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1 Introduction

The present paper considers certain diophantine issues arising from the study of the rank

of the so-called mapping tori groups. These groups have been studied in a number of

papers. For more on this, we referred to the article [6] of Levitt and Metaftsis who in fact

pointed out to us the question which we now analyze.

Let A ∈ GLd(Z). The natural action v 7→ Av induces a semidirect product

G = Zd oA Z = 〈Zd, t | tvt−1 = Av〉

where we identify the generator 1 of Z with A. Let OR(A) be the minimum number of

vectors whose A-orbits generate Zd and let rank(G) be the minimum number of generators

of G. In [6] the Authors shows that

Theorem 1.1 (Levitt-Metaftsis)

rank(G) = 1 + OR(A) .
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In particular, G can be generated by two elements if and only if A is conjugate in GLd(Z)

to a companion matrix.

We recall that a companion matrix is one of the shape
0 ∗
1 0 ∗

. . .
. . . ∗
1 0 ∗

1 ∗

 .

See also the end of this section for equivalent properties.

Since the conjugacy problem is decidable in GLd(Z) (cf. [5]), one can decide whether

G has rank 2 or not.

Motivated by a topological result of J. Souto [8], they then prove:

Theorem 1.2 (Levitt-Metaftsis) Let A ∈ GLd(Z) be of infinite order. Consider the

family of finitely generated groups Gn = Zd oAn Z. Then there exists n0 = n0(A) such

that rank(Gn) > 2 for n ≥ n0. In other words, for n ≥ n0 the matrix An is not conjugate

to a companion matrix in GLd(Z).

Their proof is based on the Skolem-Mahler-Lech Theorem on linear recurrence se-

quences. An alternative approach to this last result follows from a local argument in Zp
which amount to reduction modulo p, using equations in S-units. This approach actually

shows a bit more, upon excluding the matrices all of whose eigenvalues are roots of unity.

Namely, under the assumption that some complex eigenvalue of A ∈ GLd(Z) has infinite

order, we shall prove the finiteness of the set of n ∈ Z such that An is conjugate to a

companion matrix in GLd(Fp) for all primes p outside a prescribed (but arbitrary) finite

set S. In section 2 we prove:

Theorem 1.3 Let S be a finite set of prime numbers and let A ∈Md(Z). Suppose that A

has two nonzero eigenvalues whose ratio is not a root of unity. Then there are only finitely

many integers n such that for all primes p 6∈ S the reduction modulo p of the matrix An

is conjugate to a companion matrix in GLd(Fp).

Let us pause for some remarks on this statement.

Remark 1.4

i) Assume A ∈ GLd(Z). If the ratio of any two eigenvalues of A is a root of unity, then

in fact all the eigenvalues must be roots of unity, because their product is detA = ±1.

ii) We remark that the assumption on the eigenvalues is necessary here, and (if S 6= ∅)
cannot be replaced with the weaker one that A ∈ GLd(Z) has not finite order. This is

shown by examples like S = {l},

A =

(
1 1
0 1

)
.

We notice that A has infinite order, nevertheless each of the powers Al
m

, m ∈ N, is

conjugate to a companion matrix over Fp, for all p 6= l, and actually over the ring Z[1/l].
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On the other hand, we note that in the special case S = ∅, the conclusion of the Theo-

rem holds even if A ∈ GLd(Z) has all eigenvalues roots of unity, but it is not of not finite

order, see Proposition 2.1 in section 2.

iii) We also remark that for d > 1 there are integral unimodular matrices which are

conjugate to a companion matrix in GL2(Fp) for all p (and indeed in SL2(Zp) for all p)

but not conjugate to a companion matrix over Z. Thus Hasse principle does not hold

in the present situation. We provide an explicit example at the end of section 2. This

shows that, even in the case S = ∅, the finiteness predicted by the Theorem is a priori a

stronger assertion than the finiteness of the set of integers n such that An is conjugate to

a companion matrix over Z.

We give other complements to the results of [6]. In section 3 we prove the following

effective version of Theorem 1.2:

Theorem 1.5 Let A ∈ GLd(Z) be a matrix of infinite order. Let Z be the set of positive

integers n such that An is conjugate in GLd(Z) to a companion matrix. Then there exists

an effective absolute constant c > 0 such that

maxZ ≤ cd6(log d)2 .

We could ask for a strong version of Theorem 1.2. Let A ∈ GLd(Z) of infinite order. It

is true that there exists n0 = n0(A) such that OR(Gn) is “large” for n ≥ n0? Levitt and

Metaftsis give a simple counterexample to this statement. It is enough to choose integers

h, k > 1 such that k+h = d and matrices A1 ∈ GLk(Z), A2 ∈ GLh(Z) with A1 of infinite

order and with A2 conjugate to a companion matrix of finite order m . The matrix

A =

(
A1 0
0 A2

)
is then of infinite order, but OR(An) ≤ k+ 1 for n ≡ 1 mod m. In section 4 we investigate

more closely this problem. We formulate a conjecture which predicts that for a “generic”

matrix A we would have OR(An) = 2 for infinitely many integers n. We shall relate this

conjecture to another one concerning algebraic numbers and we shall give some evidence

for it.

