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NONLINEAR DYNAMICS OF SEMICLASSICAL COHERENT STATESIN
PERIODIC POTENTIALS

REMI CARLES AND CHRISTOF SPARBER

ABSTRACT. We consider nonlinear Schrodinger equations with eitbeal or nonlocal
nonlinearities. In addition, we include periodic potelstias used, for example, in matter
wave experiments in optical lattices. By considering theesponding semiclassical scal-
ing regime, we construct asymptotic solutions, which areeatrated both in space and in
frequency around the effective semiclassical phase-sfmeénduced by Bloch’s spectral
problem. The dynamics of these generalized coherent statgsverned by a nonlinear
Schrodinger model with effective mass. In the case of neailnonlinearities we establish
a novel averaging type result in the critical case.

1. INTRODUCTION

Coherent states have been originally introduced in quantechanics to describe wave
packets minimizing the uncertainty principle. This prdgenakes coherent states highly
attractive for the study cfemiclassical asymptoticsee, e.g.[[17,15, 21]. Indeed, it can be
shown that for Schriodinger equations with sub-quadrattemtials, coherent states retain
their shape, providing minimum uncertainty at all time il tjuadratic casé [13], and up
to Ehrenfest time in generall[6]. Recently, extensions taklenonlinear situations have
been studied ir_[8,17]. In addition, the semiclassical dyiecaraf coherent states under the
influence of (highly oscillatory) periodic potentials haseln investigated by the authors
in [10]. In the present work weombinethe effects coming from periodic and nonlinear
potentials.

To this end, we considaronlinear Schddinger equationsvhich, after scaling into
dimensionless coordinates, appear in the following sexsgital form:

2
(LY ie0 + TAY = Vour (Z) 05+ F(F200°, Ui = 95,

wheret € R, € RY, andd € N denotes the spatial dimension (usually: 3). Moreover,
e € (0,1] denotes a (small) semiclassical parameter, i.e. a dimeles®rescaled Planck’s
constant. The factar® measures the (asymptotic) strength of the nonlinearitylarger
the o > 0, the weaker the nonlinear effects. In the following, we kh#bw for two
different types ofjauge invariant nonlinearities
e Local nonlinearities;f (|1°]?) = A[¢°|??, with o € N and\ € R, allowing for
focusing (attractive) and defocusing (repulsive) sitadi
o Nonlocal nonlinearities of convolution typég{(|¢|?) = K * [1)¢|?, with K () €
R a given interaction kernel.
Finally, the terml,,., (/<) denotes a highly oscillatory periodic potential. More [setly,
letT' ~ Z? be some regular lattice, then we assume that fog @l R%: Vier(y + ) =
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2 R. CARLES AND C. SPARBER

Voer(y) With v € T. In addition, we shall assumg,., € C*°(R%). Equation [(T1)
describes the propagation of waves on macroscopic lengthtime-scales, i.e. over many
periods of the periodic potential. The parametex 1 consequently describes the ratio
between microscopic (quantum mechanical) and the maquasscales.

Nonlinear Schrodinger equations with periodic potestaise in various physical con-
texts: A by now classical example is the mean-field desoniptf electrons propagat-
ing in a crystalline solid 16, 26] under the additional irghce of a self-consistent elec-
tric field. The latter is usually modeled by means of a norllddartree nonlinearity
F(ve?) = [ve? x 1/] - |, see, e.g.[13] for a semiclassical study via Wigner measure
Another situation in whicH (T11) applies is the descriptidBose-Einstein condensates
so-calledoptical lattices cf. [12]. In the regime of dilute gases, such condensatedea
modeled by the Gross-Pitaevskii equation with cubic nadiityc = 1, cf. [22]. Note
however, that other nonlinearities also arise, see, fomgka, [5] where a nonlocal term
is used for the description of superfluid Helium. In additistilong magnetic confinement
allows for the experimental realization of quasi-one-disienal (cigar-shaped) conden-
sates, or quasi two-dimensional condensates, motivdiméatt that we consider (1.1) in
general dimensiong € N, cf. [18]. A third example for the appearances[of{1.1) stems
from the description of wave packets propagating withinlim@ar photonic crystals [24]
and where the nonlinear response of the media is modeledkeéaranonlinearityc = 1.

