n ∈ Z if and only if |D n (A)| = |D 1 (A)| (remark that ∆ 1 (A) = 1).
Let n ∈ Z. We shall obtain a bound for n from a lower bound for |D n (A)| and from an upper bound for |D 1 (A)|. First we recall some definitions. Given two monic polynomials f , g ∈ Z[t] we denote by disc(f ) the discriminant of f and by res(f, g) the resultant of f and g. We let M (f ) ≥ 1 its Mahler's measure, i.e. the absolute value of the product of the roots of f lying outside the unit circle. We also denote by f [n] the polynomial whose roots are the n-th powers of the roots of f . Let f (t) be the characteristic polynomial of A. We factorize f over

Z as f = f 1 • • • f s . We let d j = deg(f j ). Then |D n (A)| 2 = s i=1 |disc(f [n] i )| × 1≤i,j≤s |res(f [n] i , f [n] j )| ≥ s i=1 |disc(f [n] i )| (3.1)
Observe that f

[n] j has only simple roots (since otherwise D n (A) = 0 = D 1 (A)) thus it is of degree d j . By the main result of [START_REF] Dubickas | On the discriminant of the power of an algebraic number[END_REF] (which rests on lower bounds in linear forms in two logarithms), there exists an absolute positive constant c 0 such that |disc(f

[n] j )| ≥ M (f j ) (dj -1)(n-c0d 6 j log dj log n) .
We remark that M (f j ) dj -1 ≥ M (f j ). This is clear if

d j ≥ 2. If d j = 1 then f j = x ± 1 (A ∈ GL(n, Z) implies f (0) = ±1) thus M (f j ) = 1, and again M (f j ) dj -1 = 1 = M (f j ).
Assume n > c 0 d 6 log d log n (otherwise our claim is satisfied). By the remark above

|disc(f [n] j )| ≥ M (f j ) n-c0d 6 log d log n . (3.2)
By (3.1), (3.2) and by the multiplicativity of Mahler's measure we obtain

|D n (A)| 2 ≥ M (f ) n-c0d 6 log d log n .
By Hadamard's inequality:

|D 1 (A)| ≤ M (f ) d-1 d ρ 2 1 +•••+ρ 2 k ≤ M (f ) d-1 d d 2 . Thus |D n (A)| = |D 1 (A)| implies (n -c 0 d 6 log d log n -2d + 2) log M (f ) ≤ 2d 2 log d . (3.3)
Since at least one of the eigenvalues of A is not a root of unity, f is not a product of cyclotomic polynomials. By a Theorem of Dobrowolski [START_REF] Dobrowolski | On a question of Lehmer and the number of irreducible factors of a polynomial[END_REF], there exists an absolute positive constant c 1 such that log M (f ) ≥ c 1 (log d) -3 .

(3.4)

Assume n > c 0 d 6 log d log n + 2d -2 (otherwise our claim is again satisfied). From (3.3) and (3.4) we have

n ≤ 2c -1 1 d 2 (log d) 4 + c 0 d 6 log d log n + 2d -2
from which we easily get log n ≤ c 2 log d and then

n ≤ cd 6 (log d) 2
for some absolute positive constant c. One could ask if for a "generic" matrix A ∈ M d (Z) it is true that OR(A n ) = 2 infinitely often. Let us discuss a bit this problem.

Most of our results are local. Thus it is convenient to introduce the following notations. Let A ∈ M d (Z). Given a prime number p we let OR p (A) = OR Fp (A mod p). We define OR loc (A) as the maximum of OR p (A) for p a prime. We remark that OR loc (A) ≤ OR(A).

It seems that it happens only in very special cases that OR loc (A n ) is maximal (= d) for all large n.

For instance, using Fermat's little Theorem as in the proof of Proposition 2.1, it is easy to prove the following. for q running over the prime powers ≤ d (we recall that log ψ(d) ∼ d by the Prime Number Theorem). Then OR(

A n ) = OR loc (A n ) = d for n > ψ(d).
Proof. Let f (t) = (t -a) d be the characteristic polynomial of A. Let n > ψ(d). Thus there exists a power q of a prime p, such that q | n and q > d. Then A q -a ≡ (A-a) q mod p. Since q > d we have A q ≡ a mod p. Since q | n we also have A n ≡ a n/q mod p. Thus the minimal polynomial of A n mod p is linear, which implies OR

p (A n ) = d. Thus OR loc (A n ) = d. Since OR loc (A n ) ≤ OR(A n ) ≤ d we also have OR(A n ) = d.
Similarly, the method of the proof of Theorem 1.3 shows:

Remark 4.2 Let A ∈ M d (Z).
Assume that A has two nonzero eigenvalues whose ratio is not a root of unity. Let r be the sum of the dimensions of their eigenspaces. Then

OR(A n ) ≥ OR loc (A n ) ≥ r for n ≥ ψ(d).
On the opposite side, we generalize a conjecture of Ailon and Rudnick [START_REF] Ailon | Torsion points on curves and common divisors of a k -1 and b k -1[END_REF] which would imply that for a "generic" A ∈ M d (Z) we had OR loc (A n ) = 2 infinitely often. 2) There are no finite places v of K such that three distinct α j have the same reduction mod v.

Then for infinitely many n there are no finite places v of K such that three distinct α n j have the same reduction mod v.

Remark 4.4 i) In the special case α = (1, a, b) with a, b ∈ Z multiplicatively independent and such that gcd(a -1, b -1) = 1, Conjecture 4.3 reduces to conjecture A of [START_REF] Ailon | Torsion points on curves and common divisors of a k -1 and b k -1[END_REF]. As for this special case, we have a numerical evidence for it. Moreover, its analogous in function fields should be a consequence of a result of Lang, as in op.cit.

ii) Note that condition 2) is obviously necessary, but not condition 1), as already remarked in [START_REF] Ailon | Torsion points on curves and common divisors of a k -1 and b k -1[END_REF]. Take for instance a be a non-zero integer, a = ±1 and let, as in op.cit, α = (1, a, -a) which trivially satisfies the conclusion of Conjecture 4.3 but not assertion 1). More generally, we are confronted with this curious phenomenon. All the examples of algebraic numbers for which we can prove that they satisfy the conclusion of Conjecture 4.3, do not satisfy assertion 1).

iii) Here is another example, which comes from a linear recurrence sequence suggested by C. Ballot. Let u n = -1+F n+1 , where F n is Fibonacci's sequence. Then u n satisfies the linear recurrence sequence associated to the polynomial f (t) = t 3 -2t 2 +1 = (t-1)(t 2 -t-1) with roots 1, α and β. Let n be an odd integer not divisible by 3. Then there are no finite places v of O Q(α) such that 1, α n and β n have the same reduction mod v. Indeed,

f [n] (t) := (t -1)(t -α n )(t -β n ) = (t -1)(t 2 -L n t + (-1) n ), where L n is Lucas' sequence L 0 = 2, L 1 = 1, L n = L n-1 + L n-2 .
Thus for n odd f [n] mod p has 1 as triple root if and only if p = 2 and L n is even. In turn, L n is even if and only if 3 | n.

iv) The above linear recurrence sequence provides an example of a companion matrix

A ∈ GL 3 (Z) such that OR(A n ) = 2 infinitely often. Let A =   0 0 -1 1 0 0 0 1 2  
be the companion matrix of f (t) = t 3 -2t 2 + 1. Let v = (0, 1, 0) and let u n = -1 + F n+1 as before. Then it easily see that

A n v = (-u n , -u n-1 , u n+1 ). Thus Zv ⊕ ZA n v is primitive if and only if gcd(u n , u n+1 ) = 1. This proves gcd(u n , u n+1 ) = 1 =⇒ OR(A n ) ≤ 2 .
An exercise on Fibonacci's number shows that, for n odd not divisible by 3, gcd(u n , u n+1 ) = 1. Thus for these integers, OR(A n ) ≤ 2. Since A has infinite order, by Theorem 1.2 we have OR(A n ) = 2 infinitely often.

The Conjecture 4.3 immediately implies:

Conjecture 4.5 Let A ∈ M d (Z) be nonsingular with characteristic polynomial f . Let us assume:

1) The roots of the f do not satisfy non-trivial multiplicative relations of zero degree.

2) For all prime number p the polynomial f mod p do not have irreducible factors of multiplicity ≥ 3.

Then OR loc (A n ) ≤ 2 for infinitely many n.

