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The sequence of random probability measures ν n that gives a path of length n, 1 n times the sum of the random weights collected along the paths, is shown to satisfy a large deviations principle with good rate function the Legendre transform of the free energy of the associated directed polymer in a random environment.

Consequences on the asymptotics of the typical number of paths whose collected weight is above a fixed proportion are then drawn.

Introduction

Last passage percolation

To each site (k, x) of N × Z d is assigned a random weight η(k, x). The (η(k, x)) k≥1,x∈Z d are taken IID under the probability measure Q. The set of oriented paths of length n starting from the origin is

Ω n = ω = (ω 0 , . . . , ω n ) : ω i ∈ Z d , ω 0 = 0, |ω i -ω i-1 | = 1 .
The weight (energy, reward) of a path is the sum of weights of visited sites:

H n = H n (ω, η) = n k=1 η(k, ω k ) (n ≥ 1, ω ∈ Ω n ).
Observe that when η(k, x) are Bernoulli(p) distributed [START_REF] Alexander | Approximation of subadditive functions and convergence rates in limiting-shape results[END_REF] , the quantity Hn n (ω, η) is the proportion of open sites visited by ω, and it is natural to consider for p < ρ < 1, N n (ρ) = number of paths of length n such that H n (ω, η) ≥ nρ.

Q(η(k, x) = 1) = 1 -Q(η(k, x) = 0) = p ∈ (0,
The problem of ρ-percolation, as we learnt it from Comets, Popov and Vachkovskaia [START_REF] Comets | The number of open paths in an oriented ρ-percolation model[END_REF] and Kesten and Sidoravicius [START_REF] Kesten | A problem in last-passage percolation[END_REF], is to study the behaviour of N n (ρ) for large n.

Directed polymer in a random environment

We are going to consider fairly general environment distributions, by requiring first that they have exponential moments of any order:

λ(β) = log Q e βη(k,x) < +∞ (β ∈ R) ,
and second that they satisfy a logarithmic Sobolev inequality (see e.g. [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]): in particular we can apply our result to bounded support and Gaussian environments. The polymer measure is the random probability measure defined on the set of oriented paths of length n by:

µ n (ω) = (2d) -n e βHn(ω,η) Z n (β) (ω ∈ Ω n ), ,
with Z n (β) the partition function

Z n (β) = Z n (β, η) = (2d) -n
ω∈Ωn e βHn(ω,η) = P e βHn(ω,η) ,

where P is the law of simple random walk on Z d starting from the origin.

Bolthausen [START_REF] Bolthausen | A note on the diffusion of directed polymers in a random environment[END_REF] proved the existence of a deterministic limiting free energy

p(β) = lim n→+∞ 1 n Q(log Z n (β)) = Q a.s. lim n→+∞ 1 n log Z n (β) .
Thanks to Jensen's inequality, we have the upper bound p(β) ≤ λ(β) and it is conjectured (and partially proved, see [7,[START_REF]Strong disorder implies strong localization for directed polymers in a random environment[END_REF]) that the behaviour of a typical path under the polymer measure is diffusive iff β ∈ C η the critical region

C η = {β ∈ R : p(β) = λ(β)} .
In dimension d = 1, C η = {0} and in dimensions d ≥ 3, C η contains a neighborhood of the origin (see [START_REF] Bolthausen | A note on the diffusion of directed polymers in a random environment[END_REF][START_REF] Comets | Majorizing multiplicative cascades for directed polymers in random media[END_REF]).

The main theorem

The connection between Last passage percolation and Directed polymer in random environment is made by the family (ν n ) n∈N of random probability measures on the real line:

ν n (A) = 1 |Ω n | ω∈Ωn 1 ( Hn n (ω,η)∈A) = P H n n (ω, η) ∈ A . Indeed, N n (ρ) = ω∈Ωn 1 (Hn(ω,η)≥nρ) = (2d) n ν n ([ρ, +∞)) .
The main result of the paper is Theorem 1. Q almost surely, the family (ν n ) n∈N satisfies a large deviations principle with good rate function I = p * the Legendre transform of the free energy of the directed polymer.

Let m = Q(η(k, x)) be the average weight of a path m = Q Hn n (ω, η) . It is natural to consider the quantities:

N n (ρ) = ω∈Ωn 1 (Hn(ω,η)≥nρ) if ρ ≥ m , ω∈Ωn 1 (Hn(ω,η)≤nρ) if ρ < m .
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A simple exchange of limits β → ±∞, and n → +∞, yields the following

ρ ± = Q a.s. lim n→+∞ max ω∈Ωn ± H n n (ω, η) = lim β→+∞ p(±β) β ∈ [0, +∞] .
Repeating the proof of Theorem 1.1 of [START_REF] Comets | The number of open paths in an oriented ρ-percolation model[END_REF] gives

Corollary 2. For -ρ -< ρ < ρ + , we have Q almost surely, lim n→+∞ (N n (ρ)) 1 n = (2d)e -I(ρ) .
We can then translate our knowledge of the critical region C η , into the following remark. Let

V η = {ρ ∈ R : I(ρ) = λ * (ρ)} . In dimension d = 1, V η = {m} and in dimensions d ≥ 3, V η contains a neighbourhood of m.
This means that in dimensions d ≥ 3, the typical large deviation of Hn n (ω, η) close to its mean is the same as the large deviation of 1 n (η 1 + • • • + η n ) close to its mean, with η i IID. There is no influence of the path ω : this gives another justification to the name weak-disorder region given to the critical set C η .