In section 5, we partially answer another question posed in [6]. Let A ∈ Md(Z) be

nonsingular and consider the so-called ascending HNN-extension

Zd∗A = 〈Zd, t | tvt−1 = Av〉 .

By this notation it is meant that Zd∗A is generated by Zd and t subject to the relations

written on the right. We remark that Zd∗A is a semidirect product if and only if A ∈
GLd(Z).

Levitt and Metaftsis ask if one can generalize Theorem 1.1 to such groups. We gen-

eralize the method of [6], characterizing the rank of Zd∗A in terms of the A-orbits. Then

we give a positive answer to their question for 2× 2 matrices.
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Notations Let O be a ring and let A ∈ Md(O) be a d × d matrix with coefficient in O.

We denote by ORO(A) the minimum number of elements needed, such that their A-orbits

generate Od.
Let k be a field and let A ∈Md(k). Then it is well known that ORk(A) is equal to the

number of invariant factors of A. In particular, ORk(A) = 1 if and only if A is conjugate

in GLd(k) to a companion matrix. This is in turn equivalent to require that the eigenspace

of A relative to any eigenvalue has dimension 1. It is also equivalent to the fact that the

minimal polynomial of A has degree d.

In what follows we shall consider matrices A ∈ Md(Z). We simply write OR(A) for

ORZ(A).

2 An alternative proof using equations in S-units

In this section we first state and prove a Proposition which shows special cases in which the

conclusion of Theorem 1.3 holds, with different assumptions. Then we prove Theorem 1.3

and we give some further remarks.

Proposition 2.1 Let A ∈Md(Z) and assume that A has at least one eigenvalue counted

with multiplicity at least 2. Then, for all integers n > 1 and for all primes p | n, the

matrix An is not conjugate to a companion matrix in GLd(Fp).

In particular, if all the eigenvalues of A are roots of unity and A has infinite order, then

for n > 1 there exists a prime p such that the matrix An is not conjugate to a companion

matrix in GLd(Fp).

Proof. By assumption the characteristic polynomial f(t) ∈ Z[t] of A has a multiple

factor, and we may write f(t) = g2(t)h(t) for suitable monic polynomials g, h ∈ Z[t], with

deg g ≥ 1.

Take n > 1 and choose p to be any prime divisor of n. If An was conjugate to a

companion matrix over Fp, its minimal polynomial over Fp would have degree d, and the

same would hold for Ap (because An ∈ Fp[Ap]). However g(Ap)h(Ap) ≡ gp(A)hp(A) =

(gp−2(A)hp−1(A))f(A) = 0 (mod p). But deg g(t)h(t) < d, a contradiction.

Concerning the last assertion of the Proposition, note that if all the eigenvalues of A

are roots of unity and A has infinite order, then A has at least one eigenvalue counted

with multiplicity at least 2; for otherwise A would be diagonalizable (over Q) and hence

of finite order. It is now sufficient to choose p as any prime divisor of n and to apply the

previous part.

�

Before proving Theorem 1.3 we briefly recall some facts concerning the places of a

number field K. For more details, see [2], chapter 1, section 2 . Any absolute value of K

induces a topology on K. Two absolute values | · |1, | · |2 on K are said to be equivalent

if they induce the same topology. It may be proved that this happens if and only if there

exists l > 0 such that |x|1 = |x|l2 for all x ∈ K. An equivalence class of absolute values

is called a place. We say that a place is non-archimedean (or finite) if the corresponding

absolute values satisfy the ultrametric inequality |x+ y| ≤ max(|x|, |y|). In this case, the

restriction of | | to Q is a p-adic absolute value for some rational prime p. Let v be a finite
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place and let | | be one of the corresponding absolute value. Then Rv = {x ∈ K, | |x| ≤ 1}
is a local ring. Let K(v) be its residue field. Let α ∈ K. If α ∈ Rv we call reduction of α (at

v) the image α mod v of α in K(v); otherwise we say that the reduction of α is not defined.

Proof of Theorem 1.3. By assumption we may pick nonzero complex eigenvalues λ, ξ

of A, such that their ratio is not a root of unity (so in particular λ 6= ξ). Consider the

number field K = Q(λ, ξ) and let xλ, xξ be respective eigenvectors of A in Kd \ {0}.
We let Σ be the set of places of K obtained as the union of the following sets:

(a) the set of archimedean places and the set of places above primes in S;

(b) the set of those places at which either λ or ξ is not a unit;

(c) the set of those places at which the reductions of λ and ξ coincide;

(d) the set of those places at which the reductions of xλ or xξ are not defined

or are linearly dependent.

Then Σ is a finite set of places of K.

Suppose now that n is an integer such that An is conjugate to a companion matrix

over Fp, for every prime p 6∈ S. Fix v 6∈ Σ and denote with a tilde the reduction modulo v.

