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NONLINEAR DYNAMICS OF SEMICLASSICAL COHERENT STATES IN PERIODIC POTENTIALS

We consider nonlinear Schrödinger equations with either local or nonlocal nonlinearities. In addition, we include periodic potentials as used, for example, in matter wave experiments in optical lattices. By considering the corresponding semiclassical scaling regime, we construct asymptotic solutions, which are concentrated both in space and in frequency around the effective semiclassical phase-space flow induced by Bloch's spectral problem. The dynamics of these generalized coherent states is governed by a nonlinear Schrödinger model with effective mass. In the case of nonlocal nonlinearities we establish a novel averaging type result in the critical case.

INTRODUCTION

Coherent states have been originally introduced in quantum mechanics to describe wave packets minimizing the uncertainty principle. This property makes coherent states highly attractive for the study of semiclassical asymptotics, see, e.g., [START_REF] Hagedorn | Semiclassical quantum mechanics. I. The → 0 limit for coherent states[END_REF][START_REF] Faou | Computing semiclassical quantum dynamics with Hagedorn wavepackets[END_REF][START_REF] Paul | Semi-classical methods with emphasis on coherent states[END_REF]. Indeed, it can be shown that for Schrödinger equations with sub-quadratic potentials, coherent states retain their shape, providing minimum uncertainty at all time in the quadratic case [START_REF] Combescure | Quadratic quantum Hamiltonians revisited[END_REF], and up to Ehrenfest time in general [START_REF] Bouzouina | Uniform semiclassical estimates for the propagation of quantum observables[END_REF]. Recently, extensions to weakly nonlinear situations have been studied in [START_REF]Nonlinear coherent states and Ehrenfest time for Schrödinger equations[END_REF][START_REF] Carles | A nonlinear adiabatic theorem for coherent states[END_REF]. In addition, the semiclassical dynamics of coherent states under the influence of (highly oscillatory) periodic potentials has been investigated by the authors in [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF]. In the present work we combine the effects coming from periodic and nonlinear potentials.

To this end, we consider nonlinear Schrödinger equations which, after scaling into dimensionless coordinates, appear in the following semiclassical form:

(1.1)

iε∂ t ψ ε + ε 2 2 ∆ψ ε = V per x ε ψ ε + ε α f (|ψ ε | 2 )ψ ε , ψ ε |t=0 = ψ ε 0 ,
where t ∈ R, x ∈ R d , and d ∈ N denotes the spatial dimension (usually d = 3). Moreover, ε ∈ (0, 1] denotes a (small) semiclassical parameter, i.e. a dimensionless rescaled Planck's constant. The factor ε α measures the (asymptotic) strength of the nonlinearity: the larger the α > 0, the weaker the nonlinear effects. In the following, we shall allow for two different types of gauge invariant nonlinearities:

• Local nonlinearities: f (|ψ ε | 2 ) = λ|ψ ε | 2σ
, with σ ∈ N and λ ∈ R, allowing for focusing (attractive) and defocusing (repulsive) situations. • Nonlocal nonlinearities of convolution type:

f (|ψ ε | 2 ) = K * |ψ ε | 2 , with K(x) ∈
R a given interaction kernel. Finally, the term V per (x/ε) denotes a highly oscillatory periodic potential. More precisely, let Γ ≃ Z d be some regular lattice, then we assume that for all y ∈ R d : V per (y + γ) = V per (y) with γ ∈ Γ. In addition, we shall assume V per ∈ C ∞ (R d ). Equation (1.1) describes the propagation of waves on macroscopic length-and time-scales, i.e. over many periods of the periodic potential. The parameter ε ≪ 1 consequently describes the ratio between microscopic (quantum mechanical) and the macroscopic scales.

Nonlinear Schrödinger equations with periodic potentials arise in various physical contexts: A by now classical example is the mean-field description of electrons propagating in a crystalline solid [START_REF] Guillot | Semiclassical asymptotics in solid state physics[END_REF][START_REF] Spohn | Long time asymptotics for quantum particles in a periodic potential[END_REF] under the additional influence of a self-consistent electric field. The latter is usually modeled by means of a nonlocal Hartree nonlinearity [START_REF] Bechouche | Semiclassical limit for the Schrödinger-Poisson equation in a crystal[END_REF] for a semiclassical study via Wigner measures. Another situation in which (1.1) applies is the description of Bose-Einstein condensates in so-called optical lattices, cf. [START_REF] Choi | Bose-Einstein condensates in an optical lattice[END_REF]. In the regime of dilute gases, such condensates can be modeled by the Gross-Pitaevskii equation with cubic nonlinearity σ = 1, cf. [START_REF] Pitaevskii | International Series of Monographs on Physics[END_REF]. Note however, that other nonlinearities also arise, see, for example, [START_REF] Berloff | Nonlocal nonlinear Schroedinger equations as models of superfluidity[END_REF] where a nonlocal term is used for the description of superfluid Helium. In addition, strong magnetic confinement allows for the experimental realization of quasi-one-dimensional (cigar-shaped) condensates, or quasi two-dimensional condensates, motivating the fact that we consider (1.1) in general dimensions d ∈ N, cf. [START_REF] Kolomeisky | Low-dimensional Bose liquids: Beyond the Gross-Pitaevskii approximation[END_REF]. A third example for the appearances of (1.1) stems from the description of wave packets propagating within nonlinear photonic crystals [START_REF]Nonlinear Photonic Crystals[END_REF] and where the nonlinear response of the media is modeled via a Kerr nonlinearity σ = 1. In this case, the underlying assumption in the derivation of (1.1) is the existence of a preferred direction of propagation, implying that the appropriate model is stated in dimension

