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Abstract

The sequence of random probability measures νn that gives a path
of length n, 1

n
times the sum of the random weights collected along the

paths, is shown to satisfy a large deviations principle with good rate
function the Legendre transform of the free energy of the associated
directed polymer in a random environment.

Consequences on the asymptotics of the typical number of paths
whose collected weight is above a fixed proportion are then drawn.
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1 Introduction

Last passage percolation

To each site (k, x) of N × Zd is assigned a random weight η(k, x). The
(η(k, x))k≥1,x∈Zd are taken IID under the probability measure Q.
The set of oriented paths of length n starting from the origin is

Ωn =
{

ω = (ω0, . . . , ωn) : ωi ∈ Zd, ω0 = 0, |ωi − ωi−1| = 1
}

.

The weight (energy, reward) of a path is the sum of weights of visited sites:

Hn = Hn(ω, η) =

n
∑

k=1

η(k, ωk) (n ≥ 1, ω ∈ Ωn).

Observe that when η(k, x) are Bernoulli(p) distributed

Q(η(k, x) = 1) = 1 − Q(η(k, x) = 0) = p ∈ (0, 1) ,

the quantity Hn

n (ω, η) is the proportion of open sites visited by ω, and it is
natural to consider for p < ρ < 1,

Nn(ρ) = number of paths of length n such that Hn(ω, η) ≥ nρ.

The problem of ρ-percolation, as we learnt it from Comets, Popov and
Vachkovskaia [8] and Kesten and Sidoravicius [12], is to study the behaviour
of Nn(ρ) for large n.

Directed polymer in a random environment

We are going to consider fairly general environment distributions, by requir-
ing first that they have exponential moments of any order:

λ(β) = log Q
(

eβη(k,x)
)

< +∞ (β ∈ R) ,

and second that they satisfy a logarithmic Sobolev inequality (see e.g. [2]):
in particular we can apply our result to bounded support and Gaussian
environments.
The polymer measure is the random probability measure defined on the set
of oriented paths of length n by:

µn(ω) = (2d)−n eβHn(ω,η)

Zn(β)
(ω ∈ Ωn), ,
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with Zn(β) the partition function

Zn(β) = Zn(β, η) = (2d)−n
∑

ω∈Ωn

eβHn(ω,η) = P
(

eβHn(ω,η)
)

,

where P is the law of simple random walk on Zd starting from the origin.
Bolthausen [3] proved the existence of a deterministic limiting free energy

p(β) = lim
n→+∞

1

n
Q(log Zn(β)) = Q a.s. lim

n→+∞

1

n
log Zn(β) .

Thanks to Jensen’s inequality, we have the upper bound p(β) ≤ λ(β) and
it is conjectured (and partially proved, see [7, 6]) that the behaviour of a
typical path under the polymer measure is diffusive iff β ∈ Cη the critical
region

Cη = {β ∈ R : p(β) = λ(β)} .

In dimension d = 1, Cη = {0} and in dimensions d ≥ 3, Cη contains a
neighborhood of the origin (see [3, 9]).

The main theorem

The connection between Last passage percolation and Directed polymer in
random environment is made by the family (νn)n∈N of random probability
measures on the real line:

νn(A) =
1

|Ωn|
∑

ω∈Ωn

1(Hn
n

(ω,η)∈A) = P

(

Hn

n
(ω, η) ∈ A

)

.

Indeed,

Nn(ρ) =
∑

ω∈Ωn

1(Hn(ω,η)≥nρ) = (2d)nνn([ρ, +∞)) .

The main result of the paper is

Theorem 1. Q almost surely, the family (νn)n∈N satisfies a large deviations
principle with good rate function I = p∗ the Legendre transform of the free
energy of the directed polymer.