We contend that λ̃n 6= ξ̃n. In fact, assuming the contrary we deduce that Ãn has the

linearly independent eigenvectors x̃λ, x̃ξ relative to the same eigenvalue λ̃n. But then, in

view of the characterization recalled at the end of section 1, Ãn cannot be conjugate to

a companion matrix over the residue field of v. On the other hand if this residue field

has characteristic p, we have p 6∈ S (because v 6∈ Σ); so An is conjugate to a companion

matrix over Fp; this is a contradiction which proves the claim.

This conclusion may be reformulated as the assertion that ηn := λn − ξn is a Σ-unit

for such an integer n; on the other hand both λn, ξn are Σ-units, due to our choice of Σ

(see property (b)). So each relevant integer n provides a solution (ηn/λ
n, ξn/λn) to the

Σ-unit equation X + Y = 1 (i.e. to be solved in in Σ-units X,Y of K). But this equation

has only finitely many solutions, due to a well-known (rather deep) Theorem in the theory

of diophantine equations (see [2], chapter 5). Hence (ξ/λ)n can take only finitely many

values. Since ξ/λ is neither zero nor a root of unity, this proves that n too takes values in

a finite set. This proves the Theorem.

�

We remark that the above equation in Σ-units is of special type, and this allows an

entirely elementary treatment in special cases (that is, without relying on the deep result

alluded to in the proof).

We also remark that Baker’s theory of linear forms in logarithms allows to find effec-

tively the finite set of relevant integers n, provided A and S are given effectively. This

shall be implicit in the effective treatment in the next section.

Before going ahead with such effective analysis, we give the example promised in Re-

mark 1.4, iii).
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Example 2.2 Let A be the 2× 2 unimodular matrix

A :=

(
196 3617
11 203

)
.

Then A is conjugate in SL2(Zp) to a companion matrix for all p, but it is not conjugate

to a companion matrix in GL2(Z).

Proof. It is of course possible that there are simpler numerical examples, especially if

we replace SL2(Zp) by GL2(Zp); we have not pursued in the task of finding one.

To say that A is conjugate to a companion matrix over a ring O means that there

is a vector z ∈ O2 such that z,Az form an O-basis of O2; in turn, this just means that

det(z,Az) belongs to the group O∗ of invertible elements in O. If actually det(z,Az) = 1,

then A is conjugate to a companion matrix in SL2(O).

If we write z = (t, u) with coordinates t, u ∈ O, this may be rephrased saying that

det(z,Az) = 11t2 + 7tu − 3617u2 ∈ O∗ (resp. 11t2 + 7tu − 3617u2 = 1 in the case of

SL2(O)).

Consider then the quadratic form Q(T,U) = 11T 2 + 7TU − 3617U2 of discriminant

∆ = 72 + 4 · 11 · 3617 = 397 · 401 (where 397, 401 are primes). We have 44Q(T,U) =

(22T + 7U)2 −∆U2. It is easily checked that Q(T,U) represents 1 over any Zp. Indeed,

by the usual Hensel’s principle (see [7], II.2.2) we have only to pay attention to the special

cases p = 2, 11, 397, 401 and prove the solvability of the corresponding congruences (i.e.

modulo 8, 11, 397, 401). For p = 2, use Q(1, 1) ≡ 1 (mod 8). In the remaining three cases,

use respectively that Q(−3,−1) ≡ 1 (mod 11) and that 44 is a quadratic residue modulo

397 and modulo 401.

We conclude that A is conjugate to a companion matrix in SL2(Zp) for all primes p.

On the other hand, suppose that Q(a, b) = ε ∈ {1,−1} = Z∗ for some integers a, b ∈ Z.

Then we would have (22a + 7b)2 −∆b2 = 44ε. Consider the unit ω := (399 +
√

∆)/2 of

the ring of integers O∆ of Q(
√

∆). Let also ξ = (22a + 7b + b
√

∆)/2 which is again in

O∆ since 22a + 7b and b have the same parity. Then ξξ′ = 11ε, where a dash denotes

conjugation in Q(
√

∆).

We could then find an integer m so that
√

11/ω ≤ |ξωm| <
√

11ω. Putting ρ := ξωm

we find |ρρ′| = 11, whence the above inequalities yield
√

11/ω < |ρ′| ≤
√

11ω. In turn,

this gives |ρ − ρ′| < 2
√

11ω. Finally, (ρ−ρ′)√
∆

is an integer in Z bounded in absolute value

by 2
√

11ω/∆, which is < 1. Therefore ρ = ρ′, so ρ ∈ Z. But this is impossible since 11 is

not a square, proving the claim.

�

3 An effective bound.

In this section we prove the effective version of Theorem 1.2 announced in the introduc-

tion.

Proof of Theorem 1.5. We first remark that, by Proposition 2.1 in section 2, we may

assume that A has distinct eigenvalues λ1, . . . , λd and that at least one of these eigenvalues

is not a root of unity.
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We now recall some arguments from [6]. Define, as in the proof of Proposition 5.3 of

op. cit., the linear recurrence sequences m 7→ u
(k)
m (0 ≤ k ≤ d− 1) by

Am = u(0)
m A0 + · · ·+ u(d−1)

m Ad−1 .