f (|ψ ε | 2 ) = |ψ ε | 2 * 1/| • |, see, e.g.,
d = 1.
In all of these situations, the joint effects of nonlinearity, periodicity and dispersion (or, quantum pressure), can lead to the existence of stable localized states conserving the form upon propagation and collisions. Gap solitons, discrete breathers and compactons are examples of such states. Here we shall present another possibility, which will arise from semiclassical description via coherent states. Even though the nonlinearity in our case is weaker than in the above mentioned situations (due to the fact that α > 0), the obtained asymptotic solutions will nonetheless experience nonlinear effects in leading order, provided α is of critical size (to be made precise later on). The latter will depend on the precise form of the nonlinearity.

To present our results, we recall the classical Bloch eigenvalue problem [START_REF] Wilcox | Theory of Bloch waves[END_REF]:

(1.2) H(k)χ m (•, k) = E m (k)χ m (•, k), m ∈ N.
Denoting by Y the centered fundamental domain of Γ, E m (k) ∈ R and χ m (•, k) denote, respectively, the m-th eigenvalue/eigenvector pair of

(1.3) H(k) = 1 2 (-i∇ y + k) 2 + V per (y) , y ∈ Y, parametrized by the crystal momentum k ∈ Y * ≃ T d .
We shall assume that at t = 0,

(1.4) ψ ε (0, x) ∼ ε→0 ε -d/4 u 0 x -q 0 √ ε χ m x ε , p 0 e ip0•(x-q0)/ε ,
where u 0 denotes some smooth and rapidly decaying profile. In other words, the initial data ψ ε 0 can be approximated by a highly oscillatory Bloch eigenfunction χ m modulated by a (generalized) coherent state, i.e. a wave function which is localized both in space and in frequency.

Remark 1.1. In particular, the choice u 0 (z) = exp(-|z| 2 /2) yields a classical coherent state, i.e. ground state of the harmonic oscillator potential, as modulation. The states (1.4) are more general, though, since we can allow for any u 0 ∈ S(R d ), the Schwartz space of rapidly decaying, smooth functions. We also remark that the same class of initial data have recently been considered in [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF], where the situation of linear Schrödinger equations with combined periodic and slowly varying external potentials has been considered (see B for more details).

Provided such initial data, we shall show that the solution of (1.1) can be approximately (in a sense to be made precise) described by the following semiclassical wave packet:

(1.5) ψ ε (t, x) ∼ ε→0 ϕ ε (t, x) := ε -d/4 u t, x -q(t) √ ε χ m x ε , p 0 e iφm(t,x)/ε
where q(t) = q 0 + t∇ k E m (p 0 ) describes the macroscopic shift of the centre of mass and the highly oscillatory phase function φ m is

(1.6) φ m (t, x) = p 0 • (x -q 0 ) -tE m (p 0 ).
To this end, we need to give sense to the group velocity ∇ k E m (k) and thus, we have to assume from now on, that:

(1.7) E m (k) is a simple eigenvalue in the vicinity of k = p 0 .

(Of course, p 0 ∈ R d has to be understood modulo Γ * in this case.) In other words, we have to avoid that two Bloch bands cross at p 0 , that is E m (p 0 ) = E n (p 0 ), for m = n. It is known that at such crossing points E m (k) is no longer differentiable, causing the above asymptotic description (which is based on an adiabatic decoupling of the slow and fast degrees of freedom) to break down.

Remark 1.2. Clearly, the non-crossing condition given above restricts our choice for the initial wave vectors p 0 ∈ R d . It is known however that the set of band crossings has Lebesgue measure zero. For example, in the case d = 1, band crossings can only occur at k = 0 or at the boundary of the Brillouin zone.

So far, we have not said what determines the profile u = u(t, z) appearing in (1.5). Its time-evolution depends on the strength of the nonlinearity, i.e. on the size of α > 0 in the case of local nonlinearities (the situation for nonlocal ones will be described later on). We shall find that the critical size is α c = 1 + dσ/2 and when α = α c , u solves the following homogenized nonlinear Schrödinger equation

(1.8) i∂ t u + 1 2 div z (∇ 2 k E m (p 0 )) • ∇ z u = λ m |u| 2σ u, u |t=0 = u 0 , with effective coupling constant λ m = λ Y |χ m (y, p 0 )| 2σ+2 dy.
Note that the dispersive properties of (1.8) are determined by an effective mass matrix ∇ 2 k E m (p 0 ) ∈ R d×d , which itself depends on the choice of the initial wave vector (cf. [START_REF] Duan | Effective mass approach for a Bose-Einstein condensate in an optical lattice[END_REF] for a recent study).