Proof of the main theorem

Observe that for any β ∈ R we have:

e βnx dν n (x) = P e βHn(ω,η) = Z n (β) Q a.s. . (1) 
Consequently, since e u + e -u ≥ e |u| , we obtain for any β > 0, lim sup

n→+∞ 1 n log e βn|x| dν n (x) ≤ p(β) + p(-β) < +∞ ,
and the family (ν n ) n≥0 is exponentially tight (see the Appendix, Lemma 3). We only need to show now that for a lower semicontinuous function I, and

for x ∈ R lim δ→0 lim inf n→∞ 1 n log ν n ((x -δ, x + δ)) = -I(x) , (2) 
lim δ→0 lim sup n→∞ 1 n log ν n ([x -δ, x + δ]) = -I(x). (3) 
From these, we shall infer that (ν n ) n∈N follows a large deviations principle with good rate function I. Eventually, equation (1) and

lim n→∞ 1 n log Z n (β) = p(β)
will imply, by Varadhan's lemma that I and p are Legendre conjugate:

I(x) = p * (x) = sup β∈R (xβ -p(β)) .
The strategy of proof finds its origin in Varadahan's seminal paper [START_REF] Varadhan | Large deviations for random walks in a random environment[END_REF], and has already successfully been applied in [START_REF]Fluctuation exponents and large deviations for directed polymers in a random environment[END_REF]. Let us define for λ > 0, x ∈ Z, a ∈ R V (λ) n (x, a; = log P x e -λ|Hn(ω,η)-a| = V (0, a; τ o,x • η) , with τ k,x the translation operator on the environment defined by :

τ k,x • η(i, y) = η(k + i, x + y) ,
and P x the law of simple random walk starting from x.

Step 1 The functions v

(λ) n (a) = Q V (λ) (0, a; η) satisfy the inequality v (λ) n+m (a + b) ≥ v (λ) n (a) + v (λ) m (b) (n, m ∈ N; a, b ∈ R) . ( 4 
)
Proof. Since |H n+m -(a + b)| ≤ |H n -b| + |(H n+m -H n ) -a| we have V (λ)
n+m (x, a + b; η) ≥ log P x e -λ|Hn-b| e -λ|(H n+m -Hn)-a|

= log P x e -λ|Hn-b| e V (λ) m (0,a;τ n,Sn •η) = log y P x e -λ|Hn-b| 1 (Sn=y) e V (λ) m (0,a;τn,y•η) = V (λ) n (x, b; η) + log y σ n (y)e V (λ) m (0,a;τn,y•η) ≥ V (λ) n (x, b; η) + y σ n (y)V (λ) m (0, a; τ n,y • η) (Jensen's inequality) ,
with σ n the probability measure on Z d :

σ n (y) = 1 V (λ) n (x, b; η) P x e -λ|Hn-b| 1 (Sn=y) (y ∈ Z d ) .
Observe that the random variables σ n (y) are measurable with respect to the sigma field

G n = σ(η(i, x) : i ≤ n, x ∈ Z d ), whereas the random variables V (λ)
m (0, a; τ n,y • η) are independent from G n . Hence, by stationarity,

v (λ) n+m (a + b) = Q V (λ) n+m (0, a + b; η) ≥ v (λ) n (b) + y Q(σ n (y))Q V (λ) m (0, a; τ n,y • η) = v (λ) n (b) + y Q(σ n (y))v (λ) m (a) = v (λ) n (b) + v (λ) m (a)Q y σ n (y) = v (λ) n (b) + v (λ) m (a) .
Step 2 There exists a function I (λ) : R → R + convex, non negative, Lipschitz with constant λ, such that

-lim n→∞ 1 n v (λ) n (a n ) = I (λ) (ξ) (if a n n → ξ ∈ R)) . (5) 
Proof. From |H n -a| ≤ |H n -b| + |a -b| we infer that

V (λ) n (0, a; η) ≥ V (λ) n (0, b; η) -λ|a -b| .
Therefore the functions v

(λ)
n are all Lipschitz continuous with the same constant λ and we combine this fact with standard subadditivity arguments (see e.g. Varadhan [START_REF] Varadhan | Large deviations for random walks in a random environment[END_REF] or Alexander [START_REF] Alexander | Approximation of subadditive functions and convergence rates in limiting-shape results[END_REF]). For sake of completeness, we give a detailed proof in the Appendix Lemma 4.

