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Abstract

We consider branching random walks with binary search trees as underlying trees. We
show that the occupation measure of the branching random walk, up to some scaling factors,
converges weakly to a deterministic measure. The limit depends on the stable law whose
domain of attraction contains the law of the increments. The existence of such stable law is
our fundamental hypothesis. As a consequence, using a one-to-one correspondence between
binary trees and plane trees, we give a description of the asymptotics of the profile of recursive
trees. The main result is also applied to the study of the size of the fragments of some
homogeneous fragmentations.

AMS subject classifications. 60F05, 60G50, 68W40, 60J80, 05C05.
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Abbreviated title. Branching random walks on binary search trees.

1 Introduction

The purpose of this paper is to study the asymptotics of the occupation measure of branching
random walks (BRWs) when the underlying tree is a binary search tree. This work is motivated
by the large number of results on the occupation measure of BRWs on conditioned Galton-
Watson trees which limit is ISE (Integrated Super-Brownian Excursion), and also by some
applications in term of fragmentation processes and in term of the profile of recursive trees
discussed later.
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Informally, a branching walk is a random object owning two levels of randomness. First
an underlying tree is picked up under a certain law and then, on each of its edges, a random
variable is attached and is used as the increment of a random walk. Hence, a BRW is a family
of dependent random walks indexed by the nodes of the underlying tree (it is formally defined
below). Many results on BRWs can be found in the literature.

During the last thirty years, Biggins obtained many different results when the underlying
tree is a supercritical Galton Watson tree. For instance, in [3], he studied the convergence of a
martingale associated to the BRW.

More recently, Aldous [1] introduced a model of BRW on trees of size n: the underlying tree
T is the family tree of a Galton Watson process conditioned to have n nodes (with offspring
distribution having mean 1 and variance σ2) and the increments are independent, centered, with
variance θ2 and having moments of order 4+ǫ. With each node u of T , he associates the variable
Yu which is the sum of the increments associated with the ancestors of u. Aldous stated that
the normalized occupation measure converges to a random measure called ISE, that is

1

n + 1

∑

u∈T
δσ1/2Yu

θn1/4

D−−−→
n→∞

µISE ,

where δ stands for the Dirac measure, in the space of probability measures. The measure µISE

owns a representation in term of Gaussian process and appears as the natural limit of many
different random phenomena, see e.g. [1, 7, 12, 13, 21] and references therein. In particular,
Chassaing and Schaeffer [7] have shown that it is closely related to the limit of the profile of
uniform quadrangulations.
By contrast with µISE , which is a random measure, we will see that things are very different on
a binary search tree, as the limiting occupation measure is deterministic and equal to the stable
distribution corresponding to the spatial displacements (exept in the non-centered Gaussian case
where variance is different).

The paper is organized as follows. In the continuation of Section 1 we define our model
of branching random walk. Then we give our main results on the convergence of the occu-
pation measure in Section 2, according to whether the increments are identically distributed
or not. The proof of Theorem 1 is relagated to Section 4. Section 3 provides two applications
of Corollary 1 in term of homogeneous fragmentations and in term of the profile of recursive trees.

Binary search trees (BSTs) and finite branching random walks

Let us introduce our model of branching random walk. For this, we begin with a formal descrip-
tion of trees. Let

U := {∅} ∪
⋃

n∈{1,2,··· }
N

n
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be the set of the finite words on the alphabet N := {0, 1, 2, · · · } (with ∅ as the empty word).
We write uv the word formed by the concatenation of u and v. A plane tree τ is a finite subset
of U such that







∅ ∈ T ,
∀(u, v) ∈ U

2, if uv ∈ T then u ∈ T ,
∀u ∈ U ,∀d ∈ N

∗ := {1, 2, · · · }, if ud ∈ T then u(d − 1) ∈ T .
(1.1)

The elements of T are called nodes, and ∅ is called the root. The number of letters in u, denoted
by |u|, is called the depth of u (with |∅| = 0). We say that v is an ancestor of u when v is a
prefix of u (∃w ∈ U; vw = u), we denote it by v ≪ u. We write P the set of plane trees. Remark
that the above definition of a plane tree fits with the usual one: a plane tree is a finite rooted
unlabeled loop free connected graph in which the set of children of every vertex is endowed with
a total order.