In the next section, we derive this effective mass equation from multi-scale expansion. A rigorous stability result is then proved in Section 3. The case of nonlocal nonlinearities is treated in Section 4. As we shall see, in situations where the kernel K is homogeneous, the critical value α c depends on the degree of homogeneity (like in the case of a local nonlinearity), and the analogue of (1.8) is an envelope equation with a nonlocal nonlinearity. On the other hand, if the kernel K is a smooth function, then α c = 1, and in sharp contrast with the other situations studied in this paper, the analogue of (1.8) for α = α c is found to be a linear equation, see Section 4.2.

MULTI-SCALE EXPANSION

2.1. The hierarchy of equations. Except for the treatment of the nonlinear term, we resume the strategy followed in [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF]. We seek the solution ψ ε of (1.1) in the form (2.1)

ψ ε (t, x) = ε -d/4 U ε t, x -q(t) √ ε , x ε e iφm(t,x)/ε ,
where the phase φ m (t, x) is given by (1.6) and the function

U ε = U ε (t, z, y) admits an asymptotic expansion (2.2) U ε (t, z, y) ∼ ε→0 j∈N ε j/2 U j (t, z, y)
with smooth profiles U j which, in addition, are assumed to be Γ-periodic with respect to y. For ψ ε given by the ansatz (2.1), we compute

iε∂ t ψ ε + ε 2 2 ∆ψ ε -V per x ε ψ ε = ε -d/4 e iφm/ε 2 j=0 ε j/2 b ε j (t, z, y) (z,y)= x-q(t) √ ε , x ε with b ε 0 = -∂ t φ m U ε + 1 2 ∆ y U ε - 1 2 |p 0 | 2 U ε + ip 0 • ∇ y U ε -V per (y)U ε , b ε 1 = -i q(t) • ∇ z U ε + (∇ y • ∇ z ) U ε + ip 0 • ∇ z U ε , b ε 2 = i∂ t U ε + 1 2 ∆ z U ε .
Using (1.6) and the fact that

q(t) = ∇ k E m (p 0 ), we can rewrite b ε 0 , b ε 1 as b ε 0 = (E m (p 0 ) -H (p 0 ))U ε , b ε 1 = i (p 0 -∇ k E m (p 0 )) • ∇ z U ε + (∇ y • ∇ z ) U ε ,
where H(p 0 ) is the Bloch Hamiltonian (1.3) evaluated at k = p 0 (again, this has to be understood modulo Γ * ). Introducing the following linear operators:

L 0 = E m (p 0 ) -H (p 0 ) , L 1 = i (p 0 -∇ k E m (p 0 )) • ∇ z + ∇ y • ∇ z , L 2 = i∂ t + 1 2 ∆ z ,
and expanding U ε in powers of ε ∈ (0, 1], we consequently need to solve the following hierarchy of equations:

(2.3)      L 0 U 0 = 0, L 0 U 1 + L 1 U 0 = 0, L 0 U 2 + L 1 U 1 + L 2 U 0 = F (U 0 ),
where, for α c = 1 + dσ/2, we find:

F (U 0 ) = 0 if α > α c , λ|U 0 | 2σ U 0 if α = α c .
In the next subsection, we shall focus on the resolution of (2.3).

The effective mass equation.

Given the form of L 0 , the equation

L 0 U 0 = 0 implies (2.4) U 0 (t, z, y) = u(t, z)χ m (y, p 0 ) .
By Fredholm's alternative, a necessary and sufficient condition to solve the equation

L 0 U 1 + L 1 U 0 = 0, is that L 1 U 0 is orthogonal to ker L 0 , that is: (2.5) χ m , L 1 U 0 L 2 (Y ) = 0.
Given the expression of L 1 and the formula (2.4), we compute

L 1 U 0 = i (p 0 -∇ k E m (p 0 )) • ∇ z u(t, z)χ m (y, p 0 ) + ∇ y χ m (y, p 0 ) • ∇ z u(t, z).
Now, we make use of the algebraic identities derived in Section A. In view of (A.2), we infer that (2.5) is automatically fulfilled. We thus obtain

U 1 (t, z, y) = u 1 (t, z)χ m (y, p 0 ) + u ⊥ 1 (t, z, y), where u ⊥
1 , the part of U 1 which is orthogonal to ker L 0 , is obtained by inverting an elliptic operator:

u ⊥ 1 = -L -1 0 L 1 U 0 .
Note that the formula for L 1 U 0 can also be written as

L 1 U 0 = -i∇ k (E m (p 0 ) -H (p 0 )) χ m (y, p 0 ) • ∇ z u(t, z).
Taking into account (A.1), this yields:

u ⊥ 1 (t, z, y) = -i∇ k χ m (y, p 0 ) • ∇ z u(t, z).
At this stage, we shall, for simplicity, choose u 1 = 0, in which case U 1 becomes simply a function of u:

(2.6) U 1 (t, z, y) = -i∇ k χ m (y, p 0 ) • ∇ z u(t, z).
As a next step in the formal analysis, we must solve

L 0 U 2 + L 1 U 1 + L 2 U 0 = F (U 0 )
. By the same argument as before, we require

(2.7) χ m , L 1 U 1 + L 2 U 0 -F (U 0 ) L 2 (Y ) = 0.
With the expression (2.6), we compute