Let m = Q(η(k, x)) be the average weight of a path m = Q
(

Hn

n (ω, η)
)

. It
is natural to consider the quantities:

Nn(ρ) =

{

∑

ω∈Ωn
1(Hn(ω,η)≥nρ) if ρ ≥ m,

∑

ω∈Ωn
1(Hn(ω,η)≤nρ) if ρ < m .
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A simple exchange of limits β → ±∞, and n → +∞, yields the following

ρ± = Q a.s. lim
n→+∞

max
ω∈Ωn

±Hn

n
(ω, η) = lim

β→+∞

p(±β)

β
∈ [0, +∞] .

Repeating the proof of Theorem 1.1 of [8] gives

Corollary 2. For −ρ− < ρ < ρ+, we have Q almost surely,

lim
n→+∞

(Nn(ρ))
1
n = (2d)e−I(ρ) .

We can then translate our knowledge of the critical region Cη, into the fol-
lowing remark. Let

Vη = {ρ ∈ R : I(ρ) = λ∗(ρ)} .

In dimension d = 1, Vη = {m} and in dimensions d ≥ 3, Vη contains a
neighbourhood of m.
This means that in dimensions d ≥ 3, the typical large deviation of Hn

n (ω, η)
close to its mean is the same as the large deviation of 1

n(η1 + · · ·+ ηn) close
to its mean, with ηi IID. There is no influence of the path ω : this gives
another justification to the name weak-disorder region given to the critical
set Cη.

2 Proof of the main theorem

Observe that for any β ∈ R we have:
∫

eβnxdνn(x) = P
(

eβHn(ω,η)
)

= Zn(β) Q a.s. . (1)

Consequently, since eu + e−u ≥ e|u|, we obtain for any β > 0,

lim sup
n→+∞

1

n
log

(
∫

eβn|x|dνn(x)

)

≤ p(β) + p(−β) < +∞ ,

and the family (νn)n≥0 is exponentially tight (see the Appendix, Lemma 3).
We only need to show now that for a lower semicontinuous function I, and
for x ∈ R

lim
δ→0

lim inf
n→∞

1

n
log νn((x − δ, x + δ)) = −I(x) , (2)

lim
δ→0

lim sup
n→∞

1

n
log νn([x − δ, x + δ]) = −I(x). (3)
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From these, we shall infer that (νn)n∈N follows a large deviations principle
with good rate function I. Eventually, equation (1) and

lim
n→∞

1

n
log Zn(β) = p(β)

will imply, by Varadhan’s lemma that I and p are Legendre conjugate:

I(x) = p∗(x) = sup
β∈R

(xβ − p(β)) .

The strategy of proof finds its origin in Varadahan’s seminal paper[13], and
has already successfully been applied in [5]. Let us define for λ > 0, x ∈
Z, a ∈ R

V (λ)
n (x, a; η) = log Px

(

e−λ|Hn(ω,η)−a|
)

= V (λ)(0, a; τo,x ◦ η) ,

with τk,x the translation operator on the environment defined by :

τk,x ◦ η(i, y) = η(k + i, x + y) ,

and Px the law of simple random walk starting from x.

Step 1 The functions v
(λ)
n (a) = Q

(

V (λ)(0, a; η)
)

satisfy the inequality

v
(λ)
n+m(a + b) ≥ v(λ)

n (a) + v(λ)
m (b) (n, m ∈ N; a, b ∈ R) . (4)

Proof. Since |Hn+m − (a + b)| ≤ |Hn − b| + |(Hn+m − Hn) − a| we have

V
(λ)
n+m(x, a + b; η) ≥ log Px

(

e−λ|Hn−b|e−λ|(Hn+m−Hn)−a|
)

= log Px
(

e−λ|Hn−b|eV
(λ)
m (0,a;τn,Sn◦η)

)

= log
∑

y

Px
(

e−λ|Hn−b| 1(Sn=y)

)

eV
(λ)
m (0,a;τn,y◦η)

= V (λ)
n (x, b; η) + log

(

∑

y

σn(y)eV
(λ)
m (0,a;τn,y◦η)