In the present paper we are concerned with complete binary trees. Let U
b := {∅} ∪

⋃

n≥1{0, 1}n , be the subset of U of the finite words on the alphabet {0, 1}. A complete bi-
nary tree T is a plane tree such that every node has zero or two children (in other words T is a
finite subset of U

b satisfying (1.1) and such that u1 ∈ T ⇔ u0 ∈ T ). We write B for the set of
complete binary trees. A tree T can be described by giving the set ∂T of its leaves (the nodes
with no descendants also called external nodes). The nodes of T \∂T are called internal nodes.

As said above a branching random walk is a random object having two levels of randomness:
the underlying tree and the increments. We first introduce our model of random underlying
tree, the binary search tree (BST).

The underlying tree model

Random BSTs are fundamental data structures associated with quicksort, one of the most used
sorting algorithms. We present a recursive construction of BSTs, or we should say labeled BSTs:
(Ui)i≥1 is a sequence of independent random variables uniformly distributed on [0, 1]. With the
n first terms (Ui)i=1···n we associate a labeled BST of size n, that is a complete binary tree in
which each of the n internal nodes contains one of the values (Ui)i=1···n: the root contains U1,
the left subtree is the labeled BST associated with the sequence of the Ui’s smaller than U1 and
the right subtree is the labeled BST associated with the sequence of the Ui’s larger than U1.
The labeled BST associated with an empty list is reduced to a leaf. See Figure 1 for an example.
This construction induces a law on Bn := {T ∈ B, #T = 2n + 1}, the trees where the labels are
deleted (a complete binary tree with n internal nodes always has n + 1 external nodes).

This BST model can also be obtained by a sequential construction without the Ui’s: T0 is
reduced to a leaf. Assume Tn is a BST with n + 1 leaves, then we construct Tn+1 by choosing
equally likely one of the n + 1 leaves of Tn and by replacing it by an internal node. The
replacement creates two new leaves.
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Figure 1 : First, second and last steps of the construction of the labeled BST
associated with (0.4, 0.2, 0.5, 0.7, 0.1, 0.6). The associated BST is obtained by deleting the labels
on the last picture.

Many properties of BSTs, like the height or the profile, have been studied in the literature:
we refer to Mahmoud [18], Chauvin & al. [8], Drmota [10] and Devroye and Hwang [9] and
references therein for an overview of the subject.

The increments model

We endow the elements of U
b with random variables, that is we define (cu)u∈Ub a family of in-

dependent random variables on R
2; cu := (Xu0, Xu1) may be seen as a variable associated with

the two edges from u to its children (Xu0 can be seen to be associated with the edge (u, u0) and
Xu1 with (u, u1)); X∅ := 0. The Xu will be taken as the increments of our branching random
walk. We assume the two families (Ui) and (cu) to be independent. Moreover, we first assume
the marginal distributions of all the cu (that is the laws of Xu0 and Xu1) to be equal. Notice
that the variables Xu0 and Xu1 are not necessarily independent.

Following the above description we construct Tn, the BST associated with (Ui)i=1···n, and
with each u ∈ Tn we associate a trajectory of the killed random walk Yu = (Yu(j))j∈{0,··· ,|u|}
defined by

Yu(0) = 0, Yu(j) =
∑

v ≪ u;
|v| ≤ j

Xv ∀j ∈ {1, · · · , |u|}. (1.2)

Each Yu(j) is the sum of the j’s increments associated with the j’s first edges of the path from
the root to u; with the above assumptions on the cu’s, Yu(j) is a sum of i.i.d. random variables.
The finite branching random walk with underlying tree T is the family of all the trajectories Yu,
that is (Yu, u ∈ T ). See Figure 2 for an example.

We are interested in the occupation measure
∑

δYu(|u|) of these random walks, suitably
rescaled.
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Figure 2 : BST with the associated (cu), branching random walk and cumulative
function associated with the empirical measure.

Knowing the height of the node u, the variable Yu(|u|) is a sum of i.i.d. random variables,
and thus the asymptotics behavior of Yu(|u|), when |u| is large, depends on the stable law,
whenever it exists, that contains the distribution of the marginals of the cu’s in its domain of
attraction.

2 Convergence of the occupation measure

2.1 The identically distributed case

Let ν be a distribution on R with finite mean mν ∈ R
+ ∪{+∞} and variance σ2

ν ∈ R
+ ∪{+∞}.