L 1 U 1 = d j,ℓ=1 (p 0 -∇ k E m (p 0 )) j ∂ k ℓ χ m (y, p 0 ) -i∂ 2 yj k ℓ χ m (y, p 0 ) ∂ 2 zjz ℓ u,
and we also have

L 2 U 0 = i∂ t + 1 2 ∆ z u(t, z) χ m (y, p 0 ) .
We consequently infer

χ m , L 1 U 1 + L 2 U 0 L 2 (Y ) = i∂ t u + 1 2 ∆ z u - d j,ℓ=1 χ m , ∂ kj E m (p 0 ) ∂ k ℓ χ m + i∂ 2 yjk ℓ χ m L 2 (Y ) ∂ 2 zj z ℓ u.
In the case α = α c , by making the last sum symmetric with respect to j and ℓ, and using (A.3), we finally obtain the nonlinear Schrödinger equation (1.8) with effective mass tensor

M = ∇ 2 k E m (p 0 ) and coupling constant λ m := λ χ m , |χ m | 2σ χ m L 2 (Y ) = λ Y |χ m (y, p 0 )| 2σ+2 dy.
In addition, we can write

(2.8) U 2 (t, z, y) = u 2 (t, z)χ m (y, p 0 ) + u ⊥ 2 (t, z, y), where u ⊥ 2 = -L -1 0 (L 1 U 1 + L 2 U 0 )
. We shall also impose u 2 ≡ 0 and thus

U 2 = u ⊥ 2 .
Assume for the moment that we can solve (1.8). Then, we have the following result, which establishes some basic regularity properties of our multi-scale expansion (where we denote by H k the usual L 2 (R d ) based Sobolev space). Lemma 2.1. Suppose (1.7) holds true and let u ∈ C([0, T ]; H k ), be a solution of (1.8) up to some T > 0.

Then U j ∈ C([0, T ]; H k-j z × W ∞,∞ (Y )), for j = 0, 1, 2.
Proof. First note that (y, k) → χ m (y, k) is smooth and bounded together with all its derivatives, provided (1.7) holds true. Having this in mind, the proof follows directly from the construction of {U j } j=0,1,2 as solutions to the system (2.3).

Remark 2.2. Note that in the case α > α c nonlinear effects are absent at leading order since we obtain, instead of (1.8), a linear effective mass equation:

(2.9)

i∂ t u lin + 1 2 div z ∇ 2 k E m (p 0 ) • ∇ z u lin = 0, u |t=0 = u 0 .
This type of equation has been derived in [START_REF] Piatnitski | Homogenization of the Schrödinger equation and effective mass theorems[END_REF][START_REF] Sparber | Effective mass theorems for nonlinear Schrödinger equations[END_REF], using a different asymptotic scaling.

MAIN RESULTS

In this section we shall make the computations given above rigorous and prove a nonlinear stability result. As a first step we need to guarantee the existence of a smooth solution to (1.8), at least locally in-time.

Construction of an approximate solution.

The dispersion relation of (1.8) is given by a real-valued symmetric matrix. Standard techniques (see, e.g., [START_REF] Tao | Nonlinear dispersive equations[END_REF]) yield the existence of a unique local solution, provided that the initial datum is sufficiently smooth: Lemma 3.1. Let u 0 ∈ H k with k > d/2. There exists T c ∈ (0, +∞] and a unique maximal solution u ∈ C([0, T c );

H k ) to (1.8), such that u(t, •) L 2 = u 0 L 2 . The solution is maximal in the sense that if T c < ∞, then lim t→Tc u(t, •) H k = +∞.
The solution u(t, •) may not exist for all times, even if λ 0, i.e. even if the nonlinearity in the original equation (1.1) is defocusing. However, we can claim T c = ∞ in either of the following cases (see e.g. [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]):

• ∇ 2 k E m (p 0 ) is positive definite and λ m 0, or • ∇ 2 k E m (p 0
) is negative definite and λ m 0. On the contrary, if for instance ∇ 2 k E m (p 0 ) is positive definite and λ m < 0 (focusing nonlinearity), finite time blow up (that is, T c < ∞) may occur, see, e.g., [START_REF] Tao | Nonlinear dispersive equations[END_REF][START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]. This is the case typically if the initial datum is "too large": for any fixed profile u 0 ∈ S(R d ), if one considers u |t=0 = Λu 0 , there exists Λ 0 > 0 such that for all Λ Λ 0 , T c < ∞. Note that in other situations, where the signature of

∇ 2 k E m (p 0 ) is non-trivial (hence d 2)
, the issue of global existence vs. finite time blow-up is an open question. Remark 3.2. Clearly, for α > α c these issues do not occur, since the leading order profile u lin solves the linear equation (2.9) and hence exists for all times, T c = +∞. 