These sequences form a basis of the Q-vector space V of linear recurrence sequences

associated to the characteristic polynomial of A. Let ∆n(A) be the determinant of the

matrix (u
(k)
nm)0≤m,k≤d−1. Let n ∈ N and v0 ∈ Zd. Then

det(v0, A
nv0, . . . , A

(d−1)nv0) = ∆n(A) det(v0, Av0, . . . , A
(d−1)v0) .

Let, as in the statement of the theorem, Z be the set of positive integers n such that An

is conjugate in GLd(Z) to a companion matrix. Thus n ∈ Z if and only if Zd is generated

by the An-orbit of a vector v0, which in turn implies that Zd is generated by the A-orbit

of v0. Thus, if n ∈ Z then there exists v0 ∈ Zd such that

|det(v0, A
nv0, . . . , A

(d−1)nv0)| = |det(v0, Av0, . . . , A
(d−1)v0)| = 1 .

Hence |∆n(A)| = 1. On the other hand, let us assume |∆n(A)| = 1. We may assume that

the set Z is not empty, otherwise the conclusion of the theorem is trivial. Hence there exists

v0 ∈ Zd such that det(v0, Av0, . . . , A
(d−1)v0) = ±1. Thus det(v0, A

nv0, . . . , A
(d−1)nv0) =

±1 which shows that n ∈ Z.

The previous discussion proves that n ∈ Z if and only if |∆n(A)| = 1. Let Dn(A)

be the Vandermonde determinant Dn(A) = det(λnmk+1)0≤m,k≤d−1. Since the recurrence

sequences m 7→ λmk+1 (0 ≤ k ≤ d−1) give rise to another basis of V , we see that Dn(A) =

det(C)∆n(A) for some C ∈ GLd(Q). Thus n ∈ Z if and only if |Dn(A)| = |D1(A)| (remark

that ∆1(A) = 1).

Let n ∈ Z. We shall obtain a bound for n from a lower bound for |Dn(A)| and from an

upper bound for |D1(A)|. First we recall some definitions. Given two monic polynomials

f , g ∈ Z[t] we denote by disc(f) the discriminant of f and by res(f, g) the resultant of f

and g. We let M(f) ≥ 1 its Mahler’s measure, i.e. the absolute value of the product of

the roots of f lying outside the unit circle. We also denote by f [n] the polynomial whose

roots are the n-th powers of the roots of f .

Let f(t) be the characteristic polynomial of A. We factorize f over Z as f = f1 · · · fs.
We let dj = deg(fj). Then

|Dn(A)|2 =

s∏
i=1

|disc(f
[n]
i )| ×

∏
1≤i,j≤s

|res(f
[n]
i , f

[n]
j )| ≥

s∏
i=1

|disc(f
[n]
i )| (3.1)

Observe that f
[n]
j has only simple roots (since otherwise Dn(A) = 0 6= D1(A)) thus it is

of degree dj . By the main result of [4] (which rests on lower bounds in linear forms in two

logarithms), there exists an absolute positive constant c0 such that

|disc(f
[n]
j )| ≥M(fj)

(dj−1)(n−c0d6j log dj logn) .

We remark that M(fj)
dj−1 ≥ M(fj). This is clear if dj ≥ 2. If dj = 1 then fj = x ± 1

(A ∈ GL(n,Z) implies f(0) = ±1) thus M(fj) = 1, and again M(fj)
dj−1 = 1 = M(fj).

Assume n > c0d
6 log d log n (otherwise our claim is satisfied). By the remark above

|disc(f
[n]
j )| ≥M(fj)

n−c0d6 log d logn . (3.2)
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By (3.1), (3.2) and by the multiplicativity of Mahler’s measure we obtain

|Dn(A)|2 ≥M(f)n−c0d
6 log d logn .

By Hadamard’s inequality:

|D1(A)| ≤M(f)d−1dρ
2
1+···+ρ2k ≤M(f)d−1dd

2

.

Thus |Dn(A)| = |D1(A)| implies

(n− c0d6 log d log n− 2d+ 2) logM(f) ≤ 2d2 log d . (3.3)

Since at least one of the eigenvalues of A is not a root of unity, f is not a product

of cyclotomic polynomials. By a Theorem of Dobrowolski [3], there exists an absolute

positive constant c1 such that

logM(f) ≥ c1(log d)−3 . (3.4)

Assume n > c0d
6 log d log n + 2d − 2 (otherwise our claim is again satisfied). From (3.3)

and (3.4) we have

n ≤ 2c−1
1 d2(log d)4 + c0d

6 log d log n+ 2d− 2

from which we easily get log n ≤ c2 log d and then

n ≤ cd6(log d)2

for some absolute positive constant c.

