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NONLINEAR DYNAMICS OF SEMICLASSICAL COHERENT STATES IN
PERIODIC POTENTIALS

RÉMI CARLES AND CHRISTOF SPARBER

ABSTRACT. We consider nonlinear Schrödinger equations with eitherlocal or nonlocal
nonlinearities. In addition, we include periodic potentials as used, for example, in matter
wave experiments in optical lattices. By considering the corresponding semiclassical scal-
ing regime, we construct asymptotic solutions, which are concentrated both in space and in
frequency around the effective semiclassical phase-spaceflow induced by Bloch’s spectral
problem. The dynamics of these generalized coherent statesis governed by a nonlinear
Schrödinger model with effective mass. In the case of nonlocal nonlinearities we establish
a novel averaging type result in the critical case.

1. INTRODUCTION

Coherent states have been originally introduced in quantummechanics to describe wave
packets minimizing the uncertainty principle. This property makes coherent states highly
attractive for the study ofsemiclassical asymptotics, see, e.g., [17, 15, 21]. Indeed, it can be
shown that for Schrödinger equations with sub-quadratic potentials, coherent states retain
their shape, providing minimum uncertainty at all time in the quadratic case [13], and up
to Ehrenfest time in general [6]. Recently, extensions to weakly nonlinear situations have
been studied in [8, 7]. In addition, the semiclassical dynamics of coherent states under the
influence of (highly oscillatory) periodic potentials has been investigated by the authors
in [10]. In the present work wecombinethe effects coming from periodic and nonlinear
potentials.

To this end, we considernonlinear Schr̈odinger equationswhich, after scaling into
dimensionless coordinates, appear in the following semiclassical form:

(1.1) iε∂tψ
ε +

ε2

2
∆ψε = Vper

(x
ε

)
ψε + εαf(|ψε|2)ψε, ψε

|t=0 = ψε
0,

wheret ∈ R, x ∈ R
d, andd ∈ N denotes the spatial dimension (usuallyd = 3). Moreover,

ε ∈ (0, 1] denotes a (small) semiclassical parameter, i.e. a dimensionless rescaled Planck’s
constant. The factorεα measures the (asymptotic) strength of the nonlinearity: the larger
the α > 0, the weaker the nonlinear effects. In the following, we shall allow for two
different types ofgauge invariant nonlinearities:

• Local nonlinearities:f(|ψε|2) = λ|ψε|2σ, with σ ∈ N andλ ∈ R, allowing for
focusing (attractive) and defocusing (repulsive) situations.

• Nonlocal nonlinearities of convolution type:f(|ψε|2) = K ∗ |ψε|2, withK(x) ∈
R a given interaction kernel.

Finally, the termVper(x/ε) denotes a highly oscillatory periodic potential. More precisely,
let Γ ≃ Z

d be some regular lattice, then we assume that for ally ∈ R
d: Vper(y + γ) =
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Vper(y) with γ ∈ Γ. In addition, we shall assumeVper ∈ C∞(Rd). Equation (1.1)
describes the propagation of waves on macroscopic length- and time-scales, i.e. over many
periods of the periodic potential. The parameterε ≪ 1 consequently describes the ratio
between microscopic (quantum mechanical) and the macroscopic scales.

Nonlinear Schrödinger equations with periodic potentials arise in various physical con-
texts: A by now classical example is the mean-field description of electrons propagat-
ing in a crystalline solid [16, 26] under the additional influence of a self-consistent elec-
tric field. The latter is usually modeled by means of a nonlocal Hartree nonlinearity
f(|ψε|2) = |ψε|2 ∗ 1/| · |, see, e.g., [3] for a semiclassical study via Wigner measures.
Another situation in which (1.1) applies is the descriptionof Bose-Einstein condensatesin
so-calledoptical lattices, cf. [12]. In the regime of dilute gases, such condensates can be
modeled by the Gross-Pitaevskii equation with cubic nonlinearityσ = 1, cf. [22]. Note
however, that other nonlinearities also arise, see, for example, [5] where a nonlocal term
is used for the description of superfluid Helium. In addition, strong magnetic confinement
allows for the experimental realization of quasi-one-dimensional (cigar-shaped) conden-
sates, or quasi two-dimensional condensates, motivating the fact that we consider (1.1) in
general dimensionsd ∈ N, cf. [18]. A third example for the appearances of (1.1) stems
from the description of wave packets propagating within nonlinear photonic crystals [24]
and where the nonlinear response of the media is modeled via aKerr nonlinearityσ = 1.
In this case, the underlying assumption in the derivation of(1.1) is the existence of a pre-
ferred direction of propagation, implying that the appropriate model is stated in dimension
d = 1.

In all of these situations, the joint effects of nonlinearity, periodicity and dispersion (or,
quantum pressure), can lead to the existence ofstable localized statesconserving the form
upon propagation and collisions. Gap solitons, discrete breathers and compactons are ex-
amples of such states. Here we shall present another possibility, which will arise from
semiclassical description via coherent states. Even though the nonlinearity in our case is
weaker than in the above mentioned situations (due to the fact thatα > 0), the obtained as-
ymptotic solutions will nonetheless experience nonlineareffects in leading order, provided
α is of critical size (to be made precise later on). The latter will depend on the precise form
of the nonlinearity.