ψ ε app (t, x) := ε -d/4 U 0 + √ εU 1 + εU 2 t, x -q(t) √ ε ,
x ε e iφm(t,x)/ε , which satisfies the original equation (1.1) up to some remainder terms:

iε∂ t + ε 2 2 ∆ -V per ψ ε app -λε α |ψ ε app | 2σ ψ ε app = e iφm/ε ε d/4 ε 3/2 (r ε 1 + r ε 2 ) (t, z, y) (z,y)= x-q(t) √ ε , x ε -λR ε (t, x).
The remainder terms are given by

r ε 1 (t, z, y) = L 2 U 1 (t, z, y), r ε 2 (t, z, y) = L 1 U 2 (t, z, y) + √ εL 2 U 2 (t, z, y),
and

R ε = ε α |ψ ε app | 2σ ψ ε app if α > α c , while if α = α c = 1 + dσ/2, R ε = ε 1+dσ/2 |ψ ε app | 2σ ψ ε app - ε ε d/4 e iφm/ε U 0 t, x -q(t) √ ε , x ε 2σ U 0 t, x -q(t) √ ε , x ε .
This, together with the regularity result established in Lemma 2.1 then directly yields the following proposition.

Proposition 3.3. Assume (1.7) and let α α c = 1 + dσ/2. Then, we can find ψ ε app such that:

1. For all T ∈ [0, T c ), ψ ε app has a coherent state structure on [0, T ], in the sense that there exists C independent of ε ∈ (0, 1] such that, with ϕ ε defined in (1.5),

for α = α c , sup t∈[0,T ] ψ ε app (t, •) -ϕ ε (t, •) L 2 (R d ) C √ ε, for α > α c , sup t∈[0,T ] ψ ε app (t, •) -ϕ ε lin (t, •) L 2 (R d ) C √ ε,
where ϕ ε lin is the approximate solution constructed from u lin , solving (2.9). 2. The function solves (1.1) up to a small error:

iε∂ t ψ ε app + ε 2 2 ∆ψ ε app = V per x ε ψ ε app + λε α |ψ ε app | 2σ ψ ε app + εw ε ,
where the remainder term w ε satisfies: for all T > 0, with T < T c in the case α = α c , there exists C > 0 independent of ε > 0 such that

sup t∈[0,T ] w ε (t, •) L 2 (R d ) C ε min(α-αc,1/2) if α > α c , √ ε if α = α c .
Note that because of the factor ε in front of the time derivative, it is natural to represent a small error term as ε times as small term.

3.2. Nonlinear stability. It remains to prove nonlinear stability of the approximate solution constructed above. For the sake of simplicity we shall do so only for α = α c and d = 1. The (physically less interesting) case α > α c can be proved analogously and a possible generalization to higher dimensions is indicated in Remark 3.6 below. For

ε 0 > 0, set f ε H 1 ε := sup 0<ε ε0 f ε L 2 + ε∂ x f ε L 2 ,
which is equivalent to the usual H 1 -norm for every (fixed) ε > 0. The approach that we present is similar to the one followed in [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF]: First, we need to construct a more accurate approximate solution than the one stated in Proposition 3.3. Taking the asymptotic expansion presented in Section 2 one step further, we can gain a factor √ ε in Proposition 3.3. More precisely, we can construct ψ ε app such that:

(3.2) sup t∈[0,T ] ψ ε app (t, •) -ψ ε app (t, •) H 1 ε C √ ε,
and

iε∂ t ψ ε app + ε 2 2 ∆ ψ ε app = V per x ε ψ ε app + λε 1+σ/2 | ψ ε app | 2σ ψ ε app + ε w ε ,
where the additional factor √ ε is reflected in the error estimate

(3.3) sup t∈[0,T ] w ε (t, •) H 1 ε Cε.
Note that in this case the corrector U 1 is not the same for ψ ε app , since unlike what we have done in §2.2, we can no longer assume u 1 = 0. Rather, u 1 now solves an evolution equation, which is essentially (1.8) linearized about u, with a non-trivial source term (see [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF] for more details). Therefore, the estimate (3.2) must be expected to be sharp in general.

Having constructed such an improved approximation ψ ε app we can state the following nonlinear stability result: Theorem 3.4. Let d = 1, α = 1 + σ/2, σ ∈ N, and Assumption (1.7) hold. In addition, suppose that the initial data satisfy:

(3.4) ψ ε 0 -ψ ε app|t=0 L 2 (R) = O(ε), ε∂ x ψ ε 0 -ψ ε app|t=0 L 2 (R) = O(1).
Let T ∈ [0, T c ). Then, there exists ε 0 = ε 0 (T ) such that for ε ∈ (0, ε 0 ], the solution of (1.1) exists on [0, T ]. Moreover, there exists C independent of ε ∈ (0, ε 0 ] such that

sup t∈[0,T ] ψ ε (t, •) -ϕ ε (t, •) L 2 (R) C √ ε.
where ϕ ε is defined in (1.5).

Proof. The scheme of the proof is the same as the proof of Theorem 4.5 in [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF], so we shall only give the main steps. Fix T < T c and let η ε = ψ ε -ψ ε app be the error between the exact and the approximate solution. It satisfies

iε∂ t η ε + ε 2 2 ∆η ε = V per x ε η ε + λε 1+σ/2 |ψ ε | 2σ ψ ε -| ψ ε app | 2σ ψ ε app -ε w ε , with η ε |t=0 L 2 = O(ε), ε∂ x η ε |t=0 L 2 = O(1)
by assumption. From [START_REF] Rauch | Lectures on geometric optics[END_REF], we have:

Lemma 3.5 (Moser's lemma). Let R > 0, s ∈ N and F (z) = |z| 2σ z, σ ∈ N. Then there exists C = C(R, s, σ) such that if v ε satisfies (ε∂ x ) β v ε L ∞ (R)
R, 0 β s,

and δ ε satisfies δ ε L ∞ (R) R, then 0 β s (ε∂ x ) β (F (v ε + δ ε ) -F (v ε )) L 2 C 0 β s (ε∂ x ) β δ ε L 2
.