In this case, the underlying assumption in the derivatiofdl) is the existence of a pre-
ferred direction of propagation, implying that the appiaf model is stated in dimension
d=1.

In all of these situations, the joint effects of nonlinegniteriodicity and dispersion (or,
guantum pressure), can lead to the existenctaifle localized statesonserving the form
upon propagation and collisions. Gap solitons, discretathiers and compactons are ex-
amples of such states. Here we shall present another gdigsiwhich will arise from
semiclassical description via coherent states. Even ththeg nonlinearity in our case is
weaker than in the above mentioned situations (due to thétfaty > 0), the obtained as-
ymptotic solutions will nonetheless experience nonliredects in leading order, provided
« is of critical size (to be made precise later on). The lattdrdepend on the precise form
of the nonlinearity.

To present our results, we recall the classilaich eigenvalue problef28]:

(12) H)Xon (- F) = B (K)o (- k), m € N,

Denoting byY the centered fundamental domainlgfE,, (k) € R andx,, (-, k) denote,
respectively, then-th eigenvalue/eigenvector pair of

1
(1.3) H(k) = 5 (=iVy + k)’ + Voer (). ¥ €Y,
parametrized by therystal momenturh € Y* ~ T¢. We shall assume that at= 0,
e ~ ey (T z ipo-(z—qo) /e
@8 0 e (T ) (S e ,

whereug denotes somemooth and rapidly decaying profilén other words, the initial
datay)§ can be approximated by a highly oscillatory Bloch eigenfiamcy,, modulated
by a (generalized) coherent state, i.e. a wave functionmikitocalized both in space and
in frequency.

Remarkl.1l In particular, the choiceq(z) = exp(—|z|?/2) yields a classical coherent
state, i.e. ground state of the harmonic oscillator poa&rds modulation. The statés ([1.4)
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are more general, though, since we can allow foranyg S(R?), the Schwartz space of

rapidly decaying, smooth functions. We also remark thasdme class of initial data have
recently been considered in |10], where the situation @fdimSchrddinger equations with
combined periodic and slowly varying external potentias been considered (dek B for
more details).

Provided such initial data, we shall show that the solutibfd]) can be approximately
(in a sense to be made precise) described by the folloaéngjclassical wave packet

_ T —q(t T i -
R R ) P R P

whereq(t) = qo + tV i En(po) describes thenacroscopic shifof the centre of mass and
the highly oscillatory phase functiafy,, is

(16) (bm(tvx) =DPo - (I - QO) - tEm(pO)'

To this end, we need to give sense to ¢neup velocityV E,, (k) and thus, we have to
assume from now on, that:

1.7) E,.(k) is asimple eigenvalum the vicinity of k = po.

(Of course,py € R? has to be understood moduly in this case.) In other words, we
have to avoid that two Bloch bands crosggtthat isE,, (po) = En(po), for m # n. It

is known that at such crossing poirdts, (k) is no longer differentiable, causing the above
asymptotic description (which is based on an adiabatic uigony of the slow and fast
degrees of freedom) to break down.

Remarkl.2. Clearly, the non-crossing condition given above restrets choice for the
initial wave vectorsp, € R<. It is known however that the set of band crossings has
Lebesgue measure zero. For example, in the dasd, band crossings can only occur at
k = 0 or at the boundary of the Brillouin zone.

So far, we have not said what determines the prafite u(¢, z) appearing in[(115). Its
time-evolution depends on the strength of the nonlinedréy on the size ofr > 0 in the
case of local nonlinearities (the situation for nonlocaé®will be described later on). We
shall find that theritical sizeis a. = 1 + do/2 and whem = a, u solves the following
homogenized nonlinear Séidinger equation

1
(1.8) 10U + §divz ((VﬁEm (po)) - Vz) U= A |u|*7u, Ujp—o = U0,

with effective coupling constant

Am = /\/Y IXm (yvp0)|2d+2 dy.

Note that the dispersive properties bf {1.8) are determimedn effective mass matrix
V2 Enm (po) € R¥4, which itself depends on the choice of the initial wave ve@tt [14]
for a recent study).