�

4 The rank> 2 problem

Let d ≥ 3. As recalled in the introduction, Levitt and Metaftsis provide a family of

examples of matrices A ∈Md(Z) of infinite order and such that OR(An) = 2 for infinitely

many n. One can choose

A =

(
a 0
0 B

)
with a 6= ±1 and B ∈ Md−1(Z) conjugate to a companion matrix of finite order. Note

however that this forces A 6∈ GLd(Z). See Remark 4.4, iv) for an example of a matrix

A ∈ GL3(Z) such that OR(An) = 2 for infinitely many n.

One could ask if for a “generic” matrix A ∈Md(Z) it is true that OR(An) = 2 infinitely

often. Let us discuss a bit this problem.

Most of our results are local. Thus it is convenient to introduce the following notations.

Let A ∈ Md(Z). Given a prime number p we let ORp(A) = ORFp
(A mod p). We define

ORloc(A) as the maximum of ORp(A) for p a prime. We remark that ORloc(A) ≤ OR(A).

It seems that it happens only in very special cases that ORloc(An) is maximal (= d)

for all large n.

For instance, using Fermat’s little Theorem as in the proof of Proposition 2.1, it is easy

to prove the following.
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Remark 4.1 Let A ∈Md(Z). Assume that A has only one eigenvalue. Let

ψ(d) =
∏
q≤d

q .

for q running over the prime powers ≤ d (we recall that logψ(d) ∼ d by the Prime Number

Theorem). Then OR(An) = ORloc(An) = d for n > ψ(d).

Proof. Let f(t) = (t − a)d be the characteristic polynomial of A. Let n > ψ(d). Thus

there exists a power q of a prime p, such that q | n and q > d. Then Aq−a ≡ (A−a)q mod p.

Since q > d we have Aq ≡ a mod p. Since q | n we also have An ≡ an/q mod p.

Thus the minimal polynomial of An mod p is linear, which implies ORp(A
n) = d. Thus

ORloc(An) = d. Since ORloc(An) ≤ OR(An) ≤ d we also have OR(An) = d.

�

Similarly, the method of the proof of Theorem 1.3 shows:

Remark 4.2 Let A ∈ Md(Z). Assume that A has two nonzero eigenvalues whose ratio

is not a root of unity. Let r be the sum of the dimensions of their eigenspaces. Then

OR(An) ≥ ORloc(An) ≥ r for n ≥ ψ(d).

On the opposite side, we generalize a conjecture of Ailon and Rudnick [1] which would

imply that for a “generic” A ∈Md(Z) we had ORloc(An) = 2 infinitely often.

Conjecture 4.3 Let K be a number field and let α1, . . . , αd ∈ OK be non-zero algebraic

integers of K. Let us assume:

1) α1, . . . , αd do not satisfy non-trivial multiplicative relations of zero degree.

(Namely, αm1
1 · · ·αmd

d 6= 1 for integers m1, . . . ,md not all zero but with

m1 + . . .+md = 0.)

2) There are no finite places v of K such that three distinct αj have the same

reduction mod v.

Then for infinitely many n there are no finite places v of K such that three distinct αnj
have the same reduction mod v.

Remark 4.4

i) In the special case α = (1, a, b) with a, b ∈ Z multiplicatively independent and such

that gcd(a−1, b−1) = 1, Conjecture 4.3 reduces to conjecture A of [1]. As for this special

case, we have a numerical evidence for it. Moreover, its analogous in function fields should

be a consequence of a result of Lang, as in op.cit.

ii) Note that condition 2) is obviously necessary, but not condition 1), as already remarked

in [1]. Take for instance a be a non-zero integer, a 6= ±1 and let, as in op.cit, α = (1, a,−a)

which trivially satisfies the conclusion of Conjecture 4.3 but not assertion 1). More gen-

erally, we are confronted with this curious phenomenon. All the examples of algebraic

numbers for which we can prove that they satisfy the conclusion of Conjecture 4.3, do not
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satisfy assertion 1).

iii) Here is another example, which comes from a linear recurrence sequence suggested by

C. Ballot. Let un = −1+Fn+1, where Fn is Fibonacci’s sequence. Then un satisfies the lin-

ear recurrence sequence associated to the polynomial f(t) = t3−2t2 +1 = (t−1)(t2−t−1)

with roots 1, α and β. Let n be an odd integer not divisible by 3. Then there are no

finite places v of OQ(α) such that 1, αn and βn have the same reduction mod v. Indeed,

f [n](t) := (t− 1)(t−αn)(t− βn) = (t− 1)(t2−Lnt+ (−1)n), where Ln is Lucas’ sequence

L0 = 2, L1 = 1, Ln = Ln−1 +Ln−2. Thus for n odd f [n] mod p has 1 as triple root if and

only if p = 2 and Ln is even. In turn, Ln is even if and only if 3 | n.

iv) The above linear recurrence sequence provides an example of a companion matrix

A ∈ GL3(Z) such that OR(An) = 2 infinitely often. Let

A =

0 0 −1
1 0 0
0 1 2


be the companion matrix of f(t) = t3−2t2 +1. Let v = (0, 1, 0) and let un = −1+Fn+1 as

before. Then it easily see that Anv = (−un,−un−1, un+1). Thus Zv ⊕ ZAnv is primitive

if and only if gcd(un, un+1) = 1. This proves

gcd(un, un+1) = 1 =⇒ OR(An) ≤ 2 .