We apply this lemma with v ε = ε 1/4 ψ ε app , and s = 0, s = 1 successively: there exists R > 0 independent of ε ∈ (0, 1] such that

sup t∈[0,T ] β=0,1 (ε∂ x ) β v ε (t) L ∞ (R)
R.

Set δ ε = ε 1/4 η ε . By assumption and the Gagliardo-Nirenberg inequality,

(3.5) δ ε |t=0 L ∞ = ε 1/4 η ε |t=0 L ∞ ε 1/4 √ 2ε -1/2 η ε |t=0 1/2 L 2 ε∂ x η ε |t=0 1/2 L 2 Cε 1/4 .
As long as δ ε (t) L ∞ R, energy estimates and Moser's lemma with s = 0 yield

η ε (t) L 2 η ε (0) L 2 + C t 0 η ε (s) L 2 ds + t 0 w ε (s) L 2 ds,
where we have used the homogeneity of F . By Gronwall's Lemma, for t T :

η ε (t) L 2 C(T ) η ε (0) L 2 + t 0 w ε (s) L 2 ds Cε.
Applying the operator ε∂ x to the equation satisfied by η ε , we infer similarly

ε∂ x η ε (t) L 2 ε∂ x η ε (0) L 2 + C t 0 η ε (s) H 1 ε ds + t 0 ε∂ x w ε (s) L 2 ds + 1 ε ∂ y V per L ∞ t 0 η ε (s) L 2 ds,
where the last term stems from the relation

[ε∂ x , V per (x/ε)] = ∂ y V per (x/ε) ∈ L ∞ , since
V per is smooth and periodic. Thus,

ε∂ x η ε (t) L 2 C + C t 0 ε∂ x η ε (s) L 2 ds + Ct.
Gronwall's lemma now yields ε∂ x η ε (t) L 2 C(T ). In view of the Gagliardo-Nirenberg inequality,

δ ε (t) L ∞ = ε 1/4 η ε (t) L ∞ √ 2ε -1/4 η ε 1/2 L 2 ε∂ x η ε 1/2 L 2 C(T )ε 1/4 .
For ε sufficiently small (depending of T ), δ ε (t) L ∞ R for all t ∈ [0, T ], and the result follows from a bootstrap argument.

The above theorem shows nonlinear stability of the approximate solution up to times of order O(1), i.e. independent of ε, provided that the initial data are well-prepared, in the sense given in (3.4). Essentially this means that ψ ε 0 contains not only U 0 , but also U 1 associated to ψ ε app . We shall not insist further on this aspect, which is probably a technical artifact, and remark that in the linear case a stronger result is valid, see [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF] where stability is proved up to the so-called Ehrenfest time O(ln 1/ε), and no well-preparedness as in (3.4) is needed (an initial error O(ε r ) for some r > 0 suffices).

Remark 3.6. If x ∈ R d with d
2, the proof can be easily adapted, provided an even better approximate solution is constructed. The reason is that, instead of (3.5), one needs to rely on the following Gagliardo-Nirenberg inequality

δ ε L ∞ (R d ) Cε -d/2 δ ε 1-d/(2s) L 2 (R d ) |ε∇| s δ ε d/(2s) L 2 (R d ) , for s > d/2.
Thus, in order to account for the singular factor ε -d/2 , one is forced to construct an approximate solution ψ ε app to a sufficiently high order in ε (see [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF] for more details).

THE CASE OF NONLOCAL NONLINEARITIES

In this section we shall show how to perform the same asymptotic analysis as before in the case of nonlocal nonlinearities. In other words, we consider (4.1)

iε∂ t ψ ε + ε 2 2 ∆ψ ε = V per x ε ψ ε + ε α (K * |ψ ε | 2 )ψ ε
with K(x) ∈ R some given interaction kernel. In the following we shall focus on two particular choices of interaction kernels K which are physically relevant.

4.1. Homogeneous kernels. In this subsection we shall consider functions of the form

K(x) = λ|x| µ , λ ∈ R, with µ ∈ R \ {0} such that -min(2, d) < µ 2.
For example, the choice µ = -1 in d = 3 corresponds to the classical Hartree nonlinearity, modeling a self-consistent, repulsive (λ > 0) Coulomb interaction. The case µ > 0 has been recently studied in [START_REF] Masaki | Analysis of Hartree equation with an interaction growing at the spatial infinity[END_REF]. Like in the case of local nonlinearities, the critical exponent α c depends on the homogeneity µ, namely α c = 1 -µ/2. This can be seen as follows: We plug the ansatz