To present our results, we recall the classicalBloch eigenvalue problem[28]:

(1.2) H(k)χm(·, k) = Em(k)χm(·, k), m ∈ N.

Denoting byY the centered fundamental domain ofΓ, Em(k) ∈ R andχm(·, k) denote,
respectively, them-th eigenvalue/eigenvector pair of

(1.3) H(k) =
1

2
(−i∇y + k)

2
+ Vper (y) , y ∈ Y,

parametrized by thecrystal momentumk ∈ Y ∗ ≃ T
d. We shall assume that att = 0,

(1.4) ψε(0, x) ∼
ε→0

ε−d/4u0

(
x− q0√

ε

)
χm

(x
ε
, p0

)
eip0·(x−q0)/ε,

whereu0 denotes somesmooth and rapidly decaying profile. In other words, the initial
dataψε

0 can be approximated by a highly oscillatory Bloch eigenfunction χm modulated
by a (generalized) coherent state, i.e. a wave function which is localized both in space and
in frequency.

Remark1.1. In particular, the choiceu0(z) = exp(−|z|2/2) yields a classical coherent
state, i.e. ground state of the harmonic oscillator potential, as modulation. The states (1.4)
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are more general, though, since we can allow for anyu0 ∈ S(Rd), the Schwartz space of
rapidly decaying, smooth functions. We also remark that thesame class of initial data have
recently been considered in [10], where the situation of linear Schrödinger equations with
combined periodic and slowly varying external potentials has been considered (see B for
more details).

Provided such initial data, we shall show that the solution of (1.1) can be approximately
(in a sense to be made precise) described by the followingsemiclassical wave packet:

(1.5) ψε(t, x) ∼
ε→0

ϕε(t, x) := ε−d/4u

(
t,
x− q(t)√

ε

)
χm

(x
ε
, p0

)
eiφm(t,x)/ε

whereq(t) = q0 + t∇kEm(p0) describes themacroscopic shiftof the centre of mass and
the highly oscillatory phase functionφm is

(1.6) φm(t, x) = p0 · (x − q0)− tEm(p0).

To this end, we need to give sense to thegroup velocity∇kEm(k) and thus, we have to
assume from now on, that:

(1.7) Em(k) is asimple eigenvaluein the vicinity ofk = p0.

(Of course,p0 ∈ R
d has to be understood moduloΓ∗ in this case.) In other words, we

have to avoid that two Bloch bands cross atp0, that isEm(p0) = En(p0), for m 6= n. It
is known that at such crossing pointsEm(k) is no longer differentiable, causing the above
asymptotic description (which is based on an adiabatic decoupling of the slow and fast
degrees of freedom) to break down.

Remark1.2. Clearly, the non-crossing condition given above restrictsour choice for the
initial wave vectorsp0 ∈ R

d. It is known however that the set of band crossings has
Lebesgue measure zero. For example, in the cased = 1, band crossings can only occur at
k = 0 or at the boundary of the Brillouin zone.

So far, we have not said what determines the profileu = u(t, z) appearing in (1.5). Its
time-evolution depends on the strength of the nonlinearity, i.e. on the size ofα > 0 in the
case of local nonlinearities (the situation for nonlocal ones will be described later on). We
shall find that thecritical sizeis αc = 1 + dσ/2 and whenα = αc, u solves the following
homogenized nonlinear Schrödinger equation

(1.8) i∂tu+
1

2
divz

(
(∇2

kEm (p0)) · ∇z

)
u = λm|u|2σu, u|t=0 = u0,

with effective coupling constant

λm = λ

∫

Y

|χm (y, p0)|2σ+2
dy.

Note that the dispersive properties of (1.8) are determinedby an effective mass matrix
∇2

kEm (p0) ∈ R
d×d, which itself depends on the choice of the initial wave vector (cf. [14]

for a recent study).
In the next section, we derive this effective mass equation from multi-scale expansion.

A rigorous stability result is then proved in Section 3. The case of nonlocal nonlinearities
is treated in Section 4. As we shall see, in situations where the kernelK is homogeneous,
the critical valueαc depends on the degree of homogeneity (like in the case of a local non-
linearity), and the analogue of (1.8) is an envelope equation with a nonlocal nonlinearity.
On the other hand, if the kernelK is a smooth function, thenαc = 1, and in sharp contrast
with the other situations studied in this paper, the analogue of (1.8) forα = αc is found to
be alinear equation, see Section 4.2.
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2. MULTI -SCALE EXPANSION

2.1. The hierarchy of equations. Except for the treatment of the nonlinear term, we re-
sume the strategy followed in [10]. We seek the solutionψε of (1.1) in the form

(2.1) ψε(t, x) = ε−d/4 Uε

(
t,
x− q(t)√

ε
,
x

ε

)
eiφm(t,x)/ε,

where the phaseφm(t, x) is given by (1.6) and the functionUε = Uε(t, z, y) admits an
asymptotic expansion