Proof of Conjecture 4.3 ⇒ Conjecture 4.5. Let f (t) = d j=1 (t -α j ) be the characteristic polynomial of A. Thus the characteristic polynomial f

[n] of A n is f [n] (t) = d j=1 (t -α n j ).
Let us assume Conjecture 4.3. Then for infinitely many n and for p prime the polynomial f [n] mod p has no irreducible factors of multiplicity ≥ 3. Since OR p (A n ) is equal to the number of invariant factors of A n , we deduce that OR p (A n ) ≤ 2. Thus OR loc (A n ) ≤ 2 infinitely often.

with g i ∈ G and b ≥ 0. vii) Assume now that G can be generated by k + 1 elements, say x 1 , . . . , x k+1 . By Remark 5.2 v) we can find n ≥ 0 and s i ∈ {±1} such that F n t (x i ) si ∈ G + for i = 1, . . . , k + 1. Since F t is an automorphism, F n t (x 1 ) s1 , . . . , F n t (x k+1 ) s k+1 generate again G . By Remark 5.2 vi) there exist g 0 , . . . , g k , ∈ G and b ≥ 0 such that G = g 1 , . . . , g k , g 0 t b . Since t ∈ G , by Remark 5.2 ii) we have 1 = χ(t) ∈ bZ which implies b = 1.

Proof of Theorem 5.1. We first show that rank(G ) ≤ OR (ϕ) + 1. Let k = OR (ϕ). Thus there exist g 1 , . . . , g k ∈ G and N ∈ N for which Im(ϕ N ) is contained in the subgroup generated by the ϕ-orbits of g 1 , . . . , g k . Let g ∈ G. Then t N gt -N = ϕ N (g) ∈ g 1 , . . . , g k , t . Thus g ∈ g 1 , . . . , g k , t and G = g 1 , . . . , g k , t .

We now show that OR (ϕ) + 1 ≤ rank(G ). Let rank(G ) = k + 1. By Remark 5.2 vii) there exist g 0 , . . . , g k ∈ G such that G = g 1 , . . . , g k , g 0 t . Let g ∈ G. Then there exist i 1 , . . . , i l ∈ {1, . . . , k}, λ 1 , . . . , λ l ∈ Z and µ 1 , . . . , µ l ∈ Z such that

g = (g 0 t) λ1 g µ1 i1 • • • (g 0 t) λ l g µ l i l = F ρ1 (g i1 ) µ1 • • • F ρ l (g i l )
µ l (g 0 t) ρ l where F = F g0t is the inner automorphism x → (g 0 t)x(g 0 t) -1 and where

ρ i = λ 1 + • • • + λ i (i = 1, . . . , l). Let N g ≥ 0 such that m i := ρ i + N g ≥ 0 for i = 1, . . . , l. Then, by Remark 5.2 i), ϕ Ng (g) = F Ng (g) = F m1 (g i1 ) µ1 • • • F m l (g i l ) µ l (g 0 t) ρ l = ϕ m1 (g i1 ) µ1 • • • ϕ m l (g i l ) µ l (g 0 t) ρ l .
By Remark 5.2 ii) we have 0 = χ(ϕ Ng (g)) = χ((g 0 t) ρ l ) = ρ l . Thus ϕ Ng (g) is in the subgroup generated by the ϕ-orbits of g 1 , . . . , g l . It is now enough to choose N = max g N g for g running over a finite system of generators of G.

From now on we fix G = Z d . We translate the assertion OR (ϕ) = 1 in term of local conditions. Given a prime p we denote by ϕ : F d p → F d p the reduction mod p of ϕ. For v ∈ Z d we let Λ v be the subgroup generated by v, ϕ(v), . . . , ϕ d-1 (v) and we denote by Λ v its reduction mod p.

Let K be a field and let ψ be an endomorphism of a d-dimensional K-vector space V . We recall that dim Im(ψ j ) = dim Im(ψ d ) for j ≥ d. (5.5)

Remark. Let det(Λ v ) := [Z 2 : det(Λ v )]. Condition (5.5) is obviously satisfied if p det(Λ v ). If p | det(Λ v ) then dim(Λ v ) ≤ d -1 and condtition (5.5) is equivalent to dim Im(ϕ d ) = dim ϕ d-1 (Λ v ).
Proof. Assume first OR (ϕ) = 1. Then by definition, there exist a vector v ∈ Z d and N ∈ N such that Im(ϕ N ) ⊆ Λ v . Then Im(ϕ N +d ) ⊆ ϕ d (Λ v ). Let p be a prime. By the remark preceding the theorem, dim Im(ϕ d ) = dim Im(ϕ N +d ) ≤ dim ϕ d (Λ v ) .