ϕ ε (t, x) = ε -d/4 u t, x -q(t) √ ε χ m x ε , p 0 e iφm(t,x)/ε into the convolution term ε 1-µ/2 |x| µ * |ψ ε | 2 . This yields ε 1-µ/2-d/2 R d |x -ξ| µ u t, ξ -q(t) √ ε 2 χ m ξ ε , p 0 2 dξ.
We want this term to be of order O(ε) in our asymptotic expansion, to mimic the approach presented in §2. In this case, it will consequently appear within b ε 2 , leading to the effective mass equation. In order to show that this is indeed the case, we rewrite the initial convolution as

ε 1-µ/2-d/2 R d |ξ| µ u t, x -ξ -q(t) √ ε 2 χ m x -ξ ε , p 0 2 dξ,
and use the substitution z = (x -q(t))/ √ ε in the envelope u, and y = x/ε in χ m :

ε 1-µ/2-d/2 R d |ξ| µ u t, z - ξ √ ε 2 χ m y - ξ ε , p 0 2 dξ.
Setting ζ = ξ/ √ ε, this can be written as

ε |ζ| µ |u (t, z -ζ)| 2 χ m y - ζ √ ε , p 0 2 dζ.
Then, the following averaging result can be proved:

Proposition 4.1. Let (1.7) hold true and assume that ζ → |ζ| µ |u (t, z -ζ)| 2 is in L 1 (R d ).
Then, for all k ∈ Y * , it holds This result can be seen as a variant of the two-scale convergence results introduced in [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF][START_REF] Allaire | Homogenization and two-scale convergence[END_REF], and used in [START_REF] Piatnitski | Homogenization of the Schrödinger equation and effective mass theorems[END_REF]. The main difference here is the convolution structure.

R d |ζ| µ |u (t, z -ζ)| 2 χ m y - ζ √ ε , k 2 dζ -→ ε→0 R d |ζ| µ |u (t, z -ζ)| 2 dζ. In addition, if ζ → |ζ| µ |u (t, z -ζ)| 2 is in W 1,1 (R d ),
Proof. We decompose y → |χ m (y, k)| 2 into its generalized Fourier series (recall that Γ ≃ Z d ) and write

|ζ| µ |u (t, z -ζ)| 2 χ m y - ζ √ ε 2 dζ = γ∈Γ |ζ| µ |u (t, z -ζ)| 2 c γ e iγ•(y-ζ/ √ ε) dζ = γ∈Γ c γ e iγ•y |ζ| µ |u (t, z -ζ)| 2 e -iγ•ζ/ √ ε dζ.
By Riemann-Lebesgue lemma, for each term with γ = 0, the limit, as ε → 0, is zero.

Then only the term corresponding to γ = 0 remains, with

c 0 (k) = Y |χ m (y, k)| 2 dy = 1,
since the eigenfunctions χ m (•, k) form an orthonormal basis of L 2 (Y ). By the Dominated Convergence Theorem, we can exchange the sum over γ ∈ Γ and the limit ε → 0 in the above computation provided that ζ → |ζ| µ |u (t, z -ζ)| 2 is in L 1 (with an error o(1)).

In the case where the function is in W Assuming that u is sufficiently smooth and decaying, we can use the above averaging result and perform the same asymptotic expansion as given in Section 2 to arrive at the effective nonlinear Schrödinger equation (4.2)

i∂ t u + 1 2 div z (∇ 2 k E m (p 0 )) • ∇ z u = λ(|z| µ * |u| 2 )u, u |t=0 = u 0 .
For µ < 0, existence of a smooth solution u ∈ C([0, T c ), H k ), locally in time, can be proved along the same lines as in [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] and hence, a result analogous to the one stated in Proposition 3.3 is straightforward. In the case µ > 0 one can follow the arguments of [START_REF] Masaki | Analysis of Hartree equation with an interaction growing at the spatial infinity[END_REF], using a functional framework which is more intricate, however (the Sobolev spaces H k are not sufficient but have to be intersected with weighted L 2 spaces), and we shall not do so here. In a similar spirit, stability in the sense of Theorem 3.4 follows from an adaptation of Lemma 3.5, which we leave out.

4.2. Smooth kernels. If in (4.1) the interaction kernel K(x) is a given smooth function, bounded as well as its derivative, then α c = 1 (corresponding formally to the case µ = 0). Such a situation appears for example in [START_REF] Berloff | Nonlocal nonlinear Schroedinger equations as models of superfluidity[END_REF], where

K(x) = a 1 + a 2 |x| 2 + a 3 |x| 4 e -A 2 |x| 2 + a 4 e -B 2 |x| 2 ,
with constants a 1 , a 2 , a 3 , a 4 ∈ R, A, B > 0. Resuming the above computations in this context, we find:

K * |ψ ε | 2 = ε -d/2 R d K(ξ) u t, x -ξ -q(t) √ ε 2 χ m x -ξ ε , p 0 2 dξ = R d K(ζ √ ε) |u (t, z -ζ)| 2 χ m y - ζ √ ε , p 0 2 dζ -→ ε→0 K(0) R d |u (t, z -ζ)| 2 dζ = K(0) u(t) 2 L 2 = K(0) u 0 2 L 2 ,
due to mass conservation, along with an O( √ ε) convergence rate under suitable assumptions. In particular, this shows that, as ε → 0, the nonlinear effects become negligible. Indeed, in this case the envelope equation becomes

i∂ t u + 1 2 div z (∇ 2 k E m (p 0 )) • ∇ z u = K(0) u 0 2 L 2 u, u |t=0 = u 0 .
The right hand side involves a constant potential term, which can be gauged away via v(t, x) = u(t, x)e itK(0) u0 2 L 2 . The remaining amplitude v(t, x) then solves a free Schrödinger equation with effective mass tensor ∇ 2 k E m (p 0 ).