(2.2) Uε(t, z, y) ∼
ε→0

∑

j∈N

εj/2Uj(t, z, y)

with smooth profilesUj which, in addition, are assumed to beΓ-periodic with respect to
y. Forψε given by the ansatz (2.1), we compute

(
iε∂tψ

ε +
ε2

2
∆ψε − Vper

(x
ε

)
ψε

)
= ε−d/4eiφm/ε

2∑

j=0

εj/2bεj(t, z, y)
∣∣∣
(z,y)=

(

x−q(t)
√

ε
, x
ε

)

with

bε0 = −∂tφmUε +
1

2
∆yUε − 1

2
|p0|2Uε + ip0 · ∇yUε − Vper(y)Uε,

bε1 = −iq̇(t) · ∇zUε + (∇y · ∇z)Uε + ip0 · ∇zUε,

bε2 = i∂tUε +
1

2
∆zUε.

Using (1.6) and the fact thatq̇(t) = ∇kEm(p0), we can rewritebε0, b
ε
1 as

bε0 = (Em(p0)−H (p0))Uε,

bε1 = i (p0 −∇kEm (p0)) · ∇zUε + (∇y · ∇z)Uε,

whereH(p0) is the Bloch Hamiltonian (1.3) evaluated atk = p0 (again, this has to be
understood moduloΓ∗). Introducing the following linear operators:

L0 = Em (p0)−H (p0) , L1 = i (p0 −∇kEm (p0)) · ∇z +∇y · ∇z, L2 = i∂t +
1

2
∆z,

and expandingUε in powers ofε ∈ (0, 1], we consequently need to solve the following
hierarchy of equations:

(2.3)






L0U0 = 0,

L0U1 + L1U0 = 0,

L0U2 + L1U1 + L2U0 = F (U0),

where, forαc = 1 + dσ/2, we find:

F (U0) =

{
0 if α > αc,

λ|U0|2σU0 if α = αc.

In the next subsection, we shall focus on the resolution of (2.3).
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2.2. The effective mass equation. Given the form ofL0, the equationL0U0 = 0 implies

(2.4) U0(t, z, y) = u(t, z)χm (y, p0) .

By Fredholm’s alternative, a necessary and sufficient condition to solve the equationL0U1+
L1U0 = 0, is thatL1U0 is orthogonal tokerL0, that is:

(2.5) 〈χm, L1U0〉L2(Y ) = 0.

Given the expression ofL1 and the formula (2.4), we compute

L1U0 = i (p0 −∇kEm (p0)) · ∇zu(t, z)χm (y, p0) +∇yχm (y, p0) · ∇zu(t, z).

Now, we make use of the algebraic identities derived in Section A. In view of (A.2), we
infer that (2.5) is automatically fulfilled. We thus obtain

U1(t, z, y) = u1(t, z)χm (y, p0) + u⊥1 (t, z, y),

whereu⊥1 , the part ofU1 which is orthogonal tokerL0, is obtained by inverting an elliptic
operator:u⊥1 = −L−1

0 L1U0. Note that the formula forL1U0 can also be written as

L1U0 = −i∇k (Em (p0)−H (p0))χm (y, p0) · ∇zu(t, z).

Taking into account (A.1), this yields:u⊥1 (t, z, y) = −i∇kχm (y, p0) · ∇zu(t, z). At this
stage, we shall, for simplicity, chooseu1 = 0, in which caseU1 becomes simply a function
of u:

(2.6) U1(t, z, y) = −i∇kχm (y, p0) · ∇zu(t, z).

As a next step in the formal analysis, we must solveL0U2 + L1U1 + L2U0 = F (U0). By
the same argument as before, we require

(2.7) 〈χm, L1U1 + L2U0 − F (U0)〉L2(Y ) = 0.

With the expression (2.6), we compute

L1U1 =

d∑

j,ℓ=1

(
(p0 −∇kEm (p0))j ∂kℓ

χm (y, p0)− i∂2yjkℓ
χm (y, p0)

)
∂2zjzℓu,

and we also have

L2U0 =

(
i∂t +

1

2
∆z

)
u(t, z)χm (y, p0) .

We consequently infer

〈χm, L1U1 + L2U0〉L2(Y ) = i∂tu+
1

2
∆zu

−
d∑

j,ℓ=1

〈
χm, ∂kj

Em (p0) ∂kℓ
χm + i∂2yjkℓ

χm

〉

L2(Y )
∂2zjzℓu.

In the caseα = αc, by making the last sum symmetric with respect toj andℓ, and using
(A.3), we finally obtain the nonlinear Schrödinger equation (1.8) with effective mass tensor
M = ∇2

kEm(p0) and coupling constant

λm := λ
〈
χm, |χm|2σχm

〉
L2(Y )

= λ

∫

Y

|χm (y, p0)|2σ+2
dy.

In addition, we can write

(2.8) U2(t, z, y) = u2(t, z)χm (y, p0) + u⊥2 (t, z, y),

whereu⊥2 = −L−1
0 (L1U1 + L2U0) . We shall also imposeu2 ≡ 0 and thusU2 = u⊥2 .
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Assume for the moment that we can solve (1.8). Then, we have the following result,
which establishes some basic regularity properties of our multi-scale expansion (where we
denote byHk the usualL2(Rd) based Sobolev space).

