Eric Cl Avier

Pierre Heroux
email: pierre.heroux@univ-rouen.fr

J Oel Gardes

Eric Trupin
email: eric.trupin@univ-rouen.fr

Ground-Truth Production and Benchmarking Scenarios Creation W ith DocM ining

I n this paper we pres ent the DocMining platform and its application to ground-truth datas ets production and page s egmentation evaluation. DocMining is a highly modular framework dedicated to document interpretation where document proces s ing tas k s are modeliz ed with s cenarios . We pres ent here two s cenarios which us e PDF documents , found on the web or produced from XML files , as bas is of the ground-truth datas et.

Introduction

Al gorithm perf ormance eval uation has become a maj or chal l enge f or document anal ysis systems. I n order to choose the right al gorithm according to the domain or to tune al gorithm parameters, users must have eval uation scenarios at their disposal . But ef f icient perf ormance eval uation can onl y be achieved with a representative ground-truth dataset. Theref ore users must have the possibil ity to create, access or modif y ground-truth datasets too.

M any approaches and tool s have been proposed f or benchmarking page segmentation al gorithm and producing ground-truth datasets. Former architectures and environment can be f ound in [START_REF] Kanungo | TRUEVIZ: a groundtruth/metadata editing and visualizing toolkit for OCR[END_REF] [START_REF] Mao | Software architecture of PSET: a page segmentation evaluation toolkit[END_REF] [START_REF] Phelps | The Multivalent Browser : A Platform for New Ideas[END_REF] . The ground-truth datasets are usual l y def ined with image regions f eatures l ike l ocation, l abel , reading order, contained text. But inf ormation needed f or a ground-truth dataset depends more on the user' s eval uation intention than on a f ormal def inition. Theref ore it must be possibl e to upgrade a ground-truth dataset according to the evol ving needs f or eval uation.

Perf ormance eval uation criteria, we f ound in previous works, are various and ref l ect those needs. Noticeabl e criteria are overl ap ratio, regions al ignment, spl it/ merge errors.

This paper describes the DocM ining pl atf orm and its appl ication to ground-truth dataset production and perf ormance eval uation.

This paper is organiz ed as f ol l ow : f irst, we present the architecture of the DocM ining pl atf orm and its maj or components. This pl atf orm is aimed at providing a f ramework f or document interpretation, but its modul ar architecture al l ows mul ti-purpose appl ications based on scenarios. Then we present an appl ication of the architecture where scenarios are designed f or groundtruthing and benchmarking page segmentation al gorithms.

The DocM ining pl atf orm

The DocM ining proj ect is supported by The DocM ining consortium, incl uding f our academic partners, PSI Lab (Rouen, France) , Proj ect Qgar (LORI A, Nancy, France) , L3i Lab (La Rochel l e, France) , DI UF Lab (Fribourg, Switz erl and) , and one industrial partner, GRI Lab f rom France Tel ecom R&D (Lannion, France) . DocM ining is a mul ti purpose pl atf orm and is characteriz ed by three maj or aspects.

At f irst, the DocM ining architecture rel ies on a document-centered approach. Document processings communicate through the document itsel f ; such an approach avoids the probl ems of data scattering usual l y met in cl assical document processing chains.

Second, the DocM ining f ramework is based on a pl ug-in oriented architecture. Devel opers can convenientl y add new processings, making thus the pl atf orm easil y upgradeabl e. Document visual iz ation and manipul ation tool s are al so designed according to this approach, so that a user is abl e to f ul l y customiz e the interactions with the document structure.

Third, the pl atf orm handl es scenario-based operations. Running a scenario col l ects users' experience, which becomes part of the scenario itsel f . The scenario may then be transf ormed into a new processing corresponding to a higher-l evel granul arity.

So the DocM ining architecture is real l y modul ar because a user can create his own obj ects, integrate his own processings into the pl atf orm, design his own interf aces, def ine and run his own scenarios. I n this way, the pl atf orm may be used f or various interesting purposes such as benchmarking scenario creation, knowl edge base creation, parameters tuning, etc.

Architecture overview

The platform is based on a Java/XML architecture and relies on four major components:

The PSI Library, deriving from different research works at PSI laboratory, proposes processing chains using statistical and/or structural approaches [START_REF] Delalandre | Symbols Recognition by Global-Local Structural Approaches, Based on the Scenarios Use, and with a XML Representation of Data[END_REF]. It contains a classification tools library and a XML data management library.

The Qgar software system [START_REF] Ph | A complete system for the analysis of architectural drawings[END_REF] is developed by the same-named project at LORIA (www.qgar.org). It is aimed at the design of document analysis applications.

The XMillum (for XML Illuminator) platform [START_REF] Hitz | An architecture for editing document recognition results using XML[END_REF] is developped by the Software, Image & Document Engineering team, at the Departement of Computer Science of the University of Fribourg. It is a general and extensible tool for the edition and visualization of all kinds of document recognition data, that are transformed into XML using XSLT stylesheets. Display and editing functionalities are delegated to plugins.