We assume that ν belongs to the domain of attraction of a non-degenerate stable law µ with
characteristic exponent α ∈ (0, 2] \ {1} (for sake of simplicity we restrict our study to the case
α 6= 1), which means that there exist two deterministic sequences (an) and (bn) such that

(
∑n

i=1 Xi) − bn

an

D−−−→
n→∞

µ, (2.3)

for any family (Xi) of i.i.d random variables with law ν. The characteristic function of any
stable law µ is of the form

φ(t) = exp

{

iγt − c|t|α
[

1 + iβ
t

|t| tan
(π

2
α
)

]}

,

where α ∈ (0, 2] \ {1}, γ ∈ R, |β| ≤ 1 and c ≥ 0. Moreover
– The sequence (an) is regularly varying of index 1/α, that is

an = Ln × n1/α,
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where (Ln) is a nonnegative sequence satisfying L⌊nt⌋/Ln −−−→
n→∞

1, for every t > 0 ((Ln) is slowly

varying).
– The sequence (bn) will be taken as bn = nm′

ν , where m′
ν = mν if α > 1 and m′

ν = 0 if α < 1
(this is possible, see the proof of Theorem 9.34 of [5]).
When bn is fixed, there exist several choices for ((an), µ) in order to get (2.3) but, given ν, all
non-degenerate µ have the same characteristic exponent α.
• If α = 2, ν is in the domain of attraction of the normal distribution. For bn = nmν , µ can be
shown to be centered (using the comparison between ((

∑n
i=1 Xi)−bn)/an +((

∑n
i=1 X̃i)−bn)/an

and ((
∑2n

i=1 Xi) − b2n)/a2n).
– If σ2

ν < +∞ we take an =
√

n (that is Ln ≡ 1) and thus µ is N (0, σ2
ν), according to the

central limit theorem.
– If σ2

ν = +∞ then an = Ln
√

n for some Ln → +∞ (as one can check in the proof of [14]
Theorem 5.17).
• If α ∈ (0, 2) \ {1}, the choice of (an) determines µ.

From now on, we assume (an), (bn), and µ are fixed.

Let Tn be a BST. Taking u uniformly at random in Tn or Tn\∂Tn, the value |u| is “close” to
2 log n (see (4.9) and [6]). Thus, if we assume that both marginals of the cu’s equal distribution
ν, this incites us to set

αn := a2 log n = L2 log n × (2 log n)1/α and βn := b2 log n = 2m′
ν log n

as normalizing constants in the internal and global occupation measures of the branching random
walks defined by

µn =
1

n

∑

u∈Tn\∂Tn

δYu(|u|)−βn
αn

and µn =
1

2n + 1

∑

u∈Tn

δYu(|u|)−βn
αn

.

Theorem 1 If the marginals of the cu’s belong to the domain of attraction of µ, then

if α ∈ (0, 2) \ {1} or if α = 2 and σ2
ν = +∞ we have

µn
proba−−−→
n→∞

µ and µn
proba−−−→
n→∞

µ,

and if α = 2 and σ2
ν < +∞ we have

µn
proba−−−→
n→∞

N (0, σ2
ν + m2

ν) and µn
proba−−−→
n→∞

N (0, σ2
ν + m2

ν),

in the set of probability measures on R endowed with the weak topology.

In the following, we denote by µ∞,ν the limit measure. Notice that µ∞,ν is always deterministic
and that its characteristic exponent is the same as that of µ. The proof of Theorem 1 is relegated
to section 4.
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2.2 The non-identically distributed case

We are now going to show that Theorem 1 holds true even if the marginals of the cu’s are not
the same. Let Λ⋆ be a distribution on R

2 and ν0 and ν1 its two marginals. We assume that ν0

and ν1 are different. We denote by Λ the distribution on R
2 defined by

Λ :=
1

2
(Λ⋆ + Λ′), (2.4)

where Λ′ is the image of Λ⋆ by (x, y) 7→ (y, x). Let Y ⋆ and Y be the two branching random
walks with underlying tree Tn and with increments c⋆

u and cu having distribution Λ⋆ and Λ. The
construction of Y can be seen as follows: for any u in Tn, we toss a fair coin, if it is tail then cu

is distributed as Λ⋆ and if it is head then cu is distributed as Λ′.