An exercise on Fibonacci’s number shows that, for n odd not divisible by 3, gcd(un, un+1) =

1. Thus for these integers, OR(An) ≤ 2. Since A has infinite order, by Theorem 1.2 we

have OR(An) = 2 infinitely often.

The Conjecture 4.3 immediately implies:

Conjecture 4.5 Let A ∈Md(Z) be nonsingular with characteristic polynomial f . Let us

assume:

1) The roots of the f do not satisfy non-trivial multiplicative relations of zero

degree.

2) For all prime number p the polynomial f mod p do not have irreducible

factors of multiplicity ≥ 3.

Then ORloc(An) ≤ 2 for infinitely many n.

Proof of Conjecture 4.3 ⇒ Conjecture 4.5. Let f(t) =
∏d
j=1(t − αj) be the char-

acteristic polynomial of A. Thus the characteristic polynomial f [n] of An is f [n](t) =∏d
j=1(t− αnj ). Let us assume Conjecture 4.3. Then for infinitely many n and for p prime

the polynomial f [n] mod p has no irreducible factors of multiplicity ≥ 3. Since ORp(A
n)

is equal to the number of invariant factors of An, we deduce that ORp(A
n) ≤ 2. Thus

ORloc(An) ≤ 2 infinitely often.

�
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We remark that if A ∈ GLd(Z), condition 1) of Conjecture 4.5 forces the roots of f to

be different from roots of unity.

5 Ascending HNN-extensions

Let G be a finitely generated abelian group and let ϕ be an injective endomorphism of G.

We consider the ascending HNN-extension

G∗ϕ = 〈G, t | tgt−1 = ϕ(g)〉 .

Define OR′(ϕ) as the least positive integer k such that there exist g1, . . . , gk ∈ G andN ∈ N
for which Im(ϕN ) is contained in the subgroup generated by the ϕ-orbits of g1, . . . , gk.

Remark that OR′(ϕ) = OR(ϕ) for ϕ ∈ Aut(G). The following theorem generalizes the

first statement of [6], Corollary 2.4.

Theorem 5.1 Let ϕ be an injective endomorphism of the finitely abelian group G. Let

G′ be the ascending HNN-extension G∗ϕ. Then

rank(G′) = OR′(ϕ) + 1 .

Before proving this result, we make some simple remarks on ascending HNN-extensions.

Some of them will be needed in the proof of the theorem.

For y ∈ G′ we denote by Fy the inner automorphism of G′ defined by Fy(x) = yxy−1.

Thus ϕ is the restriction of Ft to G.

Remark 5.2

i) Since G is abelian, for g, g1 ∈ G we have Fgt(g1) = gϕ(g1)g−1 = ϕ(g1).

ii) We note that every x ∈ G′ may be written as x = t−agtb, with g ∈ G and a, b ≥ 0.

Even if this form is not unique, t−agtb 7→ b− a defines a morphism χ : G′ → Z.

iii) Let G′+ = {gtb | g ∈ G, b ≥ 0}. Then G′+ is a monoid. More precisely, for

g1, . . . , gr ∈ G and b1, . . . , br ≥ 0 we have g1t
b1 · · · grtbr = gtb1+···+br for some g ∈ G.

iv) Let g ∈ G and let b ≥ 0. Then (gt−b)−1 = ϕb(g)−1tb ∈ G′+.

v) Let x = t−agtb ∈ G′ (g ∈ G, a, b ≥ 0) and let n ≥ a. Then Fnt (x) = tn−agt−n+b =

ϕn−a(g)tb−a. If b ≥ a, we have Fnt (x) ∈ G′+. Assume b < a. Then, by Remark 5.2 iv),

Fnt (x)−1 ∈ G′+.

vi) Let x1 = g1t
b1 , x2 = g2t

b2 ∈ G′+ (gi ∈ G, bi ≥ 0) and write the euclidean division

b2 = qb1 + r (q ≥ 0, 0 ≤ r < b1). Since q ≥ 0, by Remark 5.2 iii) we have xq1 = g′1t
qb1 for

some g′1 ∈ G. Thus

x′2 := x2x
−q
1 = g2t

r(g′1)−1 = g2ϕ
r(g′1)−1tr = g′2t

r

with g′2 ∈ G. We have 〈x1, x2〉 = 〈x1, x
′
2〉. By Euclid’s algorithm we deduce that there

exist x ∈ G′+ and g ∈ G such that 〈x1, x2〉 = 〈g, x〉. More generally, if x1, . . . , xk+1 ∈ G′+,

then

〈x1, . . . , xk+1〉 = 〈g1, . . . , gk, g0t
b〉
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with gi ∈ G and b ≥ 0.

vii) Assume now that G′ can be generated by k + 1 elements, say x1, . . . , xk+1. By

Remark 5.2 v) we can find n ≥ 0 and si ∈ {±1} such that Fnt (xi)
si ∈ G′+ for i =

1, . . . , k+ 1. Since Ft is an automorphism, Fnt (x1)s1 , . . . , Fnt (xk+1)sk+1 generate again G′.