Assume now that there exists v ∈ Z d such that (5.5) holds for every prime p. Let p be a prime. Since ϕ d (Λ v ) ⊆ Im(ϕ d ) and since these F p -vector spaces have the same dimension,

Im(ϕ d ) = ϕ d (Λ v ) ⊆ Λ v .
Let b be the product of the primes dividing det(Λ v ). By Bezout's identity we easily see that Im(ϕ d ) ⊆ Λ v + bZ d .

By induction we deduce Im(ϕ dN ) ⊆ Λ v + b N Z d

for N ∈ N. We chose for N a natural number such that det(Λ v ) divides b N . Then

Im(ϕ dN ) ⊆ Λ v + b N Z d ⊆ Λ v + det(Λ v )Z d ⊆ Λ v .
We consider the following even special case: G = Z 2 , ϕ ∈ M 2 (Z) non-singular. In this case, the assertion (5.5) is equivalent to the following two statements:

1) p | det(Λ v ) ⇒ p | det(ϕ).
2) ϕ(v) ≡ 0 mod p ⇒ p | tr(ϕ). Indeed, assume that p satisfies (5.5). Let p | det(Λ v ). Then dim Im(ϕ 2 ) = dim ϕ 2 (Λ v ) < 2. Thus ϕ is not injective and p | det(ϕ). Moreover, if ϕ(v) ≡ 0 mod p then ϕ(Λ v ) = 0, thus dim Im(ϕ 2 ) = dim ϕ 2 (Λ v ) = 0 and ϕ is nilpotent mod p which in turn implies p | tr(ϕ).

Conversely, let p be a prime satisfying 1) and 2). We have already remarked that (5.5) is trivially satisfied if p det(Λ v ). Assume that p | det(Λ v ). By 1), p | det(ϕ). Thus dim Im(ϕ 2 ) ≤ 1. Assume first ϕ(v) ≡ 0 mod p. Since p | det(Λ v ), we must have ϕ(v) ≡ λv mod p with λ ≡ 0 mod p. Hence Λ v =< v > Fp and ϕ 2 (Λ v ) =< λ 2 v > Fp . Thus dim ϕ 2 (Λ v ) = 1 ≥ dim Im(ϕ 2 ). If ϕ(v) ≡ 0 mod p, then, by 2), ϕ is nilpotent mod p, and again dim ϕ 2 (Λ v ) = dim Im(ϕ 2 ) = 0.

We write v = (x, y). Then det(Λ v ) = Q(x, y) with Q(X, Y ) a quadratic form. Thus the existence of a vector v ∈ Z 2 which satisfies conditions 1) and 2) above translate into the following statements on Q. There exist x, y ∈ Z such that for p prime we have: This last requirement amounts to certain finitely many congruence conditions, depending explicitly only on ϕ.

p | Q(x,
It is now a well-known matter to decide about the existence of x, y ∈ Z satisfying these congruences and moreover such that Q(x, y) is composed only of primes dividing det(ϕ) (and one can also calculate such x, y if there exist any). Thus: Corollary 5.4 Let ϕ : Z 2 → Z 2 be an injective morphism. Then one can compute rank(Z 2 * ϕ ).

  On the other hand, suppose that Q(a, b) = ∈ {1, -1} = Z * for some integers a, b ∈ Z. Then we would have (22a + 7b) 2 -∆b 2 = 44 . Consider the unit ω := (399 + √ ∆)/2 of the ring of integers O ∆ of Q( √ ∆). Let also ξ = (22a + 7b + b √ ∆)/2 which is again in O ∆ since 22a + 7b and b have the same parity. Then ξξ = 11 , where a dash denotes conjugation in Q( √ ∆). We could then find an integer m so that 11/ω ≤ |ξω m | < √ 11ω. Putting ρ := ξω m we find |ρρ | = 11, whence the above inequalities yield 11/ω < |ρ | ≤ √ 11ω. In turn, this gives |ρ -ρ | < 2 √ 11ω. Finally, (ρ-ρ )

4 The rank> 2 problem

 2 Let d ≥ 3. As recalled in the introduction, Levitt and Metaftsis provide a family of examples of matrices A ∈ M d (Z) of infinite order and such that OR(A n ) = 2 for infinitely many n. One can choose A = a 0 0 B with a = ±1 and B ∈ M d-1 (Z) conjugate to a companion matrix of finite order. Note however that this forces A ∈ GL d (Z). See Remark 4.4, iv) for an example of a matrix A ∈ GL 3 (Z) such that OR(A n ) = 2 for infinitely many n.