Proposition 1 Let µ⋆
n, µ⋆

n, µn and µn be the internal and global occupation measures of Y ⋆

and Y . We have
µn

D
= µ⋆

n and µn
D
= µ⋆

n. (2.5)

Proposition 1 is an analogue of Proposition 7 in Marckert [21]. We give here the main argu-
ments of his proof: any binary tree Tn−1 marked with the cu’s corresponds, via a composition
of transpositions, to a unique marked tree obtained with the c⋆

u’s (the transposition around a
node u is the map that exchanges the two subtrees rooted in u). Two marked trees are said to
be in the same equivalence class if and only if there exists a composition of transpositions that
associates one tree with the other one. Each class contains 2n−1 trees and one exactly is marked
with the c⋆

u’s. Moreover each binary tree Tn−1 can be marked with the cu’s in 2n−1 ways. Since
the underlying trees of a same class are equally likely BSTs and since the occupation measure
is invariant by transposition, the result (2.5) holds true.

As a consequence of Proposition 1, the two rescaled occupation measures have the same
limit (if any) and thus we have the following result on the convergence of the occupation mea-
sure of the branching random walk Y ⋆.

Corollary 1 If the marginal distributions of Λ, defined in (2.4), belong to the domain of at-
traction of µ, then

1

n

∑

u∈Tn\∂Tn

δY ⋆
u (|u|)−βn

αn

proba−−−→
n→∞

µ∞, 1
2
ν0+

1
2
ν1

and
1

2n + 1

∑

u∈Tn

δY ⋆
u (|u|)−βn

αn

proba−−−→
n→∞

µ∞, 1
2
ν0+

1
2
ν1

.

in the set of probability measures endowed with the weak topology, where αn and βn are given in
section 2.

Remark 1 Using Corollary 1 for the case when c⋆
u = (−1, +1) a.s., we get

1

n

∑

u∈Tn\∂Tn

δ Y ⋆
u (|u|)√
2 log n

proba−−−−−→
n→+∞

N (0, 1). (2.6)

7



Let un be a random node uniformly chosen in Tn\∂Tn, as a consequence of (2.6) we have

Y ⋆
un

(|un|)√
2 log n

D−−−−−→
n→+∞

N (0, 1).

This particular case of cu’s have been recently studied by Kuba and Panholzer [16]; they show,
among other things, the above convergence. They also prove that the rate of convergence is of
order O(1/

√
log n).

Sections 3.1 and 3.2 handle the study of the behavior of a random process named homoge-
neous fragmentation and of the profile of another type of random trees named the recursive trees.
The results we obtain on both processes are direct consequences of Theorem 1 and Corollary 1.

3 Applications

3.1 Empirical measure of homogeneous fragmentations

Here we are interested in homogeneous fragmentations with no erosion, no loss of mass and where
a fragment is always divided, at random, into two parts. The homogeneous fragmentations (and
more general fragmentations) have been studied a lot these last years, particularly by Bertoin
(see e.g. [2]). Following the steps in Chauvin & al. [8], we give a definition of the fragmentation
process (F(t))t≥0 of the interval (0, 1) we are interested in. This model contains not only the state
at time t but also the history of the process. Let F(0) := (0, 1) and t1 ∼ Exp(1), an exponential
random variable, associated with F(0), seen as the lifetime of the interval. At time t1, the process
F jumps, the interval F(0) splits into two parts I0 and I1 such that the size of the left fragment is
given by a random variable Z having distribution ν0 on (0, 1): F(t1) := (I0, I1) = ((0, Z), (Z, 1)).
We denote by ν1 the law of 1 − Z, the length of I1. After each jump time the fragments of F
behave independently of each other and each fragment splits after an Exp(1) distributed lifetime
into two parts. When Iu splits, we denote by Iu0 and Iu1 the left and right fragments and we call
them the children of Iu. Conditionally on Iu, the length of the left interval, denoted by |Iu0|, is
|Iu|Zu where Zu is an independent copy of Z. Thanks to the lack of memory of the exponential
distribution, when n fragments are present, each of them will split first equally likely. Of course
the behavior of the process depends on ν0 and ν1, the laws of the dependent variables Zu and
1 − Zu. We call this fragmentation an homogeneous fragmentation with law ν0

In this construction, the fragments are naturally indexed by the leaves of a binary tree that
encodes the history of the fragmentation. More formally, a continuous binary tree process
(Tt)t≥0 on B can be associated with (F(t))t≥0. We define Tt by the set of its leaves

∂Tt := {u, Iu ∈ F(t)}.

8



Let tn be the n-th jump time of the processes (Tt) and (F(t)). Thanks to [8] we have the
following results:

tn
log n

n→+∞−−−−−→ 1 a.s.

and, for any n ≥ 1, Ttn is a BST of size n.