By Remark 5.2 vi) there exist g0, . . . , gk,∈ G and b ≥ 0 such that G′ = 〈g1, . . . , gk, g0t
b〉.

Since t ∈ G′, by Remark 5.2 ii) we have 1 = χ(t) ∈ bZ which implies b = 1.

Proof of Theorem 5.1. We first show that rank(G′) ≤ OR′(ϕ) + 1. Let k = OR′(ϕ).

Thus there exist g1, . . . , gk ∈ G and N ∈ N for which Im(ϕN ) is contained in the subgroup

generated by the ϕ-orbits of g1, . . . , gk. Let g ∈ G. Then tNgt−N = ϕN (g) ∈ 〈g1, . . . , gk, t〉.
Thus g ∈ 〈g1, . . . , gk, t〉 and G′ = 〈g1, . . . , gk, t〉.

We now show that OR′(ϕ) + 1 ≤ rank(G′). Let rank(G′) = k + 1. By Remark 5.2 vii)

there exist g0, . . . , gk ∈ G such that G′ = 〈g1, . . . , gk, g0t〉. Let g ∈ G. Then there exist

i1, . . . , il ∈ {1, . . . , k}, λ1, . . . , λl ∈ Z and µ1, . . . , µl ∈ Z such that

g = (g0t)
λ1gµ1

i1
· · · (g0t)

λlgµl

il
= F ρ1(gi1)µ1 · · ·F ρl(gil)µl(g0t)

ρl

where F = Fg0t is the inner automorphism x 7→ (g0t)x(g0t)
−1 and where ρi = λ1 + · · ·+λi

(i = 1, . . . , l). Let Ng ≥ 0 such that mi := ρi + Ng ≥ 0 for i = 1, . . . , l. Then, by

Remark 5.2 i),

ϕNg (g) = FNg (g) = Fm1(gi1)µ1 · · ·Fml(gil)
µl(g0t)

ρl

= ϕm1(gi1)µ1 · · ·ϕml(gil)
µl(g0t)

ρl .

By Remark 5.2 ii) we have 0 = χ(ϕNg (g)) = χ((g0t)
ρl) = ρl. Thus ϕNg (g) is in the

subgroup generated by the ϕ-orbits of g1, . . . , gl. It is now enough to choose N = maxg Ng
for g running over a finite system of generators of G.

�

From now on we fix G = Zd. We translate the assertion OR′(ϕ) = 1 in term of local

conditions. Given a prime p we denote by ϕ : Fdp → Fdp the reduction mod p of ϕ. For

v ∈ Zd we let Λv be the subgroup generated by v, ϕ(v), . . . , ϕd−1(v) and we denote by Λv
its reduction mod p.

Let K be a field and let ψ be an endomorphism of a d-dimensional K-vector space V .

We recall that dim Im(ψj) = dim Im(ψd) for j ≥ d.

Theorem 5.3 Let ϕ : Zd → Zd be an injective morphism. Then OR′(ϕ) = 1 if and only

if there exists a vector v ∈ Zd such that for all prime p

dim Im(ϕd) = dimϕd(Λv) . (5.5)

Remark. Let det(Λv) := [Z2 : det(Λv)]. Condition (5.5) is obviously satisfied if p -
det(Λv). If p | det(Λv) then dim(Λv) ≤ d − 1 and condtition (5.5) is equivalent to

dim Im(ϕd) = dimϕd−1(Λv).

Proof. Assume first OR′(ϕ) = 1. Then by definition, there exist a vector v ∈ Zd and

N ∈ N such that Im(ϕN ) ⊆ Λv. Then Im(ϕN+d) ⊆ ϕd(Λv). Let p be a prime. By the

remark preceding the theorem,

dim Im(ϕd) = dim Im(ϕN+d) ≤ dimϕd(Λv) .
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Assume now that there exists v ∈ Zd such that (5.5) holds for every prime p. Let p be a

prime. Since ϕd(Λv) ⊆ Im(ϕd) and since these Fp-vector spaces have the same dimension,

Im(ϕd) = ϕd(Λv) ⊆ Λv .

Let b be the product of the primes dividing det(Λv). By Bezout’s identity we easily see

that

Im(ϕd) ⊆ Λv + bZd .

By induction we deduce

Im(ϕdN ) ⊆ Λv + bNZd

for N ∈ N. We chose for N a natural number such that det(Λv) divides bN . Then

Im(ϕdN ) ⊆ Λv + bNZd ⊆ Λv + det(Λv)Zd ⊆ Λv .