Lemma 2.1. Suppose(1.7)holds true and letu ∈ C([0, T ];Hk), be a solution of(1.8)up
to someT > 0. ThenUj ∈ C([0, T ];Hk−j

z ×W∞,∞(Y )), for j = 0, 1, 2.

Proof. First note that(y, k) 7→ χm(y, k) is smooth and bounded together with all its
derivatives, provided (1.7) holds true. Having this in mind, the proof follows directly from
the construction of{Uj}j=0,1,2 as solutions to the system (2.3). �

Remark2.2. Note that in the caseα > αc nonlinear effects areabsent at leading order
since we obtain, instead of (1.8), alinear effective mass equation:

(2.9) i∂tulin +
1

2
divz

(
∇2

kEm (p0) · ∇z

)
ulin = 0, u|t=0 = u0.

This type of equation has been derived in [2, 25], using a different asymptotic scaling.

3. MAIN RESULTS

In this section we shall make the computations given above rigorous and prove a nonlin-
ear stability result. As a first step we need to guarantee the existence of a smooth solution
to (1.8), at least locally in-time.

3.1. Construction of an approximate solution. The dispersion relation of (1.8) is given
by a real-valued symmetric matrix. Standard techniques (see, e.g., [27]) yield the existence
of a unique local solution, provided that the initial datum is sufficiently smooth:

Lemma 3.1. Let u0 ∈ Hk with k > d/2. There existsTc ∈ (0,+∞] and a unique
maximal solutionu ∈ C([0, Tc);H

k) to (1.8), such that‖u(t, ·)‖L2 = ‖u0‖L2. The
solution is maximal in the sense that ifTc <∞, then

lim
t→Tc

‖u(t, ·)‖Hk = +∞.

The solutionu(t, ·)may not exist for all times, even ifλ > 0, i.e. even if the nonlinearity
in the original equation (1.1) is defocusing. However, we can claimTc = ∞ in either of
the following cases (see e.g. [11]):

• ∇2
kEm(p0) is positive definite andλm > 0, or

• ∇2
kEm(p0) is negative definite andλm 6 0.

On the contrary, if for instance∇2
kEm(p0) is positive definite andλm < 0 (focusing

nonlinearity), finite time blow up (that is,Tc < ∞) may occur, see, e.g., [27, 11]. This is
the case typically if the initial datum is “too large”: for any fixed profileu0 ∈ S(Rd), if
one considersu|t=0 = Λu0, there existsΛ0 > 0 such that for allΛ > Λ0, Tc < ∞. Note
that in other situations, where the signature of∇2

kEm(p0) is non-trivial (henced > 2), the
issue of global existencevs.finite time blow-up is an open question.

Remark3.2. Clearly, forα > αc these issues do not occur, since the leading order profile
ulin solves the linear equation (2.9) and hence exists for all times,Tc = +∞.

Lemma 3.1 provides the existence of a local-in-time solution u of the effective mass
equation. In view of the multi-scale expansion given in Section 2, we can thus define an
approximate solution by

(3.1) ψε
app(t, x) := ε−d/4

(
U0 +

√
εU1 + εU2

)(
t,
x− q(t)√

ε
,
x

ε

)
eiφm(t,x)/ε,
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which satisfies the original equation (1.1) up to some remainder terms:
(
iε∂t +

ε2

2
∆− Vper

)
ψε
app − λεα|ψε

app|2σψε
app =

eiφm/ε

εd/4
ε3/2 (rε1 + rε2) (t, z, y)

∣∣∣
(z,y)=

(

x−q(t)
√

ε
,x
ε

) − λRε(t, x).

The remainder terms are given by

rε1(t, z, y) = L2U1(t, z, y), r
ε
2(t, z, y) = L1U2(t, z, y) +

√
εL2U2(t, z, y),

andRε = εα|ψε
app|2σψε

app if α > αc, while if α = αc = 1 + dσ/2,

Rε = ε1+dσ/2|ψε
app|2σψε

app−
ε

εd/4
eiφm/ε

∣∣∣∣U0

(
t,
x− q(t)√

ε
,
x

ε

)∣∣∣∣
2σ

U0

(
t,
x− q(t)√

ε
,
x

ε

)
.

This, together with the regularity result established in Lemma 2.1 then directly yields the
following proposition.

Proposition 3.3. Assume(1.7)and letα > αc = 1 + dσ/2. Then, we can findψε
app such

that:
1. For all T ∈ [0, Tc), ψε

app has a coherent state structure on[0, T ], in the sense that there
existsC independent ofε ∈ (0, 1] such that, withϕε defined in(1.5),

for α = αc, sup
t∈[0,T ]

‖ψε
app(t, ·)− ϕε(t, ·)‖L2(Rd) 6 C

√
ε,

for α > αc, sup
t∈[0,T ]

‖ψε
app(t, ·)− ϕε

lin(t, ·)‖L2(Rd) 6 C
√
ε,

whereϕε
lin is the approximate solution constructed fromulin, solving(2.9).