The size of the fragments in this fragmentation process can be described as an homoge-
neous fragmentation with the formalism of Bertoin, that is giving the dislocation measure νd on
S := {(x1, x2, · · · ); s.t. x1 ≥ x2 ≥ · · · ≥ 0,

∑

xi = 1}. Here, the measure νd is defined by

∫

S
f(x)νd(dx) =

∫ 1

0
f(s ∨ (1 − s), s ∧ (1 − s), 0, . . .)ν0(ds),

for every non-negative measurable f .

We are interested in the empirical measure of the logarithm of the size of the fragments
of F defined by

ft :=
∑

u∈∂T(t)

δ− log |Iu|.

We thus have

ftn =
∑

u∈∂Ttn

δYu(|u|),

where Y is the branching random walk on the binary search tree Ttn , with increments having the
following distribution: for any u ∈ Ttn , Xu0 is distributed as − log(Zu) and Xu1 is distributed
as − log(1− Zu), where (Zu) is a family of i.i.d r.v. having law ν0. We denote by ν̂0 and ν̂1 the
two distributions of the increments.

The study of fragmentation processes is concerned with the behavior of the fragment sizes.
In [2], Bertoin gives a result on

∑ |Iu|δ− log |Iu|, the empirical measure of the logarithm of the
size of the fragments balanced by their own size. He shows, under some assumptions on the
dislocation measure of homogeneous fragmentations, that the rescaled measure converges to a
Gaussian law. Here we show, in a more general non- gaussian case, that the simple occupation
measure ftn , suitably rescaled, converges weakly to a deterministic measure (as the limiting
distribution of Bertoin). The following result is a direct consequence of Corollary 1, used for
the external occupation measure.

Theorem 2 Let (F(t)) be an homogeneous fragmentation with law ν0. If 1
2 ν̂0 + 1

2 ν̂1 belongs to
the domain of attraction of µ, then

1

n + 1

∑

Iu∈F(tn)

δ− log |Iu|−βn
αn

proba−−−−−→
n→+∞

µ∞, 1
2
ν̂0+ 1

2
ν̂1

(3.7)
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in the set of probability measure on R endowed with the weak topology, where αn and βn are
given in section 2.

3.2 Profile of recursive trees

A recursive tree process is a random sequence (Tn, n ≥ 1) of plane trees, where Tn has n
nodes, built recursively under the following dynamics: T1 is reduced to a simple node; the tree
Tn+1 is obtained from Tn by adjoining a child to one of the nodes. The choice is uniform over
the nodes and the new node is inserted as the rightmost son. Notice that T2 is deterministic
and that , for n ≥ 3, recursive trees of size n are not equally likely. Let P̃n be the law on
Pn := {T ∈ P, #T = n} induced by this construction (that is a recursive tree of size n is a
random element of Pn under P̃n). Figure 3 shows two recursive trees of size 4 with the possible
ways to construct them.

This process of plane trees has been first proposed to study the spread of epidemics (Moon,
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Figure 3 : Two possible recursive trees of size 4 with the different ways to obtain
them (the flags indicate where the nodes are inserted). Since T4 is obtained from two different
recursive trees of size 3, unlike T

′
4, we have P̃4(T4) = 1

3 and P̃4(T
′
4) = 1

6 .

1974) and many parameters on that trees have been studied: the height,the depth of nodes,the
path length,the maximal degree ... (see e.g. Smythe and Mahmoud [20]).

We are interested in Xn(k), the number of nodes in the recursive tree Tn at level k. Let
(pn(k))k be the empirical distribution function of the profile of Tn defined by

pn(k) :=
k

∑

i=1

Xn(i)

n
.

We define the rescaled cumulated profile qn by

qn(λ) := pn(⌊log n + λ
√

2 log n⌋) , ∀λ ∈ R. (3.8)

We have the following theorem.

10



Theorem 3
(qn(λ))λ∈R

proba−−−−−→
n→+∞

(P(N ≤ λ))λ∈R

for the Skorohod topology, where N is a random variable with law N (0, 1
2).

The proof of Theorem 3 is relegated to section 4.2.

Recently Fuchs, Hwang and Neininger [11] have studied the profile of recursive trees; us-
ing the contraction method and the method of moments they proved that Xn(k), normalized by
its mean, converges in distribution to a random variable which is the fixed point of an explicit
equation (their results are of a different nature from Theorem 3).