Remark 4 . 1

 41 Let A ∈ M d (Z). Assume that A has only one eigenvalue. Let ψ(d) = q≤d q .

Conjecture 4 . 3 = 1

 431 Let K be a number field and let α 1 , . . . , α d ∈ O K be non-zero algebraic integers of K. Let us assume: 1) α 1 , . . . , α d do not satisfy non-trivial multiplicative relations of zero degree. (Namely, α m1 1 • • • α m d d for integers m 1 , . . . , m d not all zero but with m 1 + . . . + m d = 0.)

Theorem 5 . 3

 53 Let ϕ : Z d → Z d be an injective morphism. Then OR (ϕ) = 1 if and only if there exists a vector v ∈ Z d such that for all prime p dim Im(ϕ d ) = dim ϕ d (Λ v ) .

  y) =⇒ p | det(ϕ) ϕ(x, y) ≡ 0 mod p =⇒ p | tr(ϕ) .

  A be the 2 × 2 unimodular matrix Then A is conjugate in SL 2 (Z p ) to a companion matrix for all p, but it is not conjugate to a companion matrix in GL 2 (Z).Proof. It is of course possible that there are simpler numerical examples, especially if we replace SL 2 (Z p ) by GL 2 (Z p ); we have not pursued in the task of finding one.To say that A is conjugate to a companion matrix over a ring O means that there is a vector z ∈ O 2 such that z, Az form an O-basis of O 2 ; in turn, this just means that det(z, Az) belongs to the group O * of invertible elements in O. If actually det(z, Az) = 1, then A is conjugate to a companion matrix in SL 2 (O).

	A :=	196 3617 11 203	.

We remark that if A ∈ GL d (Z), condition 1) of Conjecture 4.5 forces the roots of f to be different from roots of unity.

Ascending HNN-extensions

Let G be a finitely generated abelian group and let ϕ be an injective endomorphism of G. We consider the ascending HNN-extension

Define OR (ϕ) as the least positive integer k such that there exist g 1 , . . . , g k ∈ G and N ∈ N for which Im(ϕ N ) is contained in the subgroup generated by the ϕ-orbits of g 1 , . . . , g k . Remark that OR (ϕ) = OR(ϕ) for ϕ ∈ Aut(G). The following theorem generalizes the first statement of [START_REF] Levitt | Rank of mapping tori and companion matrices[END_REF], Corollary 2.4. Before proving this result, we make some simple remarks on ascending HNN-extensions. Some of them will be needed in the proof of the theorem.

For y ∈ G we denote by F y the inner automorphism of G defined by F y (x) = yxy -1 . Thus ϕ is the restriction of F t to G.

Remark 5.2

i) Since G is abelian, for g, g 1 ∈ G we have F gt (g 1 ) = gϕ(g 1 )g -1 = ϕ(g 1 ).

ii) We note that every x ∈ G may be written as x = t -a gt b , with g ∈ G and a, b ≥ 0.

Even if this form is not unique, t -a gt b → b -a defines a morphism χ :

and write the euclidean division b 2 = qb 1 + r (q ≥ 0, 0 ≤ r < b 1 ). Since q ≥ 0, by Remark 5.2 iii) we have x q 1 = g 1 t qb1 for some g 1 ∈ G. Thus

. By Euclid's algorithm we deduce that there exist x ∈ G + and g ∈ G such that x 1 , x 2 = g, x . More generally, if x 1 , . . . , x k+1 ∈ G + , then x 1 , . . . , x k+1 = g 1 , . . . , g k , g 0 t b

We have not made any particular effort to generalize this statement to higher dimension.

We finally remark that the analogous of Theorem 1.2 still holds in ascending HNNextensions and it is indeed an easy corollary of Theorem 1.3.

Corollary 5.5 Let A ∈ M d (Z) be a nonsingular matrix of infinite order. Suppose that A has two eigenvalues whose ratio is not a root of unity. Consider the family of ascending HNN-extensions

Proof. Let S be the set of primes dividing the discriminant of A. By Theorem 1.3 there exists n 0 = n 0 (A) such that for all n ≥ n 0 the matrix A n is not conjugate in GL d (F p ) to a companion matrix for all p ∈ S. Let n ≥ n 0 and assume OR (A n ) = 1. Let p ∈ S. Then, by the choice of S, the matrix A is in GL d (F p ). Thus OR(A n ) = OR (A n ) = 1 and A n is conjugate to a companion matrix in GL d (F p ), contradiction. Thus for n ≥ n 0 we have OR (A n ) > 1 and, by Proposition 5.1, rank(G n ) > 2.