In the next section, we derive this effective mass equatiomfmulti-scale expansion.
A rigorous stability result is then proved in Sectldn 3. Tlase of nonlocal nonlinearities
is treated in Sectio 4. As we shall see, in situations wherdernelk is homogeneous,
the critical valuen. depends on the degree of homogeneity (like in the case obaron-
linearity), and the analogue df(1.8) is an envelope equoatith a nonlocal nonlinearity.
On the other hand, if the kernél is a smooth function, thes, = 1, and in sharp contrast
with the other situations studied in this paper, the anaagf{1.8) fora = «. is found to
be alinear equation, see Sectign #.2.
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2. MULTI-SCALE EXPANSION

2.1. The hierarchy of equations. Except for the treatment of the nonlinear term, we re-
sume the strategy followed in [L0]. We seek the solutiérof (1.1) in the form

(2.1) wa (t,l‘) — E_d/4 U (t, € _\/g(t) ’ g) ez’d),n(t,m)/s’
where the phase,, (¢, z) is given by [1.6) and the functiad® = U*(t, z,y) admits an
asymptotic expansion
€ ~ ir2yr.
(2.2) Us(t,z,y) g_m%E Uj(t, z,y)
J

with smooth profiled/; which, in addition, are assumed to Beperiodic with respect to
y. Fory¢ given by the ansatz (2.1), we compute

2
(o4 a0t (B) ) = emteone Lot o
with
b = —0iprmld® + %Ayus - %|p0|2us +ipo - VylU — Voer (y)U7,
b = —iq(t) - VU + (Vy - V) U +ipo - VU,
b = i0U° + %Azug.
Using [1.6) and the fact thg(t) = V. E,,,(po), we can rewritég, bs as

b5 = (Em(po) — H (po) U,

bi = Z'(]90 - vkEm (pO)) : vzug + (vy : vz)uga
where H (py) is the Bloch Hamiltonian[(1]3) evaluated /at= py (again, this has to be
understood moduld™). Introducing the following linear operators:

. . 1

LO = Em (p()) —-H (p0)7 Ll =1 (pO - vkEm (p())) ' vz + Vy : Vz, LQ = ’Lat + iAz’
and expanding/c in powers ofe € (0, 1], we consequently need to solve the following
hierarchy of equations:

LolUp = 0,
(2.3) LoUy + LUy =0,
LoUs + LUy + LUy = F(Uo),

where, fora, = 1 4 do /2, we find:

0 if a> ag,

F(Up) =
(To) {)\|U0|2"U0 if o= ae.

In the next subsection, we shall focus on the resolutioh &) (2



NONLINEAR COHERENT STATES IN PERIODIC POTENTIALS 5

2.2. The effective mass equation. Given the form ofLy, the equatioroUy = 0 implies

(2.4) Uo(t, z,y) = u(t, 2)Xm (y,po) -
By Fredholm’s alternative, a necessary and sufficient ¢andio solve the equatiohyU; +
L,Uy = 0, is thatL, Uy is orthogonal tcker Ly, that is:

(2.5) (Xm, L1U0>L2(Y) =0.
Given the expression df; and the formula{2]4), we compute
L1Uo =i (po — Vi Em (po)) - Vaul(t, 2)Xm (¥, P0) + VyXm (¥, po) - Vzu(t, 2).
Now, we make use of the algebraic identities derived in 8agli. In view of (A.2), we
infer that [2.5) is automatically fulfilled. We thus obtain
Ul(t’ 25 y) = ul(tv Z)Xm (y,po) + ulL(tv Z, y)’

whereui-, the part oft/; which is orthogonal tder Ly, is obtained by inverting an elliptic
operatoru; = —LglLon. Note that the formula fof., Uy can also be written as

LUy = =iV, (Em (po) — H (po)) Xm (¥, po) - Vsu(t, 2).

Taking into accoun{(Al1), this yieldsi; (¢, z,y) = —iViXm (¥, D0) - V.u(t, 2). At this
stage, we shall, for simplicity, choosg = 0, in which casd/; becomes simply a function
of u:

(26) Ul (t7 2, y) = _kaXm (yapo) : vzu(ta Z)

As a next step in the formal analysis, we must sdly&/s + L1U; + LUy = F(Uy). By
the same argument as before, we require

(2.7) {(Xm, L1U1 + LUy — F(Uo)) p2(y) = 0.