�

We consider the following even special case: G = Z2, ϕ ∈M2(Z) non-singular. In this

case, the assertion (5.5) is equivalent to the following two statements:

1) p | det(Λv)⇒ p | det(ϕ).

2) ϕ(v) ≡ 0 mod p⇒ p | tr(ϕ).

Indeed, assume that p satisfies (5.5). Let p | det(Λv). Then dim Im(ϕ2) = dimϕ2(Λv) < 2.

Thus ϕ is not injective and p | det(ϕ). Moreover, if ϕ(v) ≡ 0 mod p then ϕ(Λv) = 0, thus

dim Im(ϕ2) = dimϕ2(Λv) = 0 and ϕ is nilpotent mod p which in turn implies p | tr(ϕ).

Conversely, let p be a prime satisfying 1) and 2). We have already remarked that (5.5)

is trivially satisfied if p - det(Λv). Assume that p | det(Λv). By 1), p | det(ϕ). Thus

dim Im(ϕ2) ≤ 1. Assume first ϕ(v) 6≡ 0 mod p. Since p | det(Λv), we must have

ϕ(v) ≡ λv mod p with λ 6≡ 0 mod p. Hence Λv =< v >Fp and ϕ2(Λv) =< λ2v >Fp .

Thus dimϕ2(Λv) = 1 ≥ dim Im(ϕ2). If ϕ(v) ≡ 0 mod p, then, by 2), ϕ is nilpotent mod

p, and again dimϕ2(Λv) = dim Im(ϕ2) = 0.

We write v = (x, y). Then det(Λv) = Q(x, y) with Q(X,Y ) a quadratic form. Thus

the existence of a vector v ∈ Z2 which satisfies conditions 1) and 2) above translate into

the following statements on Q. There exist x, y ∈ Z such that for p prime we have:

p | Q(x, y) =⇒ p | det(ϕ)

ϕ(x, y) ≡ 0 mod p =⇒ p | tr(ϕ) .

This last requirement amounts to certain finitely many congruence conditions, depend-

ing explicitly only on ϕ.

It is now a well-known matter to decide about the existence of x, y ∈ Z satisfying these

congruences and moreover such that Q(x, y) is composed only of primes dividing det(ϕ)

(and one can also calculate such x, y if there exist any). Thus:

Corollary 5.4 Let ϕ : Z2 → Z2 be an injective morphism. Then one can compute rank(Z2∗ϕ).
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We have not made any particular effort to generalize this statement to higher dimen-

sion.

We finally remark that the analogous of Theorem 1.2 still holds in ascending HNN-

extensions and it is indeed an easy corollary of Theorem 1.3.

Corollary 5.5 Let A ∈Md(Z) be a nonsingular matrix of infinite order. Suppose that A

has two eigenvalues whose ratio is not a root of unity. Consider the family of ascending

HNN-extensions Gn = Zd∗An . Then there exists n0 = n0(A) such that rank(Gn) > 2 for

n ≥ n0.

Proof. Let S be the set of primes dividing the discriminant of A. By Theorem 1.3 there

exists n0 = n0(A) such that for all n ≥ n0 the matrix An is not conjugate in GLd(Fp) to a

companion matrix for all p 6∈ S. Let n ≥ n0 and assume OR′(An) = 1. Let p 6∈ S. Then,

by the choice of S, the matrix A is in GLd(Fp). Thus OR(An) = OR′(An) = 1 and An

is conjugate to a companion matrix in GLd(Fp), contradiction. Thus for n ≥ n0 we have

OR′(An) > 1 and, by Proposition 5.1, rank(Gn) > 2.

�

References

[1] N. Ailon and Z. Rudnick “Torsion points on curves and common divisors of

ak − 1 and bk − 1”. Acta Arith., 113, 31-38 (2004).

[2] E. Bombieri and W. Gubler. “Heights in Diophantine geometry”. New Math-

ematical Monographs, 4. Cambridge University Press, Cambridge, 2006.

xvi+652 pp.

[3] E. Dobrowolski. “On a question of Lehmer and the number of irreducible

factors of a polynomial”. Acta Arith., 34, 391-401 (1979).

[4] A. Dubickas, “On the discriminant of the power of an algebraic number”.

Studia Sci. Math. Hungar., 44, no. 1, 27–34 (2007).

[5] F. Grunewald, “Solution of the conjugacy problem in certain arithmetic

groups”. Word problems, II (Conf. on Decision Problems in Algebra, Ox-

ford, 1976), pp. 101139, Stud. Logic Foundations Math., 95, North- Holland,

Amsterdam-New York, 1980.

[6] G. Levitt and V. Metaftsis, “Rank of mapping tori and companion matrices”.

arXiv:1004.2649v1. To appear on ”L’Enseignement Mathématique”.
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Mathématicien, No. 2. Presses Universitaires de France, Paris, 1977. 188 pp.

[8] J. Souto, “The rank of the fundamental group of certain hyperbolic 3- man-

ifolds fibering over the circle”, in The Zieschang Gedenkschrift, Geometry

and Topology Monographs, Vol. 14, 2008.

14