APPENDIX A. SOME USEFUL ALGEBRAIC IDENTITIES

For the derivation of the effective mass equation (1.8) we shall rely on several algebraic identities, which can be derived from Bloch's spectral problem (for more details see, e.g., [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]): First, taking the gradient w.r.t. to k of (1.2), we have

(A.1) ∇ k (H(k) -E m ) χ m + (H(k) -E m ) ∇ k χ m = 0
and, by taking the in L 2 (Y )-scalar product with χ m , we obtain

∇ k E m = χ m , ∇ k H(k)χ m L 2 (Y ) + χ m , (H(k) -E m ) ∇ k χ m L 2 (Y ) .
Since H(k) is self-adjoint, the last term is zero, thanks to (1.2). We infer

(A.2) ∇ k E m (k) = χ m , (-i∇ y + k) χ m L 2 (Y ) .
Differentiating (A.1) again, we have, for all j, ℓ ∈ {1, . . . , d}: 

APPENDIX B. ADDING AN ADDITIONAL, SLOWLY VARYING POTENTIAL

As a possible extension of our study, one might want to consider the case where the wave function is not only under the influence of the nonlinearity and the periodic potential, but also add an additional slowly varying external potential V (t, x), i.e.

iε∂ t ψ ε + 1 2 ∆ψ ε = V per x ε ψ ε + V (t, x)ψ ε + ε α f (|ψ ε | 2 )ψ ε .
At least formally, this can be done by combining our analysis with the results given in [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF]: To this end, we define the semi-classical band Hamiltonian h sc m (k, x) = E m (k) + V (t, x), (k, x) ∈ Y * × R d , and denote the corresponding semiclassical phase space trajectories by (B.1) q(t) = ∇ k E m (p(t)) , q(0) = q 0 , ṗ(t) = -∇ x V (t, q(t)) , p(0) = p 0 .

This system is the analogue of the classical Hamiltonian phase space flow, in the presence of an additional periodic potential V per . In order to make sure that the system (B.1) is well-defined, it is sufficient to assume that E m (p(t)) is a simple eigenvalue (|E m (p(t)) -E n (k)| = 0 for all n = m, t ∈ R, k ∈ Y * ); see e.g. [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF], where examples of such situations are given. The approximate solution under the form of a coherent state within the m-th Bloch band is then given by: ϕ ε (t, x) = ε -d/4 u t,

x -q(t) √ ε χ m x ε , p(t) e iΦm(t,x)/ε with q(t), p(t) obtained from (B.1). The highly oscillatory phase takes the form Φ m (t, x) = S m (t) + p(t) • (x -q(t)), where S m (t) ∈ R is the (purely time-dependent) semi-classical action S m (t) = t 0 p(s) • ∇E m (p(s)) -h sc m (p(s), q(s)) ds.

Note that Φ m simplifies to (1.6) in the case where V (t, x) = 0. In this case, the governing equation for the leading profile u(t, z) is found to be a nonlinear Schrödinger equation with time-dependent quadratic potential, time-dependent effective mass ∇ 2 k E m (p(t)) and coupling constant λ m (t), see [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF] for more details. These features make it difficult to give sufficient conditions under which where the solution u(t, z) is global, i.e. T c = ∞. Indeed, the signature of ∇ 2 k E m (p(t)) may change, and the existence of Strichartz estimates for the linear part is a non-trivial issue. Moreover, λ m (t) may also change sign, making the analysis even more delicate.

Lemma 3 .

 3 1 provides the existence of a local-in-time solution u of the effective mass equation. In view of the multi-scale expansion given in Section 2, we can thus define an approximate solution by(3.1) 

  then the above convergence holds with an error of order O( √ ε).

∂ 2

 2 kj k ℓ (H(k) -E m ) χ m + ∂ kj (H(k) -E m ) ∂ k ℓ χ m + ∂ k ℓ (H(k) -E m ) ∂ kj χ m + (H(k) -E m ) ∂ 2 kj k ℓ χ m = 0.Taking the scalar product with χ m , we have:(A.3) ∂ 2 kj k ℓ E m (k) = δ jℓ + -i∂ yj + k j ∂ k ℓ χ m + (-i∂ y ℓ + k ℓ ) ∂ kj χ m , χ m L 2 (Y ) -∂ k ℓ E m ∂ kj χ m + ∂ kj E m ∂ k ℓ χ m , χ m L 2 (Y ) .

  1,1 we obtain an error O( √ ε). The reason is that the coefficients (c γ ) γ∈Γ decrease rapidly for large |γ|, since y → |χ m (y, k)| 2 is smooth, provided Assumption (1.7) holds true and thus we can perform an integration by parts, and use dominated convergence again.
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