With the expression (2.6), we compute
d

LUy = Y ((Po — ViEm (p0)),; O, Xom (Y5 00) — 10 1, Xom (y7po)) o2 . u,
je=1

and we also have
. 1
L2U0 - (Zat + §Az> u(t7 Z) Xm (y7p0) .

We consequently infer

1
(Xm, L1U1 + L2U0>L2(Y) =i0u + EAZU
d
. 2 2
) 7'%:1 <Xm7 On; B (o) O Xom + 10y, Xm>L2(Y) 0z U-

In the casex = «,, by making the last sum symmetric with respecy tand¢, and using
(A.3), we finally obtain the nonlinear Schrodinger equaid.8) with effective mass tensor
M = V2E,,(po) and coupling constant

o 2042
A= A (s X7 Xom) 2y = A/lem (4> p0) 7" dy.
In addition, we can write

(28) UQ(tazay) = Ug(t,Z)Xm (yapo) +u§_(t727y)1
whereus = —Ly ' (L1U; + LyUp) . We shall also impose, = 0 and thus/, = us.
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Assume for the moment that we can solve(1.8). Then, we haéotlowing result,
which establishes some basic regularity properties of alti+scale expansion (where we
denote byH* the usualL?(R¢) based Sobolev space).

Lemma2.1. SupposdL.7)holds true and let: € C ([0, T]; H*), be a solution of{l.8) up
to somel’ > 0. ThenU; € C([0,T); HF=7 x W2 (Y)), for j = 0,1, 2.

Proof. First note that(y, k) — x.m(y, k) is smooth and bounded together with all its
derivatives, provided (1l 7) holds true. Having this in mitite proof follows directly from
the construction ofU; } j—o.1,2 as solutions to the systefn (2.3). O

Remark2.2 Note that in the case > «,. nonlinear effects arabsent at leading order
since we obtain, instead &f (1.8)liaear effective mass equation:

) 1.
(2.9) 10pUyin + §d1VZ (VﬁEm (po) - Vz) win = 0,  Up—o = Uo-
This type of equation has been derivedin[2, 25], using @&dsffit asymptotic scaling.

3. MAIN RESULTS

In this section we shall make the computations given abgweous and prove a nonlin-
ear stability result. As a first step we need to guaranteextistedice of a smooth solution
to (1.8), at least locally in-time.

3.1. Construction of an approximate solution. The dispersion relation of (1.8) is given
by a real-valued symmetric matrix. Standard techniques €sg.,[27]) yield the existence
of a unique local solution, provided that the initial datusysufficiently smooth:

Lemma 3.1. Letuy € H* with k > d/2. There existd,. € (0,+oc] and a unique
maximal solutionu € C([0,T.); H*) to (L.8), such that||u(t,-)||r> = |uo|lz2. The
solution is maximal in the sense thaflif < oo, then

Jim [t )l g = +oc.

The solutioru(t, -) may not exist for all times, evenX > 0, i.e. even if the nonlinearity
in the original equatior (111) is defocusing. However, we claimT, = oo in either of
the following cases (see e.g. [11]):

° VﬁEm (po) is positive definite and,,, > 0, or

e VZ2E,,(po) is negative definite andl,,, < 0.
On the contrary, if for instanc&3 E,,(po) is positive definite and\,, < 0 (focusing
nonlinearity), finite time blow up (that ig. < co) may occur, see, e.gl, [27.111]. This is
the case typically if the initial datum is “too large”: for afixed profileuy, € S(R?), if
one considers;—, = Auy, there exists\y > 0 such that for allA > Ag, 7. < co. Note
that in other situations, where the signatur&@fE,,, (po) is non-trivial (hencel > 2), the
issue of global existenaoss. finite time blow-up is an open question.

Remark3.2. Clearly, fora > a. these issues do not occur, since the leading order profile
i, Solves the linear equation (2.9) and hence exists for aéigiffi. = +oco.

Lemmal3.1 provides the existence of a local-in-time soluticof the effective mass
equation. In view of the multi-scale expansion given in #edfl, we can thus define an
approximate solution by

— ot )
(3.1) Sop(tr2) 1= e~ (Uy + VEU, + eUs) <t, z \/%( ) g) cidm(t2)/e.
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which satisfies the original equatidn ({1.1) up to some redeiterms:
g2 9
N g (0} (e
(Zt’fat + ?A - Vpcr) %pp Ae |1/}app| app

eiqu/s
cd/4

/2 (15 +15) (t,2,9)

()=("A2 1)
The remainder terms are given by
Ti(ta 2 y) = L2U1(ta Z, y)7 Tg(ta Z, y) = LlUQ(t7 Z, y) + \/ELQUQ(ta 2 y)a

andR® = e[y if @ > ae, whileifa=a,=1+do/2,

This, together with the regularity result established imloea[2.1 then directly yields the
following proposition.