)

≥ V (λ)
n (x, b; η) +

∑

y

σn(y)V (λ)
m (0, a; τn,y ◦ η) (Jensen’s inequality) ,

with σn the probability measure on Zd:

σn(y) =
1

V
(λ)
n (x, b; η)

Px
(

e−λ|Hn−b| 1(Sn=y)

)

(y ∈ Zd) .
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Observe that the random variables σn(y) are measurable with respect to the
sigma field Gn = σ(η(i, x) : i ≤ n, x ∈ Zd), whereas the random variables

V
(λ)
m (0, a; τn,y ◦ η) are independent from Gn. Hence, by stationarity,

v
(λ)
n+m(a + b) = Q

(

V
(λ)
n+m(0, a + b; η)

)

≥ v(λ)
n (b) +

∑

y

Q(σn(y))Q
(

V (λ)
m (0, a; τn,y ◦ η)

)

= v(λ)
n (b) +

∑

y

Q(σn(y))v(λ)
m (a)

= v(λ)
n (b) + v(λ)

m (a)Q

(

∑

y

σn(y)

)

= v(λ)
n (b) + v(λ)

m (a) .

Step 2 There exists a function I(λ) : R → R+ convex, non negative, Lipschitz
with constant λ, such that

− lim
n→∞

1

n
v(λ)
n (an) = I(λ)(ξ) (if

an

n
→ ξ ∈ R)) . (5)

Proof. From |Hn − a| ≤ |Hn − b| + |a − b| we infer that

V (λ)
n (0, a; η) ≥ V (λ)

n (0, b; η) − λ|a − b| .

Therefore the functions v
(λ)
n are all Lipschitz continuous with the same con-

stant λ and we combine this fact with standard subadditivity arguments
(see e.g. Varadhan [13] or Alexander [1]). For sake of completeness, we give
a detailed proof in the Appendix Lemma 4.

Step 3 Q almost surely, for any ξ ∈ R, if an

n → ξ, then

lim
n→∞

− 1

n
log P

(

e−λ|Hn−an|
)

= I(λ)(ξ) . (6)

Proof. Since the functions are Lipschitz, it is enough to prove that for any
fixed ξ ∈ Q, (6) holds a.s. This is where we use the restrictive assump-
tions made on the distribution of the environment. If the distribution of
η is with bounded support, or Gaussian, or more generally satisfies a log-
arithmic Sobolev inequality with constant c > 0, then it has the Gaussian
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concentration of measure property (see [2]): for any 1-Lipschitz function F

of independent random variables distributed as η,

P (|F − P (F )| ≥ r) ≤ 2e−r2/c (r > 0).

It is easy to prove, as in Proposition 1.4 of [4], that the function

(η(k, x), k ≤ n, |x| ≤ n) → log P
(

e−λ|Hn(ω,η)−a|
)

is Lipschitz, with respect to the Euclidean norm, with Lipschitz constant at
most λ

√
n. Therefore, the Gaussian concentration of measure yields

Q
(
∣

∣

∣
V (λ)

n (0, a; η) − v(λ)
n (a)

∣

∣

∣
≥ u

)

≤ 2e−
λ2u2

cn .

We conclude by a Borel Cantelli argument combined with (5)

Observe that for fixed ξ ∈ R, the function λ → I(λ)(ξ) is increasing ; we
shall consider the limit:

I(ξ) = lim
λ↑+∞

↑ I(λ)(ξ)

which is by construction non negative, convex and lower semi continuous.

Step 4 The function I satisfy (2) and (3).

Proof. Given, ξ ∈ R and λ > 0, δ > 0, we have

P

(
∣

∣

∣

∣

Hn

n
(ω, η) − ξ

∣

∣

∣

∣

≤ δ

)

= P
(

e−λn|Hn
n

(ω,η)−ξ| ≥ e−λnδ
)

≤ eλnδP
(

e−λ|Hn−nξ|
)

.