The ImTrAc package, developed by the GRI Lab at FranceTelecom R&D Lannion, provides a process engine to control processing execution and a scenario engine to control scenario execution, as well as tools for processing integration and scenario creation. An overview of the platform architecture is given in figure 1.

The document structure

The DocMining architecture is based on a document centered approach. A document is represented by an XML tree built according to an XML schema. Basic elements are graphical objects defined by their type (Binary Image, Connected Component, Text Block, etc), their source (the document they are extracted from), and their location in the image. W e did not try to build a complete predefined taxonomy of possible types: The users of the platform can define their own graphical object types when necessary. A graphical object includes intrinsic data describing the way the object is physically represented. The XML schema we have defined for that is based on basic data types such as Freeman Chain, Feature Vector, etc., but, just like previously, a user can define its own data types if necessary. However a document is more than a simple description in terms of graphical objects and data. Its structure also contains information (name, parameters, etc) about processings which have been applied to the document and which have provided the objects.

As shown in figure 1, objects included in the document structure are visualized with XMillum. XSLT stylesheets define what objects may be visualized, how they are visualized, and how events involving objects (e.g. mouse clicks) are handled. Each object is associated to a Java class, which performs the rendering.

Interaction between processings

As shown in figure 1, a processing has no direct access to the document structure and cannot modify it if a so-called contract, defined according to an XML schema, has not been established with the document. The contract describes the processing behavior: the way the processing modifies the XML document structure (by adding, removing or updating nodes), the kind of graphical objects it produces, and parameters that do not require access to the document structure. The objects a processing may modify or access are defined by specifying the " trigger" node (the node that enables the execution of the processing) and the " updated" nodes (the nodes which are modified by the processing).

Scenarios

In order to achieve interpretation tasks, users can interactively build scenarios, which are defined as structured combinations of document processings. There are two ways of creating a scenario. The first way is based on the contracts of the processes. As objects inputs and outputs are specified for all processings in the corresponding contracts, it is possible to determine which processings can feed a given process and then to combine processings. The other way relies on a XMillum component that we have specifically developed for the DocMining platform. It provides means to interact with the ImTrAc processing engine and to visualize the structure of the document. For each object of a document, the ImTrAc engine is able to supply the list of processings that may be applied. Once the user has chosen a processing, the engine supplies its parameters list so as to be able to launch the corresponding process. W hen the process terminates, the document structure is updated and the user can then interact with the newly created objects.

Each user action on the document is recorded in a scenario, which may be applied later to another document. Each step of a scenario acts as a trigger and includes an XPath expression describing the way the required objects have to be extracted from the document.

Page Segmentation evaluation

3.1. Obtaining the document base PDF (Adobe Portable Document Format) documents serve as basis for our ground-truth dataset. Indeed, the PDF format is widely used in many applications (newspaper, advertising, slides, …) and PDF documents can be easily found on the web. Moreover search engines (like google) allow to refine a search according to the document format. So it is very easy to build a PDF document base where many domains are represented.

A ground-truth dataset can also be built with newly created PDF documents. Figure 2 shows different ways to create a PDF representation of an XML document [START_REF] Carlisle | De XML à PDF via xmltex, XSLT et PassiveTeX[END_REF]. Each of the tools is freely available for download. The input XML document may be or may contain an instance of a widely used DTD such as DocBook, TEI, MathML, etc. Stylesheets (DSSSL or XML) are given for some of theses DTD. These can be modified so that several PDF documents with different formatting attributes may be created from a unique XML document. With those different approaches, it is possible to build a document base which contains "real life" documents obtained through an internet search and "problem specific" documents built from an XML source.

Building the ground-truthing scenario

The main drawback of the PDF format is that it is based on a pure display approach, structural and logical information is not directly accessible, those information must be computed from the low level objects contained in the PDF document.

The ground-truth dataset is obtained through a three steps scenario:

-select the PDF documents.

-extract the physical structure from their PDF representation. -save the generated ground-truth structure. For each scenario step we have defined and developed a processing observing our contract approach. For example, figure 3 shows the contract we defined for the extraction of the physical structure of a PDF document. Contract noticeable elements are bold typed:

-handled_object : the object which is processed. Here the trigger node and the updated node are the same (see 2.3). The document must contain a PdfDoc element to launch the processing. -process_config : the parameters of the processing -produced_object : the processing produces three kind of objects (text lines, words and images) with an unknown cardinality (indicated by the list attribute). -<process_property class_name="PdfSeg"> <service name="nodeAdd"> <handled_object> <object_doc type="PdfDoc"/> <process_config> <param type="ParamIn" name="ExtractImage" support="Data" param_value="0" info="if 1 extract the images"/> <param type="ParamIn" name="RemoveWord" support="Data" param_value="1" info="if 1 remove word textpieces (make the document lighter)"/> </process_config> <produced_object> <object_doc type="TextLine" list='yes'/> <object_doc type="Word" list='yes'/> <object_doc type="Image" list='yes'/> </produced_object> </handled_object> </service> </process_property> figure 3 : contract of the PDF segmentation processing Structure extraction from the PDF is done by using the PDF parsing API provided in the Multivalent package [START_REF] Phelps | The Multivalent Browser : A Platform for New Ideas[END_REF] a java platform dedicated to the visualization of various formats documents

The resulting structure is then marshalled into an XML file observing our XML schema. Therefore, this file contains the ground-truth information of the document Figure 4 shows an excerpt of the ground truth structure and the figure 5 its visualization with XMillum. <object_doc object_id="56" type="TextLine"> <object_pos h="11" w="127" x="14" y="660"/> <object_data> <ascii_data>daz, et créé ce week-end à </ascii_data> </object_data> </object_doc> <object_doc object_id="59" type="TextLine"> <object_pos h="11" w="127" x="14" y="670"/> <object_data> <ascii_data>Bonnefontaine dans le cadre des </ascii_data> </object_data> </object_doc> <object_doc object_id="67" type="TextLine"> Finally, our ground-truth dataset contains information concerning text lines, words (content and location) and images contained in the document. Thus we obtain a partial ground-truth that is sufficient for the first tests.

Building the benchmarking scenario

The benchmarking scenario is composed by three steps :

-Transformation of the PDF document into an image. -Physical structure extraction using a page segmentation processing. -Structure matching evaluation by extracting the corresponding ground-truth in the ground-truth dataset.

Transformation of the PDF document in an image is done by a processing that encapsulates a ghostscript command. At the present time, we have two segmentation algorithms, one based on a classical top down approach and the other one based on an hybrid approach [START_REF] Parodi | An efficient pre-processing of mixed-content document images for OCR systems[END_REF]. Both algorithms produce a resulting XML structure which is matched with the ground-truth dataset to measure the regions overlap ratio. Ground-truth information is extracted from the dataset by using Xpath expressions which allows to select the desired corresponding structure.

Figure 6 shows the contract we defined for this node matching step. The major parameters are bold typed :

-The parameter named KnowledgeBase refers to the ground-truth file. -The parameter named XpathSelector refers to an Xpath expression used to extract the desired objects from the ground-truth file. -The parameter SegmentedObjects which is another Xpath expression, refers to the graphical objects obtained after the segmentation step. The flexibility of Xpath expressions allows the user to select exactly what he needs, he can modify those selection expressions by choosing another kind of object (words for example) or by adding constraints (for example small areas may be filtered)

Node matching itself is done with Yanikoglu's method based on the ON pixels contained in a zone [START_REF] Yanikoglu | Pink panther: a complete environment for ground-truthing and benchmarking document page segmentation[END_REF]. In order to ignore insignificant differences between the ground-truth regions and the segmented ones, only the black pixels content of the areas are taken into account <process_property class_name="NodeMatch"> <service name="nodeAdd"> <handled_object> <object_doc type="BinaryImage"/> <process_config> <param type="ParamIn" name="KnowledgeBase" support="Data" param_value="gd_base.xml" info="tree base"/> <param type="ParamIn" name="XPathSelector" support="Data" param_value= "//object_doc[@type='TextLine']"/> <param type="ParamIn" name="SegmentedObjects" support="ObjectDoc" param_value= "object_doc[@type='TextLine']"/> </process_config> <produced_object> <object_data> <feature name= "NodeMatching"/> </object_data> </produced_object> </handled_object> </service> </process_property> figure 6 : Contract of the Node Matching process

Conclusion and future works

Although many page segmentation evaluation problems are not yet addressed in this paper (blocks labeling, reading order, errors evaluation), we think that the DocMining architecture is well suited to tackle many aspects of ground-truthing and benchmarking. Indeed, DocMining's strong modularity can help building groundtruthing benchmarking scenarios according to users needs Editing and visualization tools for manipulating groundtruth datasets may be added as well. Moreover, processing modularity allows user to design their own performance evaluation algorithm.

Therefore, the platform architecture allows future works to include errors evaluation processings and tools for adding new features to the datasets (labels, reading order).

In this paper, the solution we use to generate groundtruth and benchmarking scenarios for page segmentation is based on PDF documents. As shown on figure 2, PDF documents can be produced from XML data. The markup of an XML document often describes its logical structure. Therefore, a ground-truth dataset may be built with XML documents representing the logical structure and their associated PDF version corresponding to the physical structure.

Figure 1 :

 1 Figure 1 : DocMining platform architecture

figure 2 :

 2 figure 2 : different ways for producing a PDF document from an XML source

figure 4 :

 4 figure 4 : ground-truth structure extracted from a PDF File