2
app | Ud}dpp

gltdo/2 2 € -
R = o/ |wapp| 7 app_ d/4el¢ /e

Proposition 3.3. Assumé{l.7)and leta > a. = 1 + do /2. Then, we can find;,, such
that:

L. Forall T € [0, T.), ¥5,, has a coherent state structure i) 77, in the sense that there
existsC independent of € (0, 1] such that, withy® defined in{L.3),

fora = A, S[up ||z/1<1pp( ) - Sos(t7 ')”Lz(Rd) < C\/ga
fora > A, Sup ”’L/Jdpp( ) (plln( )HLz(Rd C\/ga
te[0,T

whereyst, is the approximate solution constructed framy,, solving(2.9).
2. The function solve@) up to a small error:

x « loa
€0t Yapp —|— Az/Japp Voer (E) app T A€ |¢app|2 Vipp + EWF,
where the remainder term* satisfies: for allT” > 0, withT < T, in the casex = «,
there exist€” > 0 independent of > 0 such that

min(a—ac,1/2) if > O,

Ve ifa=a..

Note that because of the factoin front of the time derivative, it is natural to represent
a small error term astimes as small term.

g
sw|m%ump®@<c{

te[0,T]

3.2. Nonlinear stability. It remains to prove nonlinear stability of the approximaikis
tion constructed above. For the sake of simplicity we shalkd only fora = «,. and
d = 1. The (physically less interesting) case> «. can be proved analogously and a pos-
sible generalization to higher dimensions is indicated émark 3.6 below. Fogy > 0,
set

Mz o= sup (I1f5]lz2 + €02f% | 22),

<e<eo

which is equivalent to the usuél'-norm for every (fixedr > 0. The approach that we
present is similar to the one followed in [9]: First, we neectbnstruct a more accurate
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approximate solution than the one stated in PropoditidnTaRing the asymptotic expan-
sion presented in Sectidh 2 one step further, we can gaintarfa€ in Propositior 3.8.
More precisely, we can construgf,,, such that:

(3.2) sup
te[0,T

Vop(t) = Pt )], <OVE

Hl

and

~ 2 ~ ~ ~
205 + 5 Ay = Vier (2) g + 2657210y 7y +

app app app app
where the additional factay is reflected in the error estimate

(3.3) sup [|w (¢, )| g1 < Ce.
te[0,T)

Note that in this case the correctdy is not the same forz,jpp, since unlike what we
have done iff2.2, we can no longer assume = 0. Ratheru; now solves an evolution
equation, which is essentially (1.8) linearized aboutvith a non-trivial source term (see
[Q] for more details). Therefore, the estimdie{3.2) mustk@ected to be sharp in general.
Having constructed such an improved approximaﬁ@glp we can state the following

nonlinear stability result:

Theorem 3.4. Letd =1, = 14 ¢/2, 0 € N, and Assumptio@.7) hold. In addition,
suppose that the initial data satisfy:

B4 [ v5 = ) (), || <% (5 = Poppi—o) | o).

LetT € [0,T¢). Then, there existsy = ¢o(T") such that fore € (0, £¢], the solution of
(L.1)exists on0, T']. Moreover, there exist§' independent of € (0, o] such that

sup H’l/)s(ta ) - <P€(ta ')HL2(]R) < C\/g
t€(0,T]

wherey® is defined in(L.5).