2. The function solves(1.1)up to a small error:

iε∂tψ
ε
app +

ε2

2
∆ψε

app = Vper

(x
ε

)
ψε
app + λεα|ψε

app|2σψε
app + εwε,

where the remainder termwε satisfies: for allT > 0, with T < Tc in the caseα = αc,
there existsC > 0 independent ofε > 0 such that

sup
t∈[0,T ]

‖wε(t, ·)‖L2(Rd) 6 C

{
εmin(α−αc,1/2) if α > αc,√

ε if α = αc.

Note that because of the factorε in front of the time derivative, it is natural to represent
a small error term asε times as small term.

3.2. Nonlinear stability. It remains to prove nonlinear stability of the approximate solu-
tion constructed above. For the sake of simplicity we shall do so only forα = αc and
d = 1. The (physically less interesting) caseα > αc can be proved analogously and a pos-
sible generalization to higher dimensions is indicated in Remark 3.6 below. Forε0 > 0,
set

‖f ε‖H1
ε
:= sup

0<ε6ε0

(
‖f ε‖L2 + ‖ε∂xf ε‖L2

)
,

which is equivalent to the usualH1-norm for every (fixed)ε > 0. The approach that we
present is similar to the one followed in [9]: First, we need to construct a more accurate
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approximate solution than the one stated in Proposition 3.3. Taking the asymptotic expan-
sion presented in Section 2 one step further, we can gain a factor

√
ε in Proposition 3.3.

More precisely, we can constructψ̃ε
app such that:

(3.2) sup
t∈[0,T ]

∥∥∥ψε
app(t, ·)− ψ̃ε

app(t, ·)
∥∥∥
H1

ε

6 C
√
ε,

and

iε∂tψ̃
ε
app +

ε2

2
∆ψ̃ε

app = Vper

(x
ε

)
ψ̃ε
app + λε1+σ/2|ψ̃ε

app|2σψ̃ε
app + εw̃ε,

where the additional factor
√
ε is reflected in the error estimate

(3.3) sup
t∈[0,T ]

‖w̃ε(t, ·)‖H1
ε
6 Cε.

Note that in this case the correctorU1 is not the same for̃ψε
app, since unlike what we

have done in§2.2, we can no longer assumeu1 = 0. Rather,u1 now solves an evolution
equation, which is essentially (1.8) linearized aboutu, with a non-trivial source term (see
[9] for more details). Therefore, the estimate (3.2) must beexpected to be sharp in general.

Having constructed such an improved approximationψ̃ε
app we can state the following

nonlinear stability result:

Theorem 3.4. Let d = 1, α = 1 + σ/2, σ ∈ N, and Assumption(1.7) hold. In addition,
suppose that the initial data satisfy:

(3.4)
∥∥∥ψε

0 − ψ̃ε
app|t=0

∥∥∥
L2(R)

= O(ε),
∥∥∥ ε∂x

(
ψε
0 − ψ̃ε

app|t=0

)∥∥∥
L2(R)

= O(1).

Let T ∈ [0, Tc). Then, there existsε0 = ε0(T ) such that forε ∈ (0, ε0], the solution of
(1.1)exists on[0, T ]. Moreover, there existsC independent ofε ∈ (0, ε0] such that

sup
t∈[0,T ]

‖ψε(t, ·)− ϕε(t, ·)‖L2(R) 6 C
√
ε.

whereϕε is defined in(1.5).

Proof. The scheme of the proof is the same as the proof of Theorem 4.5 in [9], so we shall
only give the main steps. FixT < Tc and letηε = ψε − ψ̃ε

app be the error between the
exact and the approximate solution. It satisfies

iε∂tη
ε +

ε2

2
∆ηε = Vper

(x
ε

)
ηε + λε1+σ/2

(
|ψε|2σψε − |ψ̃ε

app|2σψ̃ε
app

)
− εw̃ε,

with ‖ηε|t=0‖L2 = O(ε), ‖ε∂xηε|t=0‖L2 = O(1) by assumption. From [23], we have:

Lemma 3.5 (Moser’s lemma). LetR > 0, s ∈ N andF (z) = |z|2σz, σ ∈ N. Then there
existsC = C(R, s, σ) such that ifvε satisfies

∥∥∥(ε∂x)β vε
∥∥∥
L∞(R)

6 R, 0 6 β 6 s,

andδε satisfies‖δε‖L∞(R) 6 R, then

∑

06β6s

∥∥(ε∂x)β (F (vε + δε)− F (vε))
∥∥
L2 6 C

∑

06β6s

∥∥∥(ε∂x)β δε
∥∥∥
L2
.
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We apply this lemma withvε = ε1/4ψ̃ε
app, ands = 0, s = 1 successively: there exists

R > 0 independent ofε ∈ (0, 1] such that

sup
t∈[0,T ]

∑

β=0,1

∥∥∥(ε∂x)β vε(t)
∥∥∥
L∞(R)

6 R.

Setδε = ε1/4ηε. By assumption and the Gagliardo–Nirenberg inequality,

(3.5) ‖δε|t=0‖L∞ = ε1/4‖ηε|t=0‖L∞ 6 ε1/4
√
2ε−1/2‖ηε|t=0‖

1/2
L2 ‖ε∂xηε|t=0‖

1/2
L2 6 Cε1/4.