Therefore,

lim sup
1

n
log νn([ξ − δ, ξ + δ]) ≤ λδ − I(λ)(ξ)

lim sup
δ→0

lim sup
1

n
log νn([ξ − δ, ξ + δ]) ≤ −I(λ)(ξ)

and we obtain by letting λ → +∞,

lim sup
δ→0

lim sup
1

n
log νn([ξ − δ, ξ + δ]) ≤ −I(ξ) .
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Given ξ ∈ R such that I(ξ) < +∞, and δ > 0, we have for λ > 0,

P

(
∣

∣

∣

∣

Hn

n
− ξ

∣

∣

∣

∣

< δ

)

≥ P
(

e−λ|Hn−nξ|
)

− e−λδn .

Hence, if we choose λ > 0 large enough such that λδ > I(ξ) ≥ I(λ)(ξ), we
obtain

lim inf
n→+∞

1

n
log νn((ξ − δ, ξ + δ)) ≥ −I(λ)(ξ) ≥ −I(ξ)

and therefore

lim inf
δ→0

lim inf
n→+∞

1

n
log νn((ξ − δ, ξ + δ)) ≥ −I(ξ) .

Appendix

Exponential tightness plays the same role in Large Deviations theory as
tightness in weak convergence theory ; in particular it implies that the Large
Deviations Property holds along a subsequence with a good rate function
(see Theorem 3.7 of Feng and Kurtz [11], or Lemma 4.1.23 of Dembo and
Zeitouni [10]). Therefore, once exponential tightness is established, we only
need to identify the rate function : the Weak Large Deviations Property
implies the Large Deviations Property with a good rate function (see Dembo
and Zeitouni [10], Lemma 1.2.18). Our strategy of proof is then clear. First
we establish exponential tightness, by applying the following Lemma to the
probability νn and the Lyapunov function x → |x|, then we prove a Weak
Large Deviations Property by checking that the limits (2) and (3) hold.

Lemma 3. Let (µn)n∈N be a sequence of probability measures on a Polish
space X. Assume that there exists a (Lyapunov) function F : X → R+ such
that the level sets {F ≤ C}C>0 are compacts, and

lim sup
n→+∞

1

n
log

(
∫

enF (x)dµn(x)

)

< +∞ .

The (µn)n∈N is exponentially tight, i.e. for each A > 0, there exists a com-
pact KA such that:

lim sup
n→+∞

log µn(KC
A ) ≤ −A .
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Proof. Let M = lim supn→+∞
1
n log

(∫

enF (x)dµn(x)
)

. There exists n0 such
that for n ≥ n0,

1

n
log

(
∫

enF (x)dµn(x)

)

≤ 2M .

Thanks to Markov inequality, for C > 0 and n ≥ n0,

µn(F > C) = µn(enF > enC) ≤ e−nC

∫

enfdµn ≤ e−n(C−2M) .

Hence, if C > 2M+A, then for the compact set KA = {F ≤ C}, and n ≥ n0,

1

n
log µn(KC

A ) ≤ −(C − 2M) < −A .

In Step 2 of the proof of the main theorem, we apply the following Lemma

to the family of functions un = −v
(λ)
n .

Lemma 4. Assume that the non negative functions un : R → R+ are Lips-
chitz with the same constant C > 0, that is

∀n, x, y, |un(x) − un(y)| ≤ C|x − y| .

Assume furthermore the subadditivity:

∀x, y, n, m, un+m(x + y) ≤ un(x) + um(y) .

Then there exists a non negative function I : R → R+, Lipschitz with con-
stant C, that satisfies:

(i) if an

n → x, then 1
nun(an) → I(x) .

(ii) I is convex.

Proof. For fixed x ∈ R, the sequence zn = un(nx) is subadditive and non
negative:

zn+m ≤ zn + zm .