L2®) L2®)

Proof. The scheme of the proof is the same as the proof of Theorem {95 iso we shall

only give the main steps. FiX < T, and letn® = ¢ — 17, be the error between the
exact and the approximate solution. It satisfies

. g2 x ~ ~ _
iE00" + AN = Ver () 1+ A7/2 ([0F 2707 = [55,, 2705, ) — 0,
with antZOHLz = 0(e), ||aamn|€t:0|\m = O(1) by assumption. From [23], we have:

Lemma 3.5 (Moser's lemma) Let R > 0, s € NandF(z) = |z]*?z, o € N. Then there
existsC = C(R, s, o) such that ifv°® satisfies

H(af)m)ﬁ v°

<R, 0<B8<s,
Lo (R)

and¢* satisfies|0°( ;. ) < R, then

Z 1(€02)% (F(v° +6%) — F(v°))|| ;. < C Z H(eaz)ﬁ 5e

0<B<s 0<B<s

Lz’
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We apply this lemma with® = 51/4wdpp,
R > 0 independent of € (0,1] such that

sup > H(saz)ﬁ vs(t)H

t€[0,T] 8=0.1

ands = 0, s = 1 successively: there exists

N

R.
L>(R)

Setés = /4. By assumption and the Gagliardo—Nirenberg inequality,
1/2 1/2
(35) 105—ollzee = &/ [Infisglliee < M/4V2e™ 2 Inf Lol 5 ezl 127 < CM/2.

As long as||6¢(¢)||.~ < R, energy estimates and Moser’s lemma witk: 0 yield

I Ol < 1 O +© [ I @lssds + [ 16,

where we have used the homogeneityofBy Gronwall's Lemma, fot < 7"

")l < C(T )<||77 )z +/ [Jw® ||L2d5) < Ce.

Applying the operatogd,. to the equation satisfied by, we infer similarly

t t
lledzn® (t)] L2 <H6<9m778(0)|\m+0/ HnE(S)HH;dSJF/ ledzw* ()| L2ds
0 0

1 t
4210, Vol [ 1 5) 2,
0

where the last term stems from the relatjeé,,, Vyer(2/€)] = 0y Vper(z/€) € L, since
Vper is sSmooth and periodic. Thus,

t
|0 (1)l 12 < C + C / ledur (s)||2ds + Ct.
0

Gronwall’'s lemma now yield§cd,n° (t)|| 2 < C(T). In view of the Gagliardo—Nirenberg
inequality,

18° (1) | e = 4 E ()]l e < V2e Y| 22 le0unf ||} < O(T)eM A,

Fore sufficiently small (depending &), ||6°(¢)||~ < R forall ¢t € [0,T], and the result
follows from a bootstrap argument. O

The above theorem shows nonlinear stability of the appraténsolution up to times
of orderO(1), i.e. independent of, provided that the initial data angell-prepared in
the sense given im(3.4). Essentially this meansljatontains not only/y, but alsol;
associated t%pp We shall not insist further on this aspect, which is propalechnical
artifact, and remark that in the linear case a strongertieswhlid, seel[10] where stability
is proved up to the so-calldéthrenfest time&(In 1/¢), and no well-preparedness asin (3.4)
is needed (an initial errd(¢") for somer > 0 suffices).

Remark3.6. If z € R? with d > 2, the proof can be easily adapted, provided an even
better approximate solution is constructed. The reasdmais instead of (3]15), one needs
to rely on the following Gagliardo—Nirenberg inequality

_ d/(2s s d/(2s
10° | Lo ety < C™2[16% | sy 1 V|61 750, fors > d/2.

Thus, in order to account for the singular factor’/2, one is forced to construct an ap-

proximate SO|UtIOI”I[Japp to a sufficiently high order ia (see[[9] for more details).
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4. THE CASE OF NONLOCAL NONLINEARITIES

In this section we shall show how to perform the same asyrnemoglysis as before in
the case of nonlocal nonlinearities. In other words, we ichars

2
(41) ’L'Eaﬂﬁs + %A'l/)s - Vpcr (g) ’[Z)E + Ea(K * |7/)E|2)¢5

with K (z) € R some given interaction kernel. In the following we shalldemn two
particular choices of interaction kerndtSwhich are physically relevant.

4.1. Homogeneouskernels. In this subsection we shall consider functions of the form
K(z) = Nz|*, X € R, with x € R\ {0} such that— min(2,d) < p < 2.

For example, the choige= —1in d = 3 corresponds to the classical Hartree nonlinearity,
modeling a self-consistent, repulsive & 0) Coulomb interaction. The cage> 0 has
been recently studied in [19].