As long as‖δε(t)‖L∞ 6 R, energy estimates and Moser’s lemma withs = 0 yield

‖ηε(t)‖L2 6 ‖ηε(0)‖L2 + C

∫ t

0

‖ηε(s)‖L2ds+

∫ t

0

‖w̃ε(s)‖L2ds,

where we have used the homogeneity ofF . By Gronwall’s Lemma, fort 6 T :

‖ηε(t)‖L2 6 C(T )

(
‖ηε(0)‖L2 +

∫ t

0

‖w̃ε(s)‖L2ds

)
6 Cε.

Applying the operatorε∂x to the equation satisfied byηε, we infer similarly

‖ε∂xηε(t)‖L2 6 ‖ε∂xηε(0)‖L2 + C

∫ t

0

‖ηε(s)‖H1
ε
ds+

∫ t

0

‖ε∂xw̃ε(s)‖L2ds

+
1

ε
‖∂yVper‖L∞

∫ t

0

‖ηε(s)‖L2ds,

where the last term stems from the relation[ε∂x, Vper(x/ε)] = ∂yVper(x/ε) ∈ L∞, since
Vper is smooth and periodic. Thus,

‖ε∂xηε(t)‖L2 6 C + C

∫ t

0

‖ε∂xηε(s)‖L2ds+ Ct.

Gronwall’s lemma now yields‖ε∂xηε(t)‖L2 6 C(T ). In view of the Gagliardo–Nirenberg
inequality,

‖δε(t)‖L∞ = ε1/4‖ηε(t)‖L∞ 6
√
2ε−1/4‖ηε‖1/2L2 ‖ε∂xηε‖1/2L2 6 C(T )ε1/4.

Forε sufficiently small (depending ofT ), ‖δε(t)‖L∞ 6 R for all t ∈ [0, T ], and the result
follows from a bootstrap argument. �

The above theorem shows nonlinear stability of the approximate solution up to times
of orderO(1), i.e. independent ofε, provided that the initial data arewell-prepared, in
the sense given in (3.4). Essentially this means thatψε

0 contains not onlyU0, but alsoŨ1

associated tõψε
app. We shall not insist further on this aspect, which is probably a technical

artifact, and remark that in the linear case a stronger result is valid, see [10] where stability
is proved up to the so-calledEhrenfest timeO(ln 1/ε), and no well-preparedness as in (3.4)
is needed (an initial errorO(εr) for somer > 0 suffices).

Remark3.6. If x ∈ R
d with d > 2, the proof can be easily adapted, provided an even

better approximate solution is constructed. The reason is that, instead of (3.5), one needs
to rely on the following Gagliardo–Nirenberg inequality

‖δε‖L∞(Rd) 6 Cε−d/2‖δε‖1−d/(2s)

L2(Rd)
‖ |ε∇|sδε‖d/(2s)

L2(Rd)
, for s > d/2.

Thus, in order to account for the singular factorε−d/2, one is forced to construct an ap-
proximate solutioñψε

app to a sufficiently high order inε (see [9] for more details).
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4. THE CASE OF NONLOCAL NONLINEARITIES

In this section we shall show how to perform the same asymptotic analysis as before in
the case of nonlocal nonlinearities. In other words, we consider

(4.1) iε∂tψ
ε +

ε2

2
∆ψε = Vper

(x
ε

)
ψε + εα(K ∗ |ψε|2)ψε

with K(x) ∈ R some given interaction kernel. In the following we shall focus on two
particular choices of interaction kernelsK which are physically relevant.

4.1. Homogeneous kernels. In this subsection we shall consider functions of the form

K(x) = λ|x|µ, λ ∈ R, with µ ∈ R \ {0} such that−min(2, d) < µ 6 2.

For example, the choiceµ = −1 in d = 3 corresponds to the classical Hartree nonlinearity,
modeling a self-consistent, repulsive (λ > 0) Coulomb interaction. The caseµ > 0 has
been recently studied in [19].

Like in the case of local nonlinearities, the critical exponentαc depends on the homo-
geneityµ, namelyαc = 1− µ/2. This can be seen as follows: We plug the ansatz

ϕε(t, x) = ε−d/4u

(
t,
x− q(t)√

ε

)
χm

(x
ε
, p0

)
eiφm(t,x)/ε

into the convolution termε1−µ/2
(
|x|µ ∗ |ψε|2

)
. This yields

ε1−µ/2−d/2

∫

Rd

|x− ξ|µ
∣∣∣∣u

(
t,
ξ − q(t)√

ε

)∣∣∣∣
2 ∣∣∣∣χm

(
ξ

ε
, p0

)∣∣∣∣
2

dξ.