Therefore, by the standard subadditive theorem for sequences of real num-
bers, we can consider the limit

I(x) = inf
n≥1

1

n
zn = lim

n→+∞

1

n
zn = lim

n→+∞

1

n
un(nx) .
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If we take limits in the inequality

∣

∣

∣

∣

1

n
un(nx) − 1

n
un(ny)

∣

∣

∣

∣

≤ C|x − y|

we obtain |I(x) − I(y)| ≤ C|x − y|.
(i) Assume an

n → x, then

∣

∣

∣

∣

1

n
un(nx) − 1

n
un(an)

∣

∣

∣

∣

≤ C
∣

∣

∣
x − an

n

∣

∣

∣
→ 0.

Hence, 1
nun(an) → I(x).

(ii) We have, ⌊y⌋ denoting the integer part of the real number y, for any x, y

and 0 < t < 1,

u⌊tn⌋+⌊(1−t)n⌋(ntx + n(1 − t)y) ≤ u⌊tn⌋(ntx) + u⌊(1−t)n⌋(n(1 − t)y) .

Since 1
n(⌊tn⌋ + ⌊(1 − t)n⌋) → 1, we have by (i)

1

n
u⌊tn⌋+⌊(1−t)n⌋(ntx + n(1 − t)y) → I(tx + (1 − t)y) .

Furthermore, since 1
n⌊tn⌋ → t, we have by (i),

1

n
u⌊tn⌋(ntx) → tI(x)

and similarly,
1

n
u⌊(1−t)n⌋(n(1 − t)y) → (1 − t)I(y)

Combining these limits with the preceding inequality yields,

I(tx + (1 − t)y) ≤ tI(x) + (1 − t)I(y)

that is I is convex.
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2000, With a preface by Dominique Bakry and Michel Ledoux.
MR1845806

[3] Erwin Bolthausen, A note on the diffusion of directed polymers in a
random environment., Commun. Math. Phys. 123 (1989), no. 4, 529–
534.

[4] Philippe Carmona and Yueyun Hu, On the partition function of a di-
rected polymer in a Gaussian random environment, Probab. Theory
Related Fields 124 (2002), no. 3, 431–457. MR1939654

[5] , Fluctuation exponents and large deviations for directed poly-
mers in a random environment., Stochastic Processes Appl. 112 (2004),
no. 2, 285–308.

[6] , Strong disorder implies strong localization for directed polymers
in a random environment., ALEA 2 (2006), 217–229.

[7] F. Comets and N. Yoshida, Directed polymers in random environment
are diffusive at weak disorder., Annals of Probability 34 (2006), no. 5,
1746–1770.

[8] Francis Comets, Serguei Popov, and Marina Vachkovskaia, The number
of open paths in an oriented ρ-percolation model, J. Stat. Phys. 131

(2008), no. 2, 357–379. MR2386584

[9] Francis Comets and Vincent Vargas, Majorizing multiplicative cascades
for directed polymers in random media, ALEA Lat. Am. J. Probab.
Math. Stat. 2 (2006), 267–277 (electronic). MR2249671

[10] Amir Dembo and Ofer Zeitouni, Large deviations techniques and appli-
cations, second ed., Applications of Mathematics (New York), vol. 38,
Springer-Verlag, New York, 1998. MR1619036

11



[11] Jin Feng and Thomas G. Kurtz, Large deviations for stochastic pro-
cesses, Mathematical Surveys and Monographs, vol. 131, American
Mathematical Society, Providence, RI, 2006. MR2260560

[12] Harry Kesten and Vladas Sidoravivius, A problem in last-passage per-
colation, preprint, 2007.

[13] S. R. S. Varadhan, Large deviations for random walks in a random
environment, Comm. Pure Appl. Math. 56 (2003), no. 8, 1222–1245,
Dedicated to the memory of Jürgen K. Moser. MR1989232

12