Like in the case of local nonlinearities, the critical expatn, depends on the homo-
geneityu, namelya,. = 1 — p/2. This can be seen as follows: We plug the ansatz

—q(t .
o (t,x) = W4y (t, L\/g()) Xom (;po) oibm (t.7) /2

into the convolution terma!=#/2 (|z|* x [¢°|2). This yields
El—u/Q—d/Q |.I' _ §|M

i s 52 e )

We want this term to be of ordé?(¢) in our asymptotic expansion, to mimic the approach
presented iff2. In this case, it will consequently appear witthj) leading to the effec-
tive mass equation. In order to show that this is indeed tlse,cae rewrite the initial

convolution as
1—p/2—d/2 m + r—&—q(t) z—§
€ x/Rd |€| U ( ) \/E Xm - , PO

and use the substitution= (z — ¢(t))/+/ in the envelope:, andy = =/ in xn:

2
gl—n/2-d/2 /Rd |§|# U (t,z - %) Xm (y - §7p0)

Setting¢ = ¢/+/¢, this can be written as
2
dc¢.

e [1 ez = OF on (= zum)

Then, the following averaging result can be proved:

2 2
d.

2 2
dg,

2
d.

Proposition 4.1. Let(@7)hold true and assume that— |¢|* |u (¢, z — ¢)|? is in L*(R%).
Then, for allk € Y*, it holds

o 62 = OF pom (9= Sz
R Ve

In addition, if ¢ — [¢]* |u (t,z — ¢)|” is in W1 (R?), then the above convergence holds
with an error of orderO(4/).

2
ac = [P ez = OP .

This result can be seen as a variant oftilve-scale convergenagesults introduced in
[20,[1], and used iri]2]. The main difference here is the carian structure.
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Proof. We decompose — |\ (v, k)|? into its generalized Fourier series (recall that
I' ~ Z%) and write

2
[tz -op @6 =3 [1d 2= P e -V

yell

_ S
=D ey / G fu (8,2 = Q) e~/ V.

yel’

By Riemann—Lebesgue lemma, for each term witk: 0, the limit, ase — 0, is zero.
Then only the term corresponding4o= 0 remains, with

co(k) = /Y X (1 )Py = 1,

since the eigenfunctiong,, (-, k) form an orthonormal basis d@f?(Y"). By the Dominated
Convergence Theorem, we can exchange the sum-oeeit’ and the limite — 0 in the
above computation provided that— |C|* |u (¢, 2z — <)|2 isin L' (with an erroro(1)).
In the case where the function is iif1'! we obtain an erro©(,/¢). The reason is that
the coefficientgc, ),cr decrease rapidly for large/|, sincey — |x(y, k)|* is smooth,
provided Assumptiori (1] 7) holds true and thus we can pertorimtegration by parts, and
use dominated convergence again. O

Assuming that. is sufficiently smooth and decaying, we can use the abovegivey
result and perform the same asymptotic expansion as giv&edtion 2 to arrive at the
effective nonlinear Schrodinger equation

. 1.,
4.2 10U + §d1VZ ((V%Em (po)) - VZ) uw=A|z|" * |ul*)u, Ujp—o = UQ-

For u < 0, existence of a smooth solutian€ C([0,7.), H), locally in time, can be
proved along the same lines aslinl[11] and hence, a resubhgmad to the one stated in
Propositio 3.8 is straightforward. In the case- 0 one can follow the arguments 6f[19],
using a functional framework which is more intricate, hoeefthe Sobolev spacés” are
not sufficient but have to be intersected with weighfédspaces), and we shall not do so
here. In a similar spirit, stability in the sense of Theofed®llows from an adaptation
of Lemmd3.b, which we leave out.

4.2. Smooth kernels. If in (&.1)) the interaction kernek () is a given smooth function,
bounded as well as its derivative, then= 1 (correspondindormally to the case, = 0).
Such a situation appears for exampleLin [5], where

K(z) = (a1 + az|z|® + as|z|*) A%l 4 g e Blel,

with constantsiy, as, a3, a4 € R, A, B > 0. Resuming the above computations in this

context, we find:
u(tL\/;q(ﬂ) Xm(%—f’po)
2
= K & 2 m( _i7 ) d
L KRz = O [ (5= 2 )| ¢

— K(0) /Rd Ju(t,z = O d¢ = K(O)][ul®)|F2 = K (0)]uollZ:

2

2
Kl = [ K(g) de

e—0
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due to mass conservation, along with@t,/=) convergence rate under suitable assump-
tions. In particular, this shows that, as— 0, the nonlinear effects beconmegligible
Indeed, in this case the envelope equation becomes

. 1.