Step 3 Q almost surely, for any ξ ∈ R, if an n → ξ, then lim n→∞ -1 n log P e -λ|Hn-an| = I (λ) (ξ) .

Proof. Since the functions are Lipschitz, it is enough to prove that for any fixed ξ ∈ Q, (6) holds a.s. This is where we use the restrictive assumptions made on the distribution of the environment. If the distribution of η is with bounded support, or Gaussian, or more generally satisfies a logarithmic Sobolev inequality with constant c > 0, then it has the Gaussian concentration of measure property (see [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]): for any 1-Lipschitz function F of independent random variables distributed as η,

P (|F -P (F )| ≥ r) ≤ 2e -r 2 /c (r > 0).
It is easy to prove, as in Proposition 1.4 of [START_REF] Carmona | On the partition function of a directed polymer in a Gaussian random environment[END_REF], that the function

(η(k, x), k ≤ n, |x| ≤ n) → log P e -λ|Hn(ω,η)-a|
is Lipschitz, with respect to the Euclidean norm, with Lipschitz constant at most λ √ n. Therefore, the Gaussian concentration of measure yields

Q V (λ) n (0, a; η) -v (λ) n (a) ≥ u ≤ 2e -λ 2 u 2 cn .
We conclude a Borel Cantelli argument combined with [START_REF]Fluctuation exponents and large deviations for directed polymers in a random environment[END_REF] Observe that for fixed ξ ∈ R, the function λ → I (λ) (ξ) is increasing ; we shall consider the limit:

I(ξ) = lim λ↑+∞ ↑ I (λ) (ξ)
which is by construction non negative, convex and lower semi continuous.

Step 4 The function I satisfy (2) and (3).

Proof. Given, ξ ∈ R and λ > 0, δ > 0, we have 

  η)ξ ≤ δ = P e -λn| Hn n (ω,η)-ξ| ≥ e -λnδ ≤ e λnδ P e -λ|Hn-nξ| . logν n ([ξδ, ξ + δ]) ≤ λδ -I (λ) log ν n ([ξδ, ξ + δ]) ≤ -I (λ) (ξ)and we obtain by letting λ → +∞, log ν n ([ξδ, ξ + δ]) ≤ -I(ξ) .
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Given ξ ∈ R such that I(ξ) < +∞, and δ > 0, we have for λ > 0,

P

H n n ξ < δ ≥ P e -λ|Hn-nξ|e -λδn .

Hence, if we choose λ > 0 large enough such that λδ > I(ξ) ≥ I (λ) (ξ), we obtain lim inf

and therefore lim inf

Appendix

Exponential tightness plays the same role in Large Deviations theory as tightness in weak convergence theory ; in particular it implies that the Large Deviations Property holds along a subsequence with a good rate function (see Theorem 3.7 of Feng and Kurtz [START_REF] Feng | Large deviations for stochastic processes[END_REF], or Lemma 4.1.23 of Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF]). Therefore, once exponential tightness is established, we only need to identify the rate function : the Weak Large Deviations Property implies the Large Deviations Property with a good rate function (see Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF], Lemma 1.2.18). Our strategy of proof is then clear. First we establish exponential tightness, by applying the following Lemma to the probability ν n and the Lyapunov function x → |x|, then we prove a Weak Large Deviations Property by checking that the limits (2) and (3) hold.

Lemma 3. Let (µ n ) n∈N be a sequence of probability measures on a Polish space X. Assume that there exists a (Lyapunov) function F : X → R + such that the level sets {F ≤ C} C>0 are compacts, and

The (µ n ) n∈N is exponentially tight, i.e. for each A > 0, there exists a compact K A such that:

Proof. Let M = lim sup n→+∞ 1 n log e nF (x) dµ n (x) . There exists n 0 such that for n ≥ n 0 , 1 n log e nF (x) dµ n (x) ≤ 2M .

Thanks to Markov inequality, for C > 0 and n ≥ n 0 ,

Hence, if C > 2M +A, then for the compact set K A = {F ≤ C}, and n ≥ n 0 ,

In Step 2 of the proof of the main theorem, we apply the following Lemma to the family of functions

Lemma 4. Assume that the non negative functions u n : R → R + are Lipschitz with the same constant C > 0, that is ∀n, x, y, |u n (x)u n (y)| ≤ C|x -y| .

Assume furthermore the subadditivity:

∀x, y, n, m, u n+m (x + y) ≤ u n (x) + u m (y) .

Then there exists a non negative function I : R → R + , Lipschitz with constant C, that satisfies:

(ii) I is convex.

Proof. For fixed x ∈ R, the sequence z n = u n (nx) is subadditive and non negative:

Therefore, by the standard subadditive theorem for sequences of real numbers, we can consider the limit

If we take limits in the inequality

Hence, 1 n u n (a n ) → I(x). (ii) We have, ⌊y⌋ denoting the integer part of the real number y, for any x, y and 0 < t < 1, that is I is convex.
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