4 Proofs

4.1 Proof of Theorem 1

The proof of Theorem 1 we detail below is a consequence of the convergences of the mean and of
the variance of the empirical distribution function associated with µn (see Lemma 1 and Lemma
2). This approach is different from Janson and Marckert [13]’s one to show the convergence of
the occupation measure of a branching random walk on conditioned Galton-Watson (GW) trees
to ISE, where the fact that normalized GW trees have a limit (the Aldous continuum random
tree) is crucial. There is no similar result for BSTs in the literature.

In this section, we first prove the convergence of µn. For the convergence of µn, the proof
runs along the same lines, see Remark 2 for some details.

Lemma 1 Under the assumptions of Theorem 1, we have ∀x ∈ R

E(µn((−∞, x]) −−−→
n→∞

µ∞((−∞, x]).

Proof:
Let un be chosen equally likely among the nodes of Tn\∂Tn. We get the equalities

E(µn((−∞, x]) = E





1

n
×

∑

u∈Tn\∂Tn

δYu(|u|)−βn
αn

((−∞, x])





= E

(

1l(−∞,x](
Yun(|un|) − βn

αn
)

)

.

By (1.2), this is equal to Cn := P

(

((
∑

v≪un

Xv) − βn)/αn ≤ x

)

.

The sum contains |un| terms. In terms of quicksort the random variable |un| is the cost of a
successful search in a labeled binary search tree of size n. Louchard [17] shows that

11



|un| − 2 log(n)
√

2 log(n)

D−→ N (0, 1). (4.9)

Let Hε,n be the event {||un| − 2 log(n)| ≤ (2 log(n))
1
2
+ε}, with ε ∈]0, 1

2 [. Since P(Hε,n) goes

to 1, by (4.9), Cn and P
(

((
∑

v≪un

Xv) − βn)/αn ≤ x
∣

∣Hε,n

)

have the same limit (if any).

The sum (
∑

v≪un

Xv) − βn has the following representation
dn
∑

i=1

(Xi − m′
ν) +

|un|−dn
∑

i=1

(X̃i − m′
ν) + m′

ν(|un| − 2 log n), (4.10)

where dn = 2 log n − (2 log n)
1
2
+ε and (Xi) and (X̃i) are two independent families of i.i.d.

random variables with common law ν. Recall that m′
ν is the mean of ν if it is finite, and zero

otherwise. To end the proof of Lemma 1 we study the asymptotics of the three terms in (4.10).

• The term

dn
∑

i=1

(Xi − m′
ν)/αn converges in distribution to the stable law µ (recall that

µ = N (0, σ2
ν) when α = 2 and σ2 < +∞).

• It is known (see Theorem 16.14 of [14]) that (2.3) implies the convergence of the process




⌊ent⌋
∑

i=1

(X̃i − m′
ν) / (fnt) , t ≥ 0



 in the Skorohod space, to a stable Levy process of index α, if

fn ∼ Ln × e
1/α
n with en → +∞ and (Ln) is slowly varying. Thus





⌊cnt⌋
∑

i=1

(X̃i − m′
ν) / αn, t ≥ 0





D−−−→
n→∞

0,

where cn := 2(2 log n)
1
2
+ε. Since, if Xn → X for the Skhohorod topology then max(Xn) →

max(X) in distribution, we get

max
1≤k≤cn

k
∑

i=1

(X̃i − m′
ν) / αn

D−−−→
n→∞

0

On Hε,n, |un| − dn is smaller than cn. Hence, we have shown that
∑|un|−dn

i=1 (X̃i − m′
ν)/αn goes

to zero in probability.

12



• For the third term in (4.10) normalized by αn, when σ2
ν < +∞ we have αn =

√
2 log n and

m′
ν = mν . Thus, by (4.9)

m′
ν

|un| − 2 log n

αn

D−−−→
n→∞

N (0, m2
ν).

When α ∈ (0, 2) \ {1} or when α = 2 and σ2
ν = +∞ (recall that in this case Ln → +∞), we

have αn/
√

2 log n → +∞, and then, by (4.9)

m′
ν

|un| − 2 log n

αn

proba−−−→
n→∞

0.

Now, since the extremal terms in (4.10) are independent and the middle one vanishes in prob-

ability, the result follows by using, for example, Theorem 25.4 of [4] (that is, if Xn
D−→ X and

Yn
proba−−−→ 0 then Xn + Yn

D−→ X). ¤

In (4.10), the two terms that contribute to the limit are the first and the third one (corre-
sponding to a centered version of the law, and to a corrected term due to the mean of the
increments). When σ2

ν < +∞, these two terms have the same order. When σ2
ν = +∞ the first

one dominates.