We want this term to be of orderO(ε) in our asymptotic expansion, to mimic the approach
presented in§2. In this case, it will consequently appear withinbε2, leading to the effec-
tive mass equation. In order to show that this is indeed the case, we rewrite the initial
convolution as

ε1−µ/2−d/2

∫

Rd

|ξ|µ
∣∣∣∣u

(
t,
x− ξ − q(t)√

ε

)∣∣∣∣
2 ∣∣∣∣χm

(
x− ξ

ε
, p0

)∣∣∣∣
2

dξ,

and use the substitutionz = (x− q(t))/
√
ε in the envelopeu, andy = x/ε in χm:

ε1−µ/2−d/2

∫

Rd

|ξ|µ
∣∣∣∣u

(
t, z − ξ√

ε

)∣∣∣∣
2 ∣∣∣∣χm

(
y − ξ

ε
, p0

)∣∣∣∣
2

dξ.

Settingζ = ξ/
√
ε, this can be written as

ε

∫
|ζ|µ |u (t, z − ζ)|2

∣∣∣∣χm

(
y − ζ√

ε
, p0

)∣∣∣∣
2

dζ.

Then, the following averaging result can be proved:

Proposition 4.1. Let (1.7)hold true and assume thatζ 7→ |ζ|µ |u (t, z − ζ)|2 is inL1(Rd).
Then, for allk ∈ Y ∗, it holds

∫

Rd

|ζ|µ |u (t, z − ζ)|2
∣∣∣∣χm

(
y − ζ√

ε
, k

)∣∣∣∣
2

dζ −→
ε→0

∫

Rd

|ζ|µ |u (t, z − ζ)|2 dζ.

In addition, if ζ 7→ |ζ|µ |u (t, z − ζ)|2 is in W 1,1(Rd), then the above convergence holds
with an error of orderO(

√
ε).

This result can be seen as a variant of thetwo-scale convergenceresults introduced in
[20, 1], and used in [2]. The main difference here is the convolution structure.
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Proof. We decomposey 7→ |χm(y, k)|2 into its generalized Fourier series (recall that
Γ ≃ Z

d) and write
∫

|ζ|µ |u (t, z − ζ)|2
∣∣∣∣χm

(
y − ζ√

ε

)∣∣∣∣
2

dζ =
∑

γ∈Γ

∫
|ζ|µ |u (t, z − ζ)|2 cγeiγ·(y−ζ/

√
ε)dζ

=
∑

γ∈Γ

cγe
iγ·y

∫
|ζ|µ |u (t, z − ζ)|2 e−iγ·ζ/√εdζ.

By Riemann–Lebesgue lemma, for each term withγ 6= 0, the limit, asε → 0, is zero.
Then only the term corresponding toγ = 0 remains, with

c0(k) =

∫

Y

|χm (y, k)|2 dy = 1,

since the eigenfunctionsχm(·, k) form an orthonormal basis ofL2(Y ). By the Dominated
Convergence Theorem, we can exchange the sum overγ ∈ Γ and the limitε → 0 in the
above computation provided thatζ 7→ |ζ|µ |u (t, z − ζ)|2 is in L1 (with an erroro(1)).
In the case where the function is inW 1,1 we obtain an errorO(

√
ε). The reason is that

the coefficients(cγ)γ∈Γ decrease rapidly for large|γ|, sincey 7→ |χm(y, k)|2 is smooth,
provided Assumption (1.7) holds true and thus we can performan integration by parts, and
use dominated convergence again. �

Assuming thatu is sufficiently smooth and decaying, we can use the above averaging
result and perform the same asymptotic expansion as given inSection 2 to arrive at the
effective nonlinear Schrödinger equation

(4.2) i∂tu+
1

2
divz

(
(∇2

kEm (p0)) · ∇z

)
u = λ(|z|µ ∗ |u|2)u, u|t=0 = u0.

For µ < 0, existence of a smooth solutionu ∈ C([0, Tc), H
k), locally in time, can be

proved along the same lines as in [11] and hence, a result analogous to the one stated in
Proposition 3.3 is straightforward. In the caseµ > 0 one can follow the arguments of [19],
using a functional framework which is more intricate, however (the Sobolev spacesHk are
not sufficient but have to be intersected with weightedL2 spaces), and we shall not do so
here. In a similar spirit, stability in the sense of Theorem 3.4 follows from an adaptation
of Lemma 3.5, which we leave out.

4.2. Smooth kernels. If in (4.1) the interaction kernelK(x) is a given smooth function,
bounded as well as its derivative, thenαc = 1 (correspondingformally to the caseµ = 0).
Such a situation appears for example in [5], where

K(x) =
(
a1 + a2|x|2 + a3|x|4

)
e−A2|x|2 + a4e

−B2|x|2 ,

with constantsa1, a2, a3, a4 ∈ R, A,B > 0. Resuming the above computations in this
context, we find:

K ∗ |ψε|2 = ε−d/2

∫

Rd

K(ξ)

∣∣∣∣u
(
t,
x− ξ − q(t)√

ε

)∣∣∣∣
2 ∣∣∣∣χm

(
x− ξ

ε
, p0

)∣∣∣∣
2

dξ

=

∫

Rd

K(ζ
√
ε) |u (t, z − ζ)|2

∣∣∣∣χm

(
y − ζ√

ε
, p0

)∣∣∣∣
2

dζ

−→
ε→0

K(0)

∫

Rd

|u (t, z − ζ)|2 dζ = K(0)‖u(t)‖2L2 = K(0)‖u0‖2L2 ,
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due to mass conservation, along with anO(
√
ε) convergence rate under suitable assump-

tions. In particular, this shows that, asε → 0, the nonlinear effects becomenegligible.
Indeed, in this case the envelope equation becomes

i∂tu+
1

2
divz

(
(∇2

kEm (p0)) · ∇z

)
u = K(0)‖u0‖2L2u, u|t=0 = u0.