10su + §d1VZ ((V%Em (po)) - VZ) u = K(0)||uo||2L2u, Upp—o = Uo-
The right hand side involves a constant potential term, wbhan begauged awayia

o(t, z) = ult, x)eitK(O)Huollig

The remaining amplitude(¢, z) then solves dree Schrodinger equation with effective
mass tensov; E,,, (po).

APPENDIXA. SOME USEFUL ALGEBRAIC IDENTITIES

For the derivation of the effective mass equatfonl(1.8) vadl shly on several algebraic
identities, which can be derived from Bloch’s spectral peab(for more details see, e.g.,
[4]): First, taking the gradient w.r.t. tb of (1.2), we have

(A1) Vi (H(k) — Ep) Xm + (H(k) — Ep) Vixm =0
and, by taking the irL?(Y')-scalar product with,,,, we obtain
ViEm = (Xm, VkH(k)Xm>L2(Y) + (Xm, (H(k) — En) Vka>L2(Y) :
SinceH (k) is self-adjoint, the last term is zero, thanks[fo{1.2). Werin
(A.2) ViEm (k) = (Xm, (—iVy + k) Xm>L2(y) .
Differentiating [A.1) again, we have, forgll¢ € {1,...,d}:
3111@@ (H(k) = Em) Xm + Ok; (H(k) — Em) Ok, Xm + Ok, (H(k) — Ep) Ok, Xm
+ (H (k) = Em) 9 1., Xm = 0.
Taking the scalar product with,,,, we have:
02 o, Em(k) = 856 + ((=iy, + k) Oy Xom + (—i8y, + ke) O Xomy Xom)
— <6szm8kj Xm + Ok; EmOky Xm. xm>L2(Y) .

(A.3) L)

APPENDIXB. ADDING AN ADDITIONAL , SLOWLY VARYING POTENTIAL

As a possible extension of our study, one might want to camdite case where the
wave function is not only under the influence of the nonliitg@nd the periodic potential,
but also add an additionalowly varyingexternal potentiaV/ (¢, x), i.e.

o0 + 5 A0 = Voar (2) 07 + V(1,200 + € F (170"
At least formally, this can be done by combining our analysth the results given i [10]:
To this end, we define the semi-classical band Hamiltonian
he(k,x) = Ep(k) + V(t,z), (k,x)€Y* xRY,
and denote the corresponding semiclassical phase spgdrees by
q(t) = ViEm (p(t)), 4(0) = qo,
{p(t) =-V.V(t,q(®), p(0)=po.

This system is the analogue of the classical Hamiltonias@laace flow, in the presence
of an additional periodic potentidl,.,. In order to make sure that the systdm (B.1) is

(B.1)
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well-defined, it is sufficient to assume that, (p(¢)) is a simple eigenvalue k., (p(t)) —
E, (k)] # 0foralln # m,t € R, k € Y*); see e.g. [[10], where examples of such
situations are given.
The approximate solution under the form of a coherent staterwthem-th Bloch band
is then given by:

_ x —q(t T i .
f@ﬂﬂ—ad“u<u—:%l>xm(gmgne®MmVs

with ¢(t), p(t) obtained from[(B.IL). The highly oscillatory phase takesthm ®,,, (¢, z) =
S (t) +p(t) - (x — ¢(t)), whereS,,(t) € Ris the (purely time-dependent) semi-classical
action

%@:Amwvawm—m@@mm@.

Note that®,,, simplifies to [1.6) in the case wheV&t, z) = 0. In this case, the governing
equation for the leading profile(t, z) is found to be a nonlinear Schrodinger equation
with time-dependent quadratic potential, time-dependéattive mass/: E,,, (p(t)) and
coupling constanf\,, (¢), see [10] for more details. These features make it difficult t
give sufficient conditions under which where the solutidn, z) is global, i.e. T, = cc.
Indeed, the signature &% E,,, (p(t)) may change, and the existence of Strichartz estimates
for the linear part is a non-trivial issue. Moreovay, (t) may also change sign, making
the analysis even more delicate.
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