Lemma 2 Under the assumptions of Theorem 1, we have ∀x ∈ R

V(µn((−∞, x])) −−−→
n→∞

0.

Proof: Let un and vn be two nodes uniformly and independently chosen on Tn\∂Tn. We get for
any x ∈ R and any n ∈ N

E(µn((−∞, x]))2 = E

(

1l(−∞,x]

(

Yun(|un|) − βn

αn

)

1l(−∞,x]

(

Yvn(|vn|) − βn

αn

))

= P

(

Yun(|un|) − βn

αn
≤ x,

Yvn(|vn|) − βn

αn
≤ x

)

. (4.11)

Let un ∧ vn be the deepest common ancestor of un and vn. To compute the limit in (4.11) we
investigate the dependence between Yun(|un|) and Yvn(|vn|). This dependence comes from the
values of the ancestors of un ∧ vn which contribute both to Yun(|un|) and to Yvn(|vn|) and can
also come from the values of the children of un ∧ vn.

Let ∆un,vn be the path distance between un and vn in Tn. Mahmoud and Neininger [19] have
shown

∆un,vn − 4 log(n)
√

4 log(n)

D−−−→
n→∞

N (0, 1). (4.12)

13



Using the relation ∆un,vn = |un| + |vn| − 2|un ∧ vn|, (4.12) and (4.9) one gets, for any ε > 0,

|un ∧ vn|
(2 log(n))

1
2
+ε

proba−−−→
n→∞

0. (4.13)

In order to get the limit in (4.11) we write

Yun(|un|) D
= X̃1 +

|un∧vn|
∑

i=1

Xi +

|un|−|un∧vn|
∑

i=2

X̃i (4.14)

and

Yvn(|vn|) D
= X̂1 +

|un∧vn|
∑

i=1

Xi +

|vn|−|un∧vn|
∑

i=2

X̂i, (4.15)

where the random variables (Xi)i≥1, (X̃i)i≥2 and (X̂i)i≥2 are all i.i.d. with law ν; X̃1 and X̂1

are the values attached to the children of un∧vn and may be dependent. Using (4.13) we prove,
with the same arguments as those in the proof of Lemma 1, that the common sum of (4.14) and
(4.15), that is the sum of the Xi, normalized by αn, goes to zero in probability. Moreover we

have
X̃1

αn

proba−−−−−→
n→+∞

0 and
X̃1

αn

proba−−−−−→
n→+∞

0. Whence, using the independence between the remaining

sums of (4.14) and (4.15), that is the sum on the X̃i and the sum on the X̂i, we get that the
quantity (4.11) has the same limit (if any) as

P



(−βn +

|un|−|un∧vn|
∑

i=2

X̃i)/αn ≤ x



 P



(−βn +

|vn|−|un∧vn|
∑

i=2

X̂i)/αn ≤ x



 .

Using the same methods as in Lemma 1, we finally find that E
[

(µn(] −∞, x]))2
]

has the same

limit as [E(µn(] −∞, x]))]2. ¤

Proof of Theorem 1:
Thanks to Lemma 1 and Lemma 2, for any x ∈ R, the sequence (Fn(x)) converges in probability
to F∞,ν(x), where Fn and F∞,ν are respectively the distribution functions of µn and of µ∞,ν

(F∞,ν and µ∞,ν are deterministic).
A well known result of analysis is the following: if a sequence of bounded increasing functions,
having limits zero at −∞ and one at +∞, converges pointwise to a continuous function then
the convergence is uniform. Thus, since the function F∞,ν is continuous, we deduce the uniform
convergence of Fn to F∞,ν in probability. This entails the weak convergence of µn to µ∞,ν in
probability. ¤

14



Remark 2 We proved Theorem 1 for the internal occupation measure µn. To prove the result
for µn it suffices to find similar results to (4.9) and (4.13) for the external nodes. Brown and
Shubert [6] have shown that the asymptotics (4.9) is true for un uniform on ∂Tn and we obtain
(4.13) for the leaves using (4.12), a proof runs as follows: Let CI and CE be the sets

CI := {(u, v) ∈ (Tn\∂Tn)2 such that |∆u,v − 4 log n| > (4 log n)
1
2
+ε}.

and
CE := {(u, v) ∈ (∂Tn)2 such that |∆u,v − 4 log n| > (4 log n)

1
2
+ε + 2}

Using the projection from CE to CI , which returns the parent of each leaf, we get #CE ≤ 4×#CI .
Thus #CE/n2 goes to zero in probability and, using the relation ∆u,v = |u|+ |v| − 2|(u∧ v)| we
get that (4.13) holds for un and vn uniformly and independently chosen on ∂Tn.