The right hand side involves a constant potential term, which can begauged awayvia

v(t, x) = u(t, x)eitK(0)‖u0‖2
L2 .

The remaining amplitudev(t, x) then solves afree Schrödinger equation with effective
mass tensor∇2

kEm (p0).

APPENDIX A. SOME USEFUL ALGEBRAIC IDENTITIES

For the derivation of the effective mass equation (1.8) we shall rely on several algebraic
identities, which can be derived from Bloch’s spectral problem (for more details see, e.g.,
[4]): First, taking the gradient w.r.t. tok of (1.2), we have

(A.1) ∇k (H(k)− Em)χm + (H(k)− Em)∇kχm = 0

and, by taking the inL2(Y )-scalar product withχm, we obtain

∇kEm = 〈χm,∇kH(k)χm〉L2(Y ) + 〈χm, (H(k)− Em)∇kχm〉L2(Y ) .

SinceH(k) is self-adjoint, the last term is zero, thanks to (1.2). We infer

(A.2) ∇kEm(k) = 〈χm, (−i∇y + k)χm〉L2(Y ) .

Differentiating (A.1) again, we have, for allj, ℓ ∈ {1, . . . , d}:

∂2kjkℓ
(H(k)− Em)χm + ∂kj

(H(k)− Em) ∂kℓ
χm + ∂kℓ

(H(k)− Em) ∂kj
χm

+ (H(k)− Em) ∂2kjkℓ
χm = 0.

Taking the scalar product withχm, we have:

(A.3)
∂2kjkℓ

Em(k) = δjℓ +
〈(
−i∂yj

+ kj
)
∂kℓ

χm + (−i∂yℓ
+ kℓ) ∂kj

χm, χm

〉
L2(Y )

−
〈
∂kℓ

Em∂kj
χm + ∂kj

Em∂kℓ
χm, χm

〉
L2(Y )

.

APPENDIX B. ADDING AN ADDITIONAL , SLOWLY VARYING POTENTIAL

As a possible extension of our study, one might want to consider the case where the
wave function is not only under the influence of the nonlinearity and the periodic potential,
but also add an additionalslowly varyingexternal potentialV (t, x), i.e.

iε∂tψ
ε +

1

2
∆ψε = Vper

(x
ε

)
ψε + V (t, x)ψε + εαf(|ψε|2)ψε.

At least formally, this can be done by combining our analysiswith the results given in [10]:
To this end, we define the semi-classical band Hamiltonian

hscm(k, x) = Em(k) + V (t, x), (k, x) ∈ Y ∗ × R
d,

and denote the corresponding semiclassical phase space trajectories by

(B.1)

{
q̇(t) = ∇kEm (p(t)) , q(0) = q0,

ṗ(t) = −∇xV (t, q(t)) , p(0) = p0.

This system is the analogue of the classical Hamiltonian phase space flow, in the presence
of an additional periodic potentialVper. In order to make sure that the system (B.1) is
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well-defined, it is sufficient to assume thatEm(p(t)) is a simple eigenvalue (|Em(p(t)) −
En(k)| 6= 0 for all n 6= m, t ∈ R, k ∈ Y ∗); see e.g. [10], where examples of such
situations are given.

The approximate solution under the form of a coherent state within them-th Bloch band
is then given by:

ϕε(t, x) = ε−d/4u

(
t,
x− q(t)√

ε

)
χm

(x
ε
, p(t)

)
eiΦm(t,x)/ε

with q(t), p(t) obtained from (B.1). The highly oscillatory phase takes theformΦm(t, x) =
Sm(t) + p(t) · (x− q(t)), whereSm(t) ∈ R is the (purely time-dependent) semi-classical
action

Sm(t) =

∫ t

0

p(s) · ∇Em(p(s)) − hscm (p(s), q(s)) ds.

Note thatΦm simplifies to (1.6) in the case whereV (t, x) = 0. In this case, the governing
equation for the leading profileu(t, z) is found to be a nonlinear Schrödinger equation
with time-dependent quadratic potential, time-dependenteffective mass∇2

kEm(p(t)) and
coupling constantλm(t), see [10] for more details. These features make it difficult to
give sufficient conditions under which where the solutionu(t, z) is global, i.e.Tc = ∞.
Indeed, the signature of∇2

kEm(p(t)) may change, and the existence of Strichartz estimates
for the linear part is a non-trivial issue. Moreover,λm(t) may also change sign, making
the analysis even more delicate.
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