Moreover, the main result is restricted here to α 6= 1, but the symetric case for α = 1 also
works, since we can take bn ≡ 0 for the convergence (2.3).

4.2 Proof of Theorem 3

Let us see that Theorem 3 is a consequence of Corollary 1. Following the formalism of Marckert
[21], we define a map Φ, named rotation correspondence, from the set P of plane trees to the
set B of complete binary trees (this is referred to as the natural correspondence in Knuth [15]).
With a plane tree Tn is associated a binary tree Tn−1 such that Φ(Tn) = Tn−1. It means that to
each node a of Tn corresponds an internal node of Tn−1, denoted by Φ(a), verifying the following
three points:

(a) If a is the leftmost son of the root of Tn then Φ(a) = ∅.
(b) ({a, b} ⊂ Tn, b = a0) ⇔ ({Φ(a), Φ(b)} ⊂ Tn−1, Φ(b) = Φ(a)0).
(c) ({a, b} ⊂ Tn, a = dc, b = d(c + 1)) ⇔ ({Φ(a), Φ(b)} ⊂ Tn−1, Φ(b) = Φ(a)1).

Tn−1 is obtained by adding the leaves to the internal nodes. (b) means that a relation father-
leftmost son in Tn corresponds to a relation father-left son in Tn−1. (c) means that a relation
between a node and its first brother on its right in Tn corresponds to a relation father-right son
in Tn−1. Figure 4 illustrates why the correspondence is called a rotation. To get Tn−1 from Tn,
remove the root, keep the edges father-leftmost son and add an edge between each node and its
first brother on its right (if any). Make a π/4 rotation. This gives the internal nodes of Tn−1.
Add the leaves to obtain a complete binary tree.

Let Ψ := Φ−1. The replacement of a leaf by an internal node in a complete binary tree
T results in the addition of a node as a rightmost son in Ψ(T ). Thus, since the insertion in
both processes is uniform, the random process of complete binary trees (Φ(Tn), n ≥ 1) is a BST
process: this implies that both processes (Φ(Tn), n ≥ 1) and (Tn, n ≥ 0) have the same law.
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Figure 4 : The three steps of the map φ.

Hence the random variables on Pn+1 can be seen as random variables on Bn through the map Ψ.

From now on we denote by Tn a recursive tree and by Tn−1 the BST Φ(Tn). For any
u = d1d2 · · · dk ∈ Tn−1, we denote by L(u) the left-depth of u, that is L(u) = #{i | di = 0} (L(u)
is the number of left-steps from the root to u). By the rotation correspondence the height of a
node a in Tn − {∅} minus 1 is equal to the left-depth of Φ(a) in Tn−1. In order to count the
left-depth of each internal node, we construct a branching random walk Y ⋆ with underlying tree
Tn−1 and where the law of the increments is given by

P
(

c⋆
u = (1, 0)

)

= 1, ∀u ∈ U
b.

With these increments, Y ⋆
u (|u|) is equal to L(u) and is also equal to |Ψ(u)| − 1. Thus we have

Xn(k) = #{a ∈ Tn, |a| = k}
= #{u ∈ Tn−1, L(u) = k − 1}
= #{u ∈ Tn−1, Y

⋆
u (|u|) = k − 1}.

The occupation measure associated with Y ⋆ is

µ⋆
n−1 =

1

n − 1

∑

u∈Tn−1\∂Tn−1

δY ⋆
u (|u|)−log(n−1)√

2 log(n−1)

.

We thus have

pn(k) =
n − 1

n
µ⋆

n−1

(

(−∞,
k − 1 − log(n − 1)

√

2 log(n − 1)
]

)

.

Using Corollary 1 for the distribution Λ given by

P(cu = (1, 0)) = P(cu = (0, 1)) =
1

2
, ∀u ∈ U

b,

16



we get

µ⋆
n−1

proba−−−−−→
n→+∞

N (0,
1

2
)

in the set of probability measures for the weak topology, which ends the proof of Theorem 3. ¤

Conclusion and perspectives
Two important tools of the proof of Theorem 1 are the properties of the stable laws and some

asymptotics properties of the BSTs. If we consider the branching random walk with another
type of underlying trees that still verify (4.9) and (4.13) then an analog of Theorem 1 can be
proved. It seems to be the case of the recursive trees studied in section 